Ambiguité des automates finis

Epreuve pratique d’algorithmique et de programmation

Concours commun des Ecoles normales supérieures
Durée de I'épreuve : 3 heures 30 minutes

Juin 2025

2

N’oubliez en aucun cas de recopier votre wuy
a 'emplacement prévu sur votre fiche réponse

Important.

Il vous a été donné un numéro uy qui identifie les fichiers d’entrée pour vos codes. Ceux-ci se
trouvent dans un répertoire data/u0/, o u0 est remplacé par votre numéro ug. Les réponses
attendues sont généralement courtes et doivent étre données sur la fiche réponse fournie a la
fin du sujet. A la fin du sujet, vous trouverez en fait deux fiches réponses. La premiére est un
exemple des réponses attendues pour le numéro particulier ug. Cette fiche est destinée & vous
aider & vérifier le résultat de vos programmes. Vous indiquerez vos réponses (correspondant &
votre ug) sur la seconde et vous la remettrez & 'examinateur & la fin de I’épreuve.

En ce qui concerne la partie orale de I'examen, lorsque la description d’un algorithme est de-
mandée, vous devez présenter son fonctionnement de facon schématique, courte et précise. Vous
ne devez en aucun cas recopier le code de vos procédures !

Quand on demande la complexité en temps ou en mémoire d’un algorithme en fonction d’un
parametre n, on demande l'ordre de grandeur en fonction du parameétre, par exemple : O(n?),
O(nlogn), etc. La lecture de I'instance par le code qui vous a été fourni ne sera pas prise en
compte dans la complexité.

Il est recommandé de commencer par lancer vos programmes sur de petites valeurs des para-
metres et de tester vos programmes sur des petits exemples que vous aurez résolus
préalablement a la main ou bien a l’aide de la fiche réponse type fournie en annexe.
Enfin, il est recommandé de lire l'intégralité du sujet avant de commencer afin d’effectuer les
bons choix de structures de données des le début.

La Partie 1 doit étre implémentée en C (& l'aide du fichier base.c), et la Partie 2 doit étre
implémentée en OCaml (& 1'aide du fichier base.ml). Ces deux parties sont indépendantes.

Les deux fichiers susmentionnés vous sont fournis dans un dossier de base. Ce dossier contient
également un sous-dossier data/ dans lequel se trouvent les jeux de tests pour la partie OCaml.
Il est recommandé de garder une sauvegarde de tous les fichiers fournis, au cas ou ceux-ci seraient
modifiés par erreur.

Il est demandé de nous fournir sur votre clef USB vos fichiers sources. Ces consignes doivent
impérativement étre suivies.

Introduction

Dans tout ce sujet on fixe Palphabet fini ¥ = {a,b}. Pour un mot w € ¥*, on note |w| sa longueur
et wli] sa i-éme lettre pour i € {0,1,...,|w| — 1} (ainsi, le mot commence par la lettre w[0]).
Rappelons qu’un automate fini sur ¥ consiste en :

— un ensemble fini d’états () — dans nos implémentations en C et en OCaml, il sera toujours
de la forme @ = {0,1,..., N — 1}, et on se contentera donc de spécifier dans la donnée de
l'automate le nombre N d’états;

— un sous-ensemble d’états initiaux I C @, qui vaudra toujours I = {0} ici;

— et un sous-ensemble d’états finaux F' C @, qui vaudra toujours F' = {N — 1} ici;

— un ensemble de transitions A C Q X ¥ X Q.

Par exemple, le schéma ci-dessous représente un automate avec N = 6 états et les transitions
A ={(0,a,1),(0,b,4),(0,a,5),(1,b,0),(2,a,5),(3,a,2),(3,a,3),(3,b,3),(5,b,2), (5,a,4)} :

On note p — ¢ pour (p,¢,q) € Alorsque ¢ € {a,b}. Un chemin d’un état p & un état ¢ étiqueté
par un mot w € ¥* est une suite d’états qo, . .., gj,| telle que :

— qo =D et g =4q;

— w_h]) ¢i+1 pour tout ¢ € {0,1,...,|w| —1}.
Ce chemin est acceptant lorsque p est I’état initial et ¢ est I’état final.
On appelle ambiguité d’un automate sur un mot donné le nombre de chemins acceptants. Par
exemple, 'automate dessiné ci-dessus a pour ambiguité n+1 sur (ab)™a car les chemins acceptants
sont de la forme suivante, pour 0 <7 < n:

0-%1-50% ... 5o%s5 o %5ty g

i passages par D’état 1 n — i passages par l’état 2

En particulier, il y a exactement un chemin acceptant qui ne passe pas par 1 (pour i = 0), et un
chemin acceptant qui ne passe pas par 2 (pour i = n).

