
Génération d’acronymes

Épreuve pratique d’algorithmique et de programmation
Concours commun des Écoles normales supérieures

Durée de l’épreuve : 3 heures 30 minutes

Juin 2025

ATTENTION !

à l’emplacement prévu sur votre fiche réponse
N’oubliez en aucun cas de recopier votre u0

Important.

Il vous a été donné un numéro u0 qui identifie les fichiers d’entrée pour vos codes. Ceux-ci se
trouvent dans un répertoire data/u0/, où u0 est remplacé par votre numéro u0. Les réponses
attendues sont généralement courtes et doivent être données sur la fiche réponse fournie à la
fin du sujet. À la fin du sujet, vous trouverez en fait deux fiches réponses. La première est un
exemple des réponses attendues pour le numéro particulier ũ0. Cette fiche est destinée à vous
aider à vérifier le résultat de vos programmes. Vous indiquerez vos réponses (correspondant à
votre u0) sur la seconde et vous la remettrez à l’examinateur à la fin de l’épreuve.
En ce qui concerne la partie orale de l’examen, lorsque la description d’un algorithme est deman-
dée, vous devez présenter son fonctionnement de façon schématique, courte et précise. Vous ne
devez en aucun cas recopier le code de vos procédures !
Quand on demande la complexité en temps ou en mémoire d’un algorithme en fonction d’un
paramètre n, on demande l’ordre de grandeur en fonction du paramètre, par exemple : O(n2),
O(n log n), etc. La lecture de l’instance par le code qui vous a été fourni ne sera pas prise en
compte dans la complexité.
Il est recommandé de commencer par lancer vos programmes sur de petites valeurs des para-
mètres et de tester vos programmes sur des petits exemples que vous aurez résolus
préalablement à la main ou bien à l’aide de la fiche réponse type fournie en annexe.
Enfin, il est recommandé de lire l’intégralité du sujet avant de commencer afin d’effectuer les
bons choix de structures de données dès le début.

La partie 1 doit être implémentée en C (à l’aide du fichier base_1.c), et les parties 2 et 3 doivent
être implémentées en OCaml (à l’aide des fichiers base_2.ml et base_3.ml). Ces trois parties
peuvent être traitées de manière indépendante.
Les fichiers susmentionnés vous sont fournis dans un dossier de base. Ce dossier contient égale-
ment un sous-dossier data/ dans lequel se trouvent les jeux de tests pour les différentes parties. Il
est recommandé de garder une sauvegarde de tous les fichiers fournis, au cas où ceux-ci seraient
modifiés par erreur.
Il est demandé de nous fournir sur votre clef USB vos fichiers sources. Ces consignes doivent
impérativement être suivies.

Introduction

Dans ce sujet, nous souhaitons générer des acronymes à partir d’une séquence de mots. Plus
précisément, étant donnés l’ensemble des mots du dictionnaire D et une séquence de mots p
(ci-après dénommée phrase) constituée de mots de D, nous souhaitons produire un acronyme
a ∈ D correspondant à cette séquence de mots. Une phrase p contenant k mots est de la forme
m1, . . . ,mk, et chacun des mot mi est composé de lettre ℓ1, . . . , ℓn (où n est la longueur de mi).
Si une lettre ℓ apparaît dans un mot m, nous notons ℓ ∈ m.
Dans les différentes sections de ce sujet, vous devez implémenter plusieurs algorithmes permettant
de générer des variantes d’acronymes.

1 Acronymes exacts

Dans cette première partie que vous traiterez en langage C , vous devez générer des acronymes
que nous appellerons exacts. Il s’agit d’acronymes pour lesquels l’ordre des mots de la phrase
considérée est respecté, et où chaque mot de la phrase est associé à exactement une lettre de
l’acronyme, et inversement. Plus précisément, pour une phrase p = m1 . . .mn, l’acronyme a ∈ D
que vous devez identifier doit être de la forme ℓ1 . . . ℓn, avec ℓi ∈ mi pour tout i ∈ {1, . . . , n}.
Pour vous aider dans cette tâche, nous vous fournissons dans le fichier base_1.c la fonction
lireDictionnaire qui vous permet de lire le dictionnaire D à partir d’un fichier texte. Cette
fonction est donnée par :

int lireDictionnaire(char *nomFichier, char dico[MAX_MOTS][TAILLE_MAX_MOT]);

