
Ambiguïté des automates finis

Épreuve pratique d’algorithmique et de programmation
Concours commun des Écoles normales supérieures

Durée de l’épreuve : 3 heures 30 minutes

Juin 2025

ATTENTION !

à l’emplacement prévu sur votre fiche réponse
N’oubliez en aucun cas de recopier votre u0

Important.

Il vous a été donné un numéro u0 qui identifie les fichiers d’entrée pour vos codes. Ceux-ci se
trouvent dans un répertoire data/u0/, où u0 est remplacé par votre numéro u0. Les réponses
attendues sont généralement courtes et doivent être données sur la fiche réponse fournie à la
fin du sujet. À la fin du sujet, vous trouverez en fait deux fiches réponses. La première est un
exemple des réponses attendues pour le numéro particulier ũ0. Cette fiche est destinée à vous
aider à vérifier le résultat de vos programmes. Vous indiquerez vos réponses (correspondant à
votre u0) sur la seconde et vous la remettrez à l’examinateur à la fin de l’épreuve.
En ce qui concerne la partie orale de l’examen, lorsque la description d’un algorithme est de-
mandée, vous devez présenter son fonctionnement de façon schématique, courte et précise. Vous
ne devez en aucun cas recopier le code de vos procédures !
Quand on demande la complexité en temps ou en mémoire d’un algorithme en fonction d’un
paramètre n, on demande l’ordre de grandeur en fonction du paramètre, par exemple : O(n2),
O(n log n), etc. La lecture de l’instance par le code qui vous a été fourni ne sera pas prise en
compte dans la complexité.
Il est recommandé de commencer par lancer vos programmes sur de petites valeurs des para-
mètres et de tester vos programmes sur des petits exemples que vous aurez résolus
préalablement à la main ou bien à l’aide de la fiche réponse type fournie en annexe.
Enfin, il est recommandé de lire l’intégralité du sujet avant de commencer afin d’effectuer les
bons choix de structures de données dès le début.

La Partie 1 doit être implémentée en C (à l’aide du fichier base.c), et la Partie 2 doit être
implémentée en OCaml (à l’aide du fichier base.ml). Ces deux parties sont indépendantes.
Les deux fichiers susmentionnés vous sont fournis dans un dossier de base. Ce dossier contient
également un sous-dossier data/ dans lequel se trouvent les jeux de tests pour la partie OCaml.
Il est recommandé de garder une sauvegarde de tous les fichiers fournis, au cas où ceux-ci seraient
modifiés par erreur.
Il est demandé de nous fournir sur votre clef USB vos fichiers sources. Ces consignes doivent
impérativement être suivies.

Introduction
Dans tout ce sujet on fixe l’alphabet fini Σ = {a, b}. Pour un mot w ∈ Σ∗, on note |w| sa longueur
et w[i] sa i-ème lettre pour i ∈ {0, 1, . . . , |w| − 1} (ainsi, le mot commence par la lettre w[0]).
Rappelons qu’un automate fini sur Σ consiste en :

— un ensemble fini d’états Q – dans nos implémentations en C et en OCaml, il sera toujours
de la forme Q = {0, 1, . . . , N − 1}, et on se contentera donc de spécifier dans la donnée de
l’automate le nombre N d’états ;

— un sous-ensemble d’états initiaux I ⊆ Q, qui vaudra toujours I = {0} ici ;
— et un sous-ensemble d’états finaux F ⊆ Q, qui vaudra toujours F = {N − 1} ici ;
— un ensemble de transitions ∆ ⊆ Q × Σ × Q.

Par exemple, le schéma ci-dessous représente un automate avec N = 6 états et les transitions
∆ = {(0, a, 1), (0, b, 4), (0, a, 5), (1, b, 0), (2, a, 5), (3, a, 2), (3, a, 3), (3, b, 3), (5, b, 2), (5, a, 4)} :

0

1

5

2 3

4

a b

a

b

b a

a

a
a, b

On note p
c−→ q pour (p, c, q) ∈ ∆ lorsque c ∈ {a, b}. Un chemin d’un état p à un état q étiqueté

par un mot w ∈ Σ∗ est une suite d’états q0, . . . , q|w| telle que :
— q0 = p et q|w| = q ;

— qi
w[i]−−−→ qi+1 pour tout i ∈ {0, 1, . . . , |w| − 1}.