Si on supprime la transition 2 —-+ 5, alors on obtient un autre automate reconnaissant le méme
langage (ab)"a mais non ambigu : son ambiguité est d’au plus 1 quel que soit le mot d’entrée.

1/8

1 Partie C

Code fourni Le fichier base.c contient un ensemble d’inclusions usuelles (<stdbool.h>,
<stdlib.h>, <stdio.h>, ...) en en-téte, suivi d’une déclaration de structure définissant notre
type de données pour les automates :

struct automate {
int nb_etats;
bool *trans_a;
bool *trans_b;
};

typedef struct automate automate;

Les pointeurs trans_a et trans_b pointent vers des tableaux de taille N x N ou N = nb_etats.
La valeur du booléen A.trans_a[i*A.nb_etats + j] indique si i — j, et de méme pour
trans_b et les transitions étiquetées par la lettre b. L’état initial est O et I’état final est N — 1.
A titre d’exemple, la variable globale automate A_ex dans base. c est initialisée & I'encodage de
l'automate dessiné dans l'introduction.
De plus, le fichier base.c fournit également :
— une fonction automate gen_automate(int uO, int N) renvoyant un automate a N états
généré pseudo-aléatoirement a partir de la graine ug ;
— une fonction void free_automate(automate A) permettant de libérer la mémoire dyna-
miquement allouée lors de la création d’un automate par la fonction précédente ;
— les prototypes des fonctions a implémenter pour les questions qui suivent.

Etant donné un nombre N d’états, on dit qu'un tableau de booléens etats de taille N représente
un sous-ensemble £ C Q ={0,1,...,N — 1} lorsque E = {i € Q | etats[i] vaut true}.

Question 1 Implémentez une fonction
void transition(automate A, char c, bool *etats_avant, bool *etats_apres)

qui écrit dans le tableau etats_apres — qu’on suppose de taille A.nb_etats et déja alloué par
le code appelant cette fonction — sans modifier etats_avant (également de taille A.nb_etats),
de sorte que :

etats_avant représente E = etats_apres représente {j | 3i € E:i < j}

A P’aide de Ia fonction transition, calculez

9] N o
;20 ou wm; =

iy , 1 sidie{0,1,2,3,4}:i <+ j dans gen_automate (u0,N)
0 sinon

j=0
pour votre valeur donnée de ug ainsi que les choix des parameétres ¢ et N suivants :

a) c=a, N=14 b) c=b N=15

Question a développer pendant l'oral 1 Quelle est la complexité en temps de votre algorithme
pour la fonction transition ? Justifiez.

Dans les questions suivantes, on vous promet que les mots en entrée sont dans {a, b}*.

2/8

Question 2 Implémentez une fonction
bool accepte(automate A, char *mot)
qui détermine si I'automate accepte le mot. On utilise la représentation habituelle des chaines

de caractéres en C avec le caractére nul '\0' comme marqueur de fin de chaine.

Indication. Idéalement, votre solution devrait effectuer O(1) appels a malloc et ne pas allouer
de tableaux de taille variable sur la pile.

Pour chacun des mots w € {a,b}* suivants (ot on note u™ pour la répétition n fois du mot),
calculer le cardinal de {N € {50,51,...,99} : gen_automate (u0,N) accepte w} :

a) w = abba b) w = a%pt00 c) w= (ba)'®®

Question a développer pendant l'oral 2 Expliquez brievement votre implémentation de la fonc-
tion accepte, en donnant sa complexité en temps et sa complexité en espace.

Question 3 Implémentez une fonction
int ambiguite(automate A, char *mot)

qui calcule lambiguité de I'automate sur le mot (telle que définie dans I'introduction) modulo
1000003 (10° + 3), ceci afin d’éviter les débordements d’entiers.
Calculez ambiguité de gen_automate (u0,1000) sur chacun des mots w € {a,b}* suivants :

a) w = abba b) w = a%p!00 c) w = (ba)'®®

Question a développer pendant I'oral 3 Expliquez votre algorithme.