Cette fonction prend en paramètres le chemin du fichier contenant le dictionnaire, ainsi qu’un
tableau de chaînes de caractères dico dans lequel les mots du dictionnaire seront stockés, sous la
forme de chaînes de caractères terminés par le caractère “\0”. La fonction retourne le nombre de
mots lus dans le dictionnaire. Le dictionnaire contiendra au plus 10 000 mots, chacun comportant
au plus 9 caractères de l’alphabet latin, en minuscules et sans accents. Les constantes MAX_MOTS
et TAILLE_MAX_MOT définies dans le fichier base_1.c contiennent ces longueurs maximales res-
pectives (en tenant compte du caractère “\0”). La fonction main fournie dans le fichier base_1.c
appelle cette fonction pour vous, et fournit le dictionnaire obtenu aux fonctions que vous devez
implémenter dans la suite de ce sujet. Vous devez modifier cette fonction main pour y spécifier
la valeur de votre u0.

1.1 Acronymes utilisant les initiales
Dans cette partie, nous allons nous limiter au cas où les acronymes sont constitués exclusivement
à partir des initiales des mots de la phrase donnée en entrée, que l’on qualifie, par anglicisme,

1 / 8

d’initialismes. Par exemple, la phrase “voici un exemple” donnera pour acronyme “vue” (si ce
mot est dans le dictionnaire fourni), alors que la phrase “ici ca ne marche pas” ne correspond
à aucun acronyme (a priori, “icnmp” n’est pas un mot du dictionnaire).
Vous devez pour cela implémenter la fonction du fichier base_1.c définie par :

int trouverInitialisme(char phrase[5][TAILLE_MAX_MOT],
int taillePhrase,
char dico[MAX_MOTS][TAILLE_MAX_MOT],
int tailleDico);

Cette fonction prend en paramètres le tableau des mots constituant la phrase (chacun terminé
par le caractère “\0”), le nombre de mots de la phrase, le tableau des mots du dictionnaire, et le
nombre de mots du dictionnaire, respectivement, et retourne l’index de l’initialisme trouvé dans
le dictionnaire, ou −1 si aucun initialisme n’a été trouvé.

Question 1 Pour chacune des phrases suivantes, déterminez si un initialisme existe ou non dans
le dictionnaire fourni en implémentant trouverInitialisme, et renseignez le résultat de cette
fonction dans votre fiche réponse. Nous garantissons qu’au plus un acronyme existe dans le
dictionnaire fourni pour chacune des phrases ci-dessous, mais il peut aussi ne pas en exister.
Vous devez implémenter cette question en C, en utilisant les mots du dictionnaire
fourni dans le fichier data/u0/entree-q1.txt.

a) dru echappa palotte b) absolve composte epinceter

c) merite endurable campera d) place oppidums texturat

e) rejaillir otorragie ironisa

Question à développer pendant l’oral 1 Décrivez l’algorithme utilisé pour répondre à la ques-
tion précédente. Quelle structure de données pourrait vous permettre de retrouver efficacement
si l’acronyme existe dans le dictionnaire (on ne considère pas le temps nécessaire à la lecture du
dictionnaire) ? Il n’est pas demandé de l’implémenter ici.

1.2 Acronymes utilisant des lettres quelconques

Nous autorisons maintenant l’utilisation de n’importe quelle lettre constituant les différents mots
de la phrase donnée en entrée. Par exemple, la phrase “voici un nouvel exemple” peut donner
comme acronyme “inox” (si ce mot est dans le dictionnaire fourni) : en effet, si l’on met en
évidence les lettres de l’acronyme dans la phrase, on obtient “voIci uN nOuvel eXemple”. En
revanche, si l’on considère la phrase “la non”, il n’existe pas d’acronymes possibles, car on
ne pourrait former que les mots “ln”, “lo”, “an” et “ao”, et a priori aucun n’existe dans le
dictionnaire.
Vous devez pour cela implémenter la fonction du fichier base_1.c définie par :

int trouverAcronyme(char phrase[5][TAILLE_MAX_MOT],
int taillePhrase,
char dico[MAX_MOTS][TAILLE_MAX_MOT],
int tailleDico);

2 / 8

Cette fonction prend en paramètres le tableau des mots constituant la phrase (chacun terminé
par le caractère “\0”), le nombre de mots de la phrase, le tableau des mots du dictionnaire, et le
nombre de mots du dictionnaire, respectivement, et retourne l’index de l’acronyme trouvé dans
le dictionnaire, ou −1 si aucun acronyme n’a été trouvé.