Ce chemin est acceptant lorsque p est l’état initial et q est l’état final.
On appelle ambiguïté d’un automate sur un mot donné le nombre de chemins acceptants. Par
exemple, l’automate dessiné ci-dessus a pour ambiguïté n+1 sur (ab)na car les chemins acceptants
sont de la forme suivante, pour 0 ⩽ i ⩽ n :

0 a−→ 1 b−→ 0 a−→ · · · b−→ 0︸ ︷︷ ︸
i passages par l’état 1

a−→ 5 b−→ 2 a−→ 5 b−→ · · · a−→ 5︸ ︷︷ ︸
n − i passages par l’état 2

En particulier, il y a exactement un chemin acceptant qui ne passe pas par 1 (pour i = 0), et un
chemin acceptant qui ne passe pas par 2 (pour i = n).
Si on supprime la transition 2 a−→ 5, alors on obtient un autre automate reconnaissant le même
langage (ab)∗

a mais non ambigu : son ambiguïté est d’au plus 1 quel que soit le mot d’entrée.

1 / 8

1 Partie C
Code fourni Le fichier base.c contient un ensemble d’inclusions usuelles (<stdbool.h>,
<stdlib.h>, <stdio.h>, . . .) en en-tête, suivi d’une déclaration de structure définissant notre
type de données pour les automates :

struct automate {
int nb_etats;
bool *trans_a;
bool *trans_b;

};
typedef struct automate automate;

Les pointeurs trans_a et trans_b pointent vers des tableaux de taille N × N où N = nb_etats.
La valeur du booléen A.trans_a[i*A.nb_etats + j] indique si i

a−→ j, et de même pour
trans_b et les transitions étiquetées par la lettre b. L’état initial est 0 et l’état final est N − 1.
À titre d’exemple, la variable globale automate A_ex dans base.c est initialisée à l’encodage de
l’automate dessiné dans l’introduction.
De plus, le fichier base.c fournit également :

— une fonction automate gen_automate(int u0, int N) renvoyant un automate à N états
généré pseudo-aléatoirement à partir de la graine u0 ;

— une fonction void free_automate(automate A) permettant de libérer la mémoire dyna-
miquement allouée lors de la création d’un automate par la fonction précédente ;

— les prototypes des fonctions à implémenter pour les questions qui suivent.

Étant donné un nombre N d’états, on dit qu’un tableau de booléens etats de taille N représente
un sous-ensemble E ⊆ Q = {0, 1, . . . , N − 1} lorsque E = {i ∈ Q | etats[i] vaut true}.

Question 1 Implémentez une fonction

void transition(automate A, char c, bool *etats_avant, bool *etats_apres)

qui écrit dans le tableau etats_apres — qu’on suppose de taille A.nb_etats et déjà alloué par
le code appelant cette fonction — sans modifier etats_avant (également de taille A.nb_etats),
de sorte que :

etats_avant représente E =⇒ etats_apres représente {j | ∃i ∈ E : i
c−→ j}

À l’aide de la fonction transition, calculez

N−1∑
j=0

xj2j où xj =
{

1 si ∃i ∈ {0, 1, 2, 3, 4} : i
c−→ j dans gen_automate(u0,N)

0 sinon

pour votre valeur donnée de u0 ainsi que les choix des paramètres c et N suivants :

a) c = a, N = 14 b) c = b, N = 15

Question à développer pendant l’oral 1 Quelle est la complexité en temps de votre algorithme
pour la fonction transition ? Justifiez.

Dans les questions suivantes, on vous promet que les mots en entrée sont dans {a, b}∗.

2 / 8

Question 2 Implémentez une fonction

bool accepte(automate A, char *mot)

qui détermine si l’automate accepte le mot. On utilise la représentation habituelle des chaînes
de caractères en C avec le caractère nul '\0' comme marqueur de fin de chaîne.
Indication. Idéalement, votre solution devrait effectuer O(1) appels à malloc et ne pas allouer
de tableaux de taille variable sur la pile.
Pour chacun des mots w ∈ {a, b}∗ suivants (où on note un pour la répétition n fois du mot u),
calculer le cardinal de {N ∈ {50, 51, . . . , 99} : gen_automate(u0,N) accepte w} :

a) w = abba b) w = a100b100 c) w = (ba)100

Question à développer pendant l’oral 2 Expliquez brièvement votre implémentation de la fonc-
tion accepte, en donnant sa complexité en temps et sa complexité en espace.