Question 4 Implémentez une fonction
int maxamb (automate A, int longueur max)

qui calcule max{ambiguité de A sur w € {a,b}* : lw| < longueur_max}, en supposant que cette
valeur ne dépasse pas 10° (cette supposition sera vérifiée dans les cas d’application ci-dessous).

Indication. Une recherche exhaustive suffit ici. Comme précédemment, on veillera a limiter le
nombre d’allocations mémoire.
Calculez les valeurs obtenues pour A = gen_automate (u0,150) et :

a) longueur_max = 5 b) longueur_max = 10

Question a développer pendant I'oral 4 Expliquez briévement votre implémentation.

2 Partie OCaml

Rappel sur le module Queue La bibliotheque standard d’OCaml fournit un type Queue.t
de files mutables (FIFO), prenant en charge notamment les fonctions :

Queue.create : unit -> 'a Queue.t Queue.is_empty : 'a Queue.t -> bool
Queue.push : 'a -> 'a Queue.t -> unit Queue.pop : 'a Queue.t -> 'a

3/8

Code fourni Le fichier base.ml contient les éléments de code suivants :

— La déclaration de type synonyme type automate = (int list * int list) array: il
s’agit d’une représentation par liste d’adjacence, c’est-a-dire qu'un tableau aut de ce type
et de taille N représente I’automate dont
— les états sont {0,..., N — 1}, I'état initial est 0 et I’état final est N — 1,

— i %5 j lorsque j apparait dans la liste £st aut. (i),

— i 7 lorsque j apparait dans la liste snd aut. (i).

— Une définition d’une valeur a_ex : automate représentant I’automate de 'introduction.

— Une fonction read_automate : string -> automate qui lit un automate a partir d’un
fichier dont I’adresse est passée en argument. Elle servira a lire les instances de test stockées
dans le dossier data. Votre évaluation portera sur les fichiers dans data/ug/ avec la valeur
de ug qui vous a été fournie. Les autres fichiers (notamment dans data/ug/ qui correspond
a la fiche réponse type) peuvent étre utilisés pour tester vos programmes.

— Une fonction de hachage hash_ioa : int option array -> int qui sera utilisée dans
certaines questions pour produire les valeurs entieres a écrire sur votre fiche réponse.

Cette partie se compose de deux sous-parties indépendantes, reposant toutes deux sur base.ml :
— En §2.1 on cherche a tester efficacement si un automate est ambigu ou non.
— En §2.2 on étudie le comportement asymptotique de 'ambiguité.

2.1 Vers un test d’ambiguité efficace

On dit qu’un état g est accessible lorsqu’il y a un chemin menant de I’état initial (ici 0) a ¢. En
particulier, I’état initial est lui-méme accessible (via un chemin étiqueté par le mot vide). Dans
l'automate dessiné en introduction, le seul état non accessible est 3.

Question 5 Implémentez une fonction
accessibles : automate -> int option array

qui calcule un tableau associant a chaque état i :
— si i est accessible, Some(longueur minimale d’un chemin de 0 & i) ;
— sinon, None.
La taille du tableau doit donc étre le nombre d’états de I'automate.
Calculez hash_ioa (accessibles (read_automate f)) pour f valant :

a) data/ug/petit.txt b) data/ug/moyen.txt c) data/ug/gros.txt

Question a développer pendant I'oral 5 Quelle est la complexité en temps de votre algorithme,
en fonction du nombre N = |Q| d’états et du nombre |A| de transitions ? (Dans les questions
ultérieures de complexité, on attendra aussi une réponse en fonction de |Q| et |A|.)

La question 6 est indépendante du reste du sujet. C’est une variante de la question 5 avec un
critére d’optimisation différent : au lieu de minimiser la longueur d’un chemin, on veut minimiser
le nombre d’occurrences de la lettre b dans le mot qui I’étiquette. Ainsi, dans 'automate de
I'introduction, pour atteindre I’état 4 a partir de 1’état initial O :

— le chemin le plus court est 0 LN 4;
— le chemin minimisant le nombre de b est 0 — 5 —— 4.

4/8

Question 6 Implémentez une fonction
accessibles_min_b : automate -> int option array

qui calcule un tableau associant a chaque état i :
— si i est accessible, Some(nombre minimal de b d’un chemin de 0 4 1) ;
— sinon, None.
Calculez hash_ioa (accessibles_min_b (read_automate f)) pour f valant :

a) data/ug/petit.txt b) data/ug/moyen.txt c) data/ug/gros.txt

Question a développer pendant I'oral 6 Expliquez votre algorithme et donnez (en justifiant) sa
complexité en temps en fonction de |Q| et |A|.