Question 2 Pour chacune des phrases suivantes, déterminez si un acronyme existe ou non dans le
dictionnaire fourni en implémentant trouverAcronyme, et renseignez le résultat de cette fonction
dans votre fiche réponse. Nous garantissons qu’au plus un acronyme existe dans le dictionnaire
fourni pour chacune des phrases ci-dessous, mais il peut aussi ne pas en exister. Vous devez
implémenter cette question en C, en utilisant les mots du dictionnaire fournis dans
le fichier data/u0/entree-q2.txt.

a) ravit alentit mimee lisible b) logicisme fallut pagaye radouber

c) debraye regreffe parraine velums d) anavenins javelots attirer

e) tartisse audition indelicat baclee stria

Question à développer pendant l’oral 2 Décrivez l’algorithme utilisé pour répondre à la ques-
tion précédente, et indiquez sa complexité temporelle.

2 Acronymes utilisant des lettres supplémentaires

Dans cette deuxième partie que vous traiterez en langage OCaml , vous devez maintenant géné-
rer des quasi-acronymes, c’est-à-dire des acronymes dans lesquels on autorise à ce que certaines
lettres ne correspondent pas à un mot de la phrase. Néanmoins, pour éviter que les acronymes ne
soient trop éloignés de la phrase d’origine, on limitera le nombre total de lettres ne correspondant
à aucun mot à 2.
Plus précisément, pour une phrase p = m1 . . .mn, l’acronyme a ∈ D que vous devez identifier
doit être de la forme ℓ1 . . . ℓk avec :

— n ≤ k ≤ n+ 2 ;
— il existe une fonction σ : {1, . . . , n} → {1, . . . , k} telle que σ(i) < σ(j) pour tout i < j, et

ℓσ(i) ∈ mi pour tout i ∈ {1, . . . , n}.
On parlera de quasi-initialisme lorsque, dans la définition ci-dessus, ℓσ(i) est l’initiale du mot mi

pour tout i ∈ {1, . . . , n}.
La phrase “voici encore un exemple” a ainsi pour quasi-initialisme le mot “vecue” (“Voici
Encore Un Exemple”), et pour quasi-acronyme “canaux” (“voiCi eNcore Un eXemple”), si ces
mots sont dans le dictionnaire. Notez ici que la lettre ‘c’ dans le premier exemple, et les lettres
‘a’ dans le second exemple, ne correspondent pas à des mots de la phrase.
Pour vous aider dans l’implémentation de votre solution, nous vous fournissons la fonction
lireDictionnaire qui vous permet de lire le dictionnaire D à partir d’un fichier texte. Cette
fonction est donnée par :

lireDictionnaire : string -> string list

Cette fonction prend en paramètre le chemin du fichier contenant le dictionnaire, et retourne
la liste contenant les mots de ce dictionnaire. Le dictionnaire contiendra au plus 100 000 mots,
chacun composés de caractères de l’alphabet latin, en minuscules et sans accents, dont la taille
n’est pas limitée.

3 / 8

De plus, les phrases que vous aurez à traiter dans cette partie étant relativement longues, nous
vous fournissons la fonction lirePhrase définie par :

lirePhrase : string -> string list

Cette fonction prend en paramètre le chemin du fichier contenant une phrase d’entrée pour votre
programme, et retourne la liste des mots de cette phrase.
Ces deux fonctions sont appelées pour vous dans le fichier base_2.ml, et fournissent les dic-
tionnaires et les phrases lues en paramètres des fonctions que vous allez implémenter ci-après.
N’oubliez pas de renseigner la valeur de votre u0 dans ce fichier.

Question 3 Pour chacune des phrases contenues dans les fichiers suivants, déterminez combien
de quasi-initialismes existent dans le dictionnaire fourni. Pour cela, vous devez implémenter
la fonction compterInitialismes du fichier base_2.ml. Inscrivez ensuite les résultats obtenus
dans votre fiche réponse. On rappelle qu’ici seules les initiales des mots de la phrase sont à
considérer. Vous devez implémenter cette question en OCaml, en utilisant les mots
du dictionnaire fournis dans le fichier data/u0/entree-q3.txt.

a) data/u0/entree-q3-a.txt b) data/u0/entree-q3-b.txt

c) data/u0/entree-q3-c.txt d) data/u0/entree-q3-d.txt

e) data/u0/entree-q3-e.txt

Question 4 Pour chacune des phrases contenues dans les fichiers suivants, déterminez com-
bien de quasi-acronymes existent dans le dictionnaire fourni, en appliquant la nouvelle ap-
proche décrite ici. Pour cela, vous devez implémenter la fonction compterAcronymes du fichier
base_2.ml. Inscrivez ensuite les résultats obtenus dans votre fiche réponse. On rappelle qu’ici
toutes les lettres des mots de la phrase peuvent être utilisées. Vous devez implémenter cette
question en OCaml, en utilisant les mots du dictionnaire fournis dans le fichier
data/u0/entree-q4.txt.