Question 3 Implémentez une fonction

int ambiguite(automate A, char *mot)

qui calcule l’ambiguïté de l’automate sur le mot (telle que définie dans l’introduction) modulo
1000003 (106 + 3), ceci afin d’éviter les débordements d’entiers.
Calculez l’ambiguïté de gen_automate(u0,1000) sur chacun des mots w ∈ {a, b}∗ suivants :

a) w = abba b) w = a100b100 c) w = (ba)100

Question à développer pendant l’oral 3 Expliquez votre algorithme.

Question 4 Implémentez une fonction

int maxamb(automate A, int longueur_max)

qui calcule max{ambiguïté de A sur w ∈ {a, b}∗ : |w| ⩽ longueur_max}, en supposant que cette
valeur ne dépasse pas 106 (cette supposition sera vérifiée dans les cas d’application ci-dessous).
Indication. Une recherche exhaustive suffit ici. Comme précédemment, on veillera à limiter le
nombre d’allocations mémoire.
Calculez les valeurs obtenues pour A = gen_automate(u0,150) et :

a) longueur_max = 5 b) longueur_max = 10

Question à développer pendant l’oral 4 Expliquez brièvement votre implémentation.

2 Partie OCaml
Rappel sur le module Queue La bibliothèque standard d’OCaml fournit un type Queue.t
de files mutables (FIFO), prenant en charge notamment les fonctions :
Queue.create : unit -> 'a Queue.t Queue.is_empty : 'a Queue.t -> bool
Queue.push : 'a -> 'a Queue.t -> unit Queue.pop : 'a Queue.t -> 'a

3 / 8

Code fourni Le fichier base.ml contient les éléments de code suivants :
— La déclaration de type synonyme type automate = (int list * int list) array : il

s’agit d’une représentation par liste d’adjacence, c’est-à-dire qu’un tableau aut de ce type
et de taille N représente l’automate dont
— les états sont {0, . . . , N − 1}, l’état initial est 0 et l’état final est N − 1,
— i

a−→ j lorsque j apparaît dans la liste fst aut.(i),
— i

b−→ j lorsque j apparaît dans la liste snd aut.(i).
— Une définition d’une valeur a_ex : automate représentant l’automate de l’introduction.
— Une fonction read_automate : string -> automate qui lit un automate à partir d’un

fichier dont l’adresse est passée en argument. Elle servira à lire les instances de test stockées
dans le dossier data. Votre évaluation portera sur les fichiers dans data/u0/ avec la valeur
de u0 qui vous a été fournie. Les autres fichiers (notamment dans data/ũ0/ qui correspond
à la fiche réponse type) peuvent être utilisés pour tester vos programmes.

— Une fonction de hachage hash_ioa : int option array -> int qui sera utilisée dans
certaines questions pour produire les valeurs entières à écrire sur votre fiche réponse.

Cette partie se compose de deux sous-parties indépendantes, reposant toutes deux sur base.ml :
— En §2.1 on cherche à tester efficacement si un automate est ambigu ou non.
— En §2.2 on étudie le comportement asymptotique de l’ambiguïté.

2.1 Vers un test d’ambiguïté efficace
On dit qu’un état q est accessible lorsqu’il y a un chemin menant de l’état initial (ici 0) à q. En
particulier, l’état initial est lui-même accessible (via un chemin étiqueté par le mot vide). Dans
l’automate dessiné en introduction, le seul état non accessible est 3.

Question 5 Implémentez une fonction

accessibles : automate -> int option array

qui calcule un tableau associant à chaque état i :
— si i est accessible, Some(longueur minimale d’un chemin de 0 à i) ;
— sinon, None.

La taille du tableau doit donc être le nombre d’états de l’automate.
Calculez hash_ioa (accessibles (read_automate f)) pour f valant :

a) data/u0/petit.txt b) data/u0/moyen.txt c) data/u0/gros.txt

Question à développer pendant l’oral 5 Quelle est la complexité en temps de votre algorithme,
en fonction du nombre N = |Q| d’états et du nombre |∆| de transitions ? (Dans les questions
ultérieures de complexité, on attendra aussi une réponse en fonction de |Q| et |∆|.)