On dit qu’'un état g est utile lorsqu’il y a un chemin acceptant qui passe par g. Cela revient a dire
que g est accessible et qu’il y a un chemin de g a 1’état final. Dans 'automate de I'introduction,
les états utiles sont 0, 1, 2 et 5.

Question 7 En réutilisant la fonction accessibles, implémentez une fonction
utiles : automate -> int option array

qui calcule un tableau associant a chaque état i :
— si i est utile, Some(longueur minimale d’un chemin acceptant passant par i) ;
— sinon, None.

La taille du tableau doit donc étre le nombre d’états de I'automate.

Calculez hash_ioa (utiles (read_automate f)) pour f valant :

a) data/ug/petit.txt b) data/ug/moyen.txt c) data/ug/gros.txt

Question a développer pendant I'oral 7 Expliquez votre algorithme, en précisant s’il suffit ou
non de remplacer les appels a accessibles par accessibles_min_b pour calculer, pour chaque
état, le nombre minimal de b dans un chemin acceptant passant par cet état.

Question 8 Implémentez une fonction
ambigu : automate -> int option

qui renvoie :
— Some(longueur minimale d’'un mot qui a une ambiguité > 2) s’il existe un tel mot ;
— sinon (ce qui signifie que automate est non ambigu), None.

Indication. On pourra exploiter le résultat de la fonction utiles sur un automate judicieuse-
ment construit a partir de 'automate d’entrée.
Calculez ambigu (read_automate f) pour f valant :

a) data/ug/q8a.txt b) data/up/q8b.txt
c) data/up/q8c.txt d) data/up/q8d.txt

Question a développer pendant I'oral 8 Expliquez briévement votre algorithme. Quelle est sa
complexité en temps ?

5/8

2.2 Degré asymptotique d’ambiguité d’un automate

Cette derniére partie vise a calculer le degré deg(A) € NU {400} d’un automate fini .A. Nous
en donnerons plus loin (apres la question 10) une définition combinatoire. L’intérét principal de
la notion de degré réside dans le théoréme suivant (admis ici, et qui ne sera pas nécessaire pour
traiter le sujet) :

O(ndes() si deg(A) € N

lorsque n — +00
20(n) si deg(A) = +o0 4

maxamb(A,n) = {
—_——

cf. question 4

(rappel : f(n) = ©(g(n)) signifie que f(n) = O(g(n)) et g(n) = O(f(n))). Remarquons que cela
signifie, en particulier, que maxamb croit toujours soit polynomialement, soit exponentiellement.
Indication. 1l est possible de les traiter les questions 9 et 10 indépendamment ; elles seront
ensuite utilisées ensemble dans le calcul de deg(A). Cela dit, leurs solutions sont susceptibles de
faire intervenir des algorithmes communs, et donc de se préter a de la réutilisation de code. Ces
questions admettent toutes les deux des solutions en temps linéaire, c’est-a-dire O(|Q| + |AJ),
mais tout algorithme en temps polynomial qui fonctionne sur les exemples de taille moyenne
suffira & rapporter une partie des points.

On appelle aX*-cycle en un état ¢ un chemin de ¢ vers lui-méme sur un mot du langage aX*,

c¢’est-a-dire commencant par un a (rappel : ¥ = {a, b} est notre alphabet) : ¢ — ¢ — --- = ¢.
Par exemple dans 'automate de I'introduction on a notamment :

— en 0, un a¥*-cycle 0 % 1 N 0;

— en 3, un aX*-cycle 3 3 %5 3 % 3.
Question 9 Implémentez une fonction

a_cycles : automate -> bool array

qui renvoie un tableau indiquant, pour chaque état i, s’il existe un aX*-cycle en 1.
Pour les valeurs suivantes de £, calculez :

hash_ioa (Array.map (fun x -> if x then Some 1 else None)
(a_cycles (read_automate £f)))

a) data/ug/petit.txt b) data/ug/moyen.txt c) data/ug/gros.txt

Question a développer pendant I'oral 9 Expliquez votre algorithme et sa complexité en temps.

Question 10 Implémentez une fonction
max_b : automate -> int option

qui renvoie :
— si automate n’admet pas de chemin acceptant, None ;
— si le nombre de b dans un chemin acceptant est non borné, None ;
— sinon, Some (nombre maximal de b dans un chemin acceptant).
Calculez max_b (read_automate f) pour f valant :

a) data/ug/ql0a.txt b) data/up/ql0b.txt
c) data/up/qlOc.txt d) data/up/ql0d.txt

6/8

Question a développer pendant I'oral 10 Expliquez votre algorithme et sa complexité.