a) data/u0/entree-q4-a.txt b) data/u0/entree-q4-b.txt

c) data/u0/entree-q4-c.txt d) data/u0/entree-q4-d.txt

e) data/u0/entree-q4-e.txt

Question à développer pendant l’oral 3 Décrivez les algorithmes utilisés pour répondre aux
questions précédentes, en précisant la différence entre les deux questions. Donnez la complexité
temporelle et la complexité spatiale de ces algorithmes.

Question à développer pendant l’oral 4 Quel formalisme pourrait vous permettre de représen-
ter l’existence de lettres intermédiaires quelconques entre les lettres de la phrase pour former un
acronyme, et ainsi résoudre efficacement le problème ? Vous présenterez brièvement la représen-
tation qu’il faudrait utiliser dans ce cas. Il n’est pas demandé de l’implémenter.

4 / 8

3 Acronymes non dépendants de l’ordre des mots

Dans cette troisième partie que vous traiterez en langage OCaml , vous devez maintenant générer
des quasi-acronymes désordonnés, c’est-à-dire des quasi-acronymes dans lesquels l’ordre des mots
de la phrase n’est pas nécessairement préservé. Comme dans la partie précédente, on autorisera
aussi à ce qu’au plus deux lettres de l’acronyme ne correspondent pas à un mot de la phrase.
Plus précisément, pour une phrase p = m1 . . .mn, l’acronyme a ∈ D que vous devez identifier
doit être de la forme ℓ1 . . . ℓk avec :

— n ≤ k ≤ n+ 2 ;
— il existe une fonction σ : {1, . . . , n} → {1, . . . , k} telle que σ(i) ̸= σ(j) pour tout i ̸= j, et

ℓσ(i) ∈ mi pour tout i ∈ {1, . . . , n}.
Par exemple, la phrase “ici l ordre importe peu” peut donner comme acronyme “enclot”
(si ce mot est dans le dictionnaire). Dans ce cas, en mettant en évidence les lettres de l’acronyme
et en mettant les mots dans l’ordre approprié, la phrase devient : “pEu iCi L Ordre imporTe”
(la lettre ‘n’ n’est pas utilisé).
Pour résoudre ce problème, on se propose de le voir comme un problème de couplage biparti
maximum dans un graphe. Un graphe orienté G = (V,E) est un couple où V est un ensemble
de nœuds et E est un ensemble d’arcs (u, v) ∈ E2. Un graphe non-orienté G = (V,E) est un
couple où V est un ensemble de nœuds et E est un ensemble d’arêtes {u, v} ⊂ V , avec u ̸= v. Un
graphe non-orienté est dit biparti lorsqu’il existe une partition {U, V } de ses sommets telle que,
pour toute arête {v, v′} ∈ E, (v ∈ U et v′ ∈ V) ou (v′ ∈ U et v ∈ V). Pour décrire un graphe
biparti, nous noterons alors G = (U, V,E). Un couplage dans un graphe biparti G = (U, V,E) est
un sous-ensemble C de E telle que, pour toute paire d’arêtes e et e′ dans C, e ∩ e′ = ∅, c’est
à dire que e et e′ n’ont pas de nœuds en commun. Un nœud f de G est dit libre pour C si il
n’est l’extrémité d’aucune arête de C, c’est-à-dire, pour toute arête {u, v} ∈ C, f ̸= u et f ̸= v.
Un couplage C est dit maximum s’il n’existe aucun couplage C ′ dont le cardinal est strictement
supérieur à celui de C.
Afin de construire un couplage maximum dans un graphe biparti, nous allons utiliser la méthode
des chemins augmentants. Plus précisément, soit G = (U, V,E) ce graphe, et soit C un couplage
de G. Un chemin c = (v0, v1, . . . , v2p+1) de longueur impaire est augmentant pour C si :

— v0 et v2p+1 sont libres pour C,
— pour tout i ∈ {0, . . . , p}, {v2i, v2i+1} ∈ E\C,
— pour tout i ∈ {0, . . . , p− 1}, {v2i+1, v2i+2} ∈ C, et
— c ne contient pas deux fois le même sommet.

Autrement dit, un chemin augmentant est un chemin de longueur impaire, alternant les arêtes
de C et de E\C, et reliant deux sommets libres distincts.
Afin d’identifier un chemin augmentant dans un graphe biparti G = (U, V,E) pour un couplage
C, on construit le graphe orienté GC = (U ∪ V, Ẽ), où Ẽ est donné par :

Ẽ = {(v, u) | {u, v} ∈ C, u ∈ U, v ∈ V }
∪ {(u, v) | {u, v} ∈ E\C, u ∈ U, v ∈ V }

Afin d’identifier un chemin augmentant, il suffit alors de trouver un chemin P dans GC entre un
nœud uf ∈ U et un autre nœud vf ′ ∈ V tous les deux libres pour C. Le résultat de l’augmentation
du couplage C par le chemin augmentant P est défini comme la différence symétrique entre C
et P . Concrètement, les arêtes du chemin P qui sont dans le couplage sont enlevées, alors que
les arêtes du chemin P qui ne sont pas dans le couplage sont ajoutés au nouveau couplage.
La figure 1 illustre les différentes étapes permettant, à partir d’un couplage existant, identifier
un chemin augmentant pour ensuite construire un couplage plus grand.

5 / 8

u0

u1

u2

u3

u4

v0

v1

v2

v3

u0

u1

u2

u3

u4

v0

v1

v2

v3

u0

u1

u2

u3

u4

v0

v1

v2

v3

Figure 1 – Un exemple d’utilisation de la méthode des chemins augmentants pour déterminer
un nouveau couplage dans un graphe biparti. À gauche, le couplage initial C du graphe G est
représenté par les arêtes épaisses. Au centre, un chemin augmentant est mis en évidence sur le
graphe orienté GC construit à partir de C. À droite, le nouveau couplage obtenu est représenté
par les arêtes épaisses.

La première étape de cette partie consiste à implémenter un algorithme permettant de déterminer
si un chemin augmentant existe dans un graphe biparti G = ({u0, . . . , ug−1}, {v0, . . . , vd−1}, E)
pour un couplage C donné. Par souci de simplicité, on appellera respectivement partie gauche
et partie droite les deux ensembles de nœuds constituant le graphe biparti G. Pour cela, une
fonction lireGrapheCouplages est fournie dans le fichier base_3.ml, et est donnée par :

lireGrapheCouplages : string -> int * int * (int list array) * (int array list)

Cette fonction prend en paramètre le chemin du fichier contenant le graphe biparti et ses cou-
plages associés, et retourne un quadruplet (g, d, E,C) où :

— g est le nombre de nœuds dans la partie gauche du graphe,
— d est le nombre de nœuds dans la partie droite du graphe,
— E est la représentation du graphe sous la forme d’une liste d’adjacence, c’est-à-dire un

tableau de g listes (une liste par nœud de la partie gauche), où la liste d’indice i contient
les voisins du nœud ui situés dans la partie droite du graphe.

— C est une liste de couplages du graphe biparti, chaque couplage étant représenté à l’aide
d’un tableau t d’entiers, dans lequel t[j] est le nœud ut[j] de la partie gauche du graphe
auquel est couplé le nœud de la partie droite vj , ou −1 si le nœud vj n’est pas couplé.

Cette fonction est appelée pour vous dans le fichier base_3.ml, et son résultat est donné en
paramètre de la fonction compterCheminsAugmentants que vous devez implémenter ici. N’oubliez
pas de renseigner la valeur de votre u0 dans ce fichier. L’instance data/u0/entree-q5-a.txt de
numéro ũ0 = 0 correspond à l’exemple de la Figure 1. Vous pouvez vous en servir pour debogguer
votre code.

Question 5 Implémentez la fonction compterCheminsAugmentants déterminant combien de cou-
plages admettent un chemin augmentant dans le graphe biparti donné parmi ceux donnés dans les
fichiers ci-dessous. Renseignez ce nombre dans votre fiche réponse. Vous devez implémenter
cette question en OCaml.

a) data/u0/entree-q5-a.txt b) data/u0/entree-q5-b.txt

6 / 8

c) data/u0/entree-q5-c.txt d) data/u0/entree-q5-d.txt

Question à développer pendant l’oral 5 Quelle est la complexité temporelle de l’algorithme que
vous avez implémenté pour répondre à la question précédente ?