Nous en venons maintenant a la définition du degré d’un automate.
— Tout d’abord, étant donné un automate A avec un ensemble Q) d’états, on définit un autre
automate A’ comme suit :
e les états de A’ sont les triplets d’états de A (I'ensemble d’états Q* de A’ n’est donc
pas de la forme {0,..., N — 1} mais on décrit ici une construction abstraite) ;

e (9,q,9) = (p,p,q) pour toute paire (p,q) € Q2 telle que p # ¢;
b . -
e (p1,p2,p3) — (q1,q2,q3) dans A’ <= 3Jc € {a,b} : Vi € {1,2,3}, p; — ¢; dans A;
e ’état initial et I’état final n’ont pas d’importance car on ne s’intéresse qu’aux cycles.
Par exemple, dans (Aex)’ ol Aex est Vautomate donné dans I'introduction, on a :

(0,2,2) % (0,0,2) % (1,5,5) - (0,2,2)

provient d’un triplet de a-transitions (et non de b-transitions) dans Aex

— A partir de 13, on peut définir ensemble K (A) des k € N pour lesquels il existe une suite
de 2k + 2 états qo, po, - - ., qr, pr dans A telle que :
e (o est initial et py est final dans A ;
e pour i € {0,...,k}, il existe un chemin de ¢; & p; dans A;
e pour i € {0,...,k — 1}, il existe un a¥*-cycle en (p;, ¢i+1,¢i+1) dans A’
Par exemple, 1 € K(Acx) car pour ¢o = 0 initial, pg =0, ¢ = 2 et p; =5 final, on a :

mot vide

e deux chemins 0 22419, g op 2 225 5 (par exemple) dans A ;

e un aX*-cycle en (0,2,2) dans (Aex)’, déja donné plus haut.
Le diagramme ci-dessous illustre la situation ot 2 € K(A) — et on peut vérifier que cette
situation ne se produit pas pour Aex (en fait, K (Aex) = {0,1}) :

qo (qO 1n1t1al)
J{chcmin dans A
Po aX*-cycle en (po,q1,q1) @
J{chemin dans A
p1 QQ

aX*-cycle en (p1,92,q92)
lchemin dans A

(p2 final) D2
— Enfin, on définit le degré de 'automate A comme suit (notamment, deg(Aex) = 1) :

deg(A) = sup(K(A)U{0}) e NU {+o0}

Question 11 En utilisant cette définition et les fonctions a_cycles et max_b, implémentez
degre : automate -> int option

qui renvoie Some(degré de I'automate) si le degré est fini, ou bien None sinon.
Calculez degre (read_automate f) pour f valant :

a) data/ug/qlla.txt b) data/up/qllb.txt
c) data/up/qllc.txt d) data/up/qlld.txt

7/8

Y

8/8

Fiche réponse type : Ambiguité des automates finis

ug : 0
Question 1
uestion b) 9108
80
a)
792
c)
4676
b) Question 6
Question 2 4326
a)
11
a)
b) 4638
b) 32
1164
c)
0 29
Question 7
Question 3 129
a)
483
a)
b) 1339
b) 833631
9102
c)
0 438 370
Question 8
Question 4 None
a)
17
a)
b) Some 14
b) 15816
Some 18
)
Question 5
a) 3306 d) Some 20

1/11

Question 9

a)

b)

c)

3685

5023

4383

Question 10

a)

b)

c)

Some 67

Some 71

None

I/ 11

) Some 39029
Question 11
Some 5
a)
b) Some 2
None
c)
) Some 6
&
&0

Fiche réponse : Ambiguité des automates finis

Nom, Prénomi, Ug :t

Question 1
b)
a)
c)
b) Question 6
Question 2
a)
a)
b)
b)
c)
<) Question 7
Question 3
a)
a)
b)
b)
c)
c) .
Question 8
Question 4
a)
a)
b)
b)
c)
Question 5
a) d)

1/11

Question 9

a)

b)

c)

Question 10

a)

b)

I/ 11

d)

Question 11

a)

b)

c)

d)

	Partie C
	Partie OCaml
	Vers un test d'ambiguïté efficace
	Degré asymptotique d'ambiguïté d'un automate