Vous devez maintenant exploiter l’algorithme implémenté dans la question précédente pour
construire un couplage maximum dans un graphe biparti G = ({u0, . . . , ug−1}, {v0, . . . , vd−1}, E).
On admettra qu’un couplage C pour un graphe biparti G n’admettant pas de chemin augmen-
tant est maximum. Pour cela, nous vous fournissons également une fonction lireGraphe dans le
fichier base_3.ml, donnée par :

lireGraphe : string -> int * int * (int list array)

Cette fonction prend en paramètre le chemin du fichier contenant le graphe biparti, et retourne
un triplet (g, d, E) dans le même format que celui décrit pour la fonction lireGrapheCouplages
(sans la liste C des couplages existants). Elle est appelée pour vous dans le fichier base_3.ml,
et son résultat est donné en paramètre de la fonction trouverCouplage que vous devez implé-
menter ici, afin de déterminer la taille d’un couplage maximum dans le graphe donné. L’instance
data/u0/entree-q6-a.txt de numéro ũ0 = 0 correspond à l’exemple de la Figure 1. Vous
pouvez vous en servir pour debogguer votre code.

Question 6 Implémentez la fonction trouverCouplage déterminant la taille d’un couplage maxi-
mum de chacun des graphes donnés dans les fichiers suivants. Renseignez la taille de ces couplages
dans votre fiche réponse. Vous devez implémenter cette question en OCaml.

a) data/u0/entree-q6-a.txt b) data/u0/entree-q6-b.txt

c) data/u0/entree-q6-c.txt d) data/u0/entree-q6-d.txt

Question à développer pendant l’oral 6 Quelle est la complexité temporelle de l’algorithme que
vous avez implémenté pour répondre à la question précédente ?

En exploitant les algorithmes que vous avez implémentés dans les questions précédentes, vous
devriez maintenant pouvoir résoudre le problème initial, à savoir la génération d’acronymes
désordonnés. Les fonctions lireDictionnaire et lirePhrase décrites dans la section précédente
sont également définies dans le fichier base_3.ml, et sont appelées pour vous afin de vous fournir
les dictionnaires et les phrases en paramètres de la fonction compterAcronymesDesordonnes que
vous devez implémenter.

Question 7 Pour chacune des phrases contenues dans les fichiers suivants, déterminez combien
de quasi-acronymes désordonnés existent dans le dictionnaire fourni. Pour cela, vous devez im-
plémenter la fonction compterAcronymesDesordonnes du fichier base_3.ml. Inscrivez ensuite
les résultats obtenus dans votre fiche réponse. On rappelle qu’ici toutes les lettres des mots de
la phrase peuvent être utilisées. Vous devez implémenter cette question en OCaml, en
utilisant les mots du dictionnaire fournis dans le fichier data/u0/entree-q7.txt.

a) data/u0/entree-q7-a.txt b) data/u0/entree-q7-b.txt

c) data/u0/entree-q7-c.txt d) data/u0/entree-q7-d.txt

e) data/u0/entree-q7-e.txt

7 / 8

Question à développer pendant l’oral 7 Décrivez comment vous avez utilisé l’algorithme de
couplage maximum pour répondre à la question précédente.

♢
♢ ♢

♢

8 / 8

Fiche réponse type : Génération d’acronymes

ũ0 : 0

Question 1

a)
2668

b)
7057

c)
6703

d)
7941

e)
3843

Question 2

a)
1952

b)
1582

c)
1755

d)
4462

e)
8591

Question 3

a)
3

b)
2

c)
2

d)
3

e)
3

Question 4

a)
15

b)
12

c)
896

d)
0

e)
133

Question 5

a)
1

b)
344

c)
350

d)
313

Question 6

I / II

a)
4

b)
74

c)
93

d)
83

Question 7

a)
2346

b)
56

c)
23 482

d)
683

e)
1275

♢
♢ ♢

♢

II / II

Fiche réponse : Génération d’acronymes

Nom, prénom, u0 : .

Question 1

a)

b)

c)

d)

e)

Question 2

a)

b)

c)

d)

e)

Question 3

a)

b)

c)

d)

e)

Question 4

a)

b)

c)

d)

e)

Question 5

a)

b)

c)

d)

Question 6

I / II

a)

b)

c)

d)

Question 7

a)

b)

c)

d)

e)

♢
♢ ♢

♢

II / II

	Acronymes exacts
	Acronymes utilisant les initiales
	Acronymes utilisant des lettres quelconques

	Acronymes utilisant des lettres supplémentaires
	Acronymes non dépendants de l'ordre des mots