La question 6 est indépendante du reste du sujet. C’est une variante de la question 5 avec un
critère d’optimisation différent : au lieu de minimiser la longueur d’un chemin, on veut minimiser
le nombre d’occurrences de la lettre b dans le mot qui l’étiquette. Ainsi, dans l’automate de
l’introduction, pour atteindre l’état 4 à partir de l’état initial 0 :

— le chemin le plus court est 0 b−→ 4 ;
— le chemin minimisant le nombre de b est 0 a−→ 5 a−→ 4.

4 / 8

Question 6 Implémentez une fonction

accessibles_min_b : automate -> int option array

qui calcule un tableau associant à chaque état i :
— si i est accessible, Some(nombre minimal de b d’un chemin de 0 à i) ;
— sinon, None.

Calculez hash_ioa (accessibles_min_b (read_automate f)) pour f valant :

a) data/u0/petit.txt b) data/u0/moyen.txt c) data/u0/gros.txt

Question à développer pendant l’oral 6 Expliquez votre algorithme et donnez (en justifiant) sa
complexité en temps en fonction de |Q| et |∆|.

On dit qu’un état q est utile lorsqu’il y a un chemin acceptant qui passe par q. Cela revient à dire
que q est accessible et qu’il y a un chemin de q à l’état final. Dans l’automate de l’introduction,
les états utiles sont 0, 1, 2 et 5.

Question 7 En réutilisant la fonction accessibles, implémentez une fonction

utiles : automate -> int option array

qui calcule un tableau associant à chaque état i :
— si i est utile, Some(longueur minimale d’un chemin acceptant passant par i) ;
— sinon, None.

La taille du tableau doit donc être le nombre d’états de l’automate.
Calculez hash_ioa (utiles (read_automate f)) pour f valant :

a) data/u0/petit.txt b) data/u0/moyen.txt c) data/u0/gros.txt

Question à développer pendant l’oral 7 Expliquez votre algorithme, en précisant s’il suffit ou
non de remplacer les appels à accessibles par accessibles_min_b pour calculer, pour chaque
état, le nombre minimal de b dans un chemin acceptant passant par cet état.

Question 8 Implémentez une fonction

ambigu : automate -> int option

qui renvoie :
— Some(longueur minimale d’un mot qui a une ambiguïté ⩾ 2) s’il existe un tel mot ;
— sinon (ce qui signifie que l’automate est non ambigu), None.

Indication. On pourra exploiter le résultat de la fonction utiles sur un automate judicieuse-
ment construit à partir de l’automate d’entrée.
Calculez ambigu (read_automate f) pour f valant :

a) data/u0/q8a.txt b) data/u0/q8b.txt

c) data/u0/q8c.txt d) data/u0/q8d.txt

Question à développer pendant l’oral 8 Expliquez brièvement votre algorithme. Quelle est sa
complexité en temps ?

5 / 8

2.2 Degré asymptotique d’ambiguïté d’un automate
Cette dernière partie vise à calculer le degré deg(A) ∈ N ∪ {+∞} d’un automate fini A. Nous
en donnerons plus loin (après la question 10) une définition combinatoire. L’intérêt principal de
la notion de degré réside dans le théorème suivant (admis ici, et qui ne sera pas nécessaire pour
traiter le sujet) :

maxamb(A, n)︸ ︷︷ ︸
cf. question 4

=
{

Θ(ndeg(A)) si deg(A) ∈ N
2Θ(n) si deg(A) = +∞

lorsque n → +∞

(rappel : f(n) = Θ(g(n)) signifie que f(n) = O(g(n)) et g(n) = O(f(n))). Remarquons que cela
signifie, en particulier, que maxamb croît toujours soit polynomialement, soit exponentiellement.
Indication. Il est possible de les traiter les questions 9 et 10 indépendamment ; elles seront
ensuite utilisées ensemble dans le calcul de deg(A). Cela dit, leurs solutions sont susceptibles de
faire intervenir des algorithmes communs, et donc de se prêter à de la réutilisation de code. Ces
questions admettent toutes les deux des solutions en temps linéaire, c’est-à-dire O(|Q| + |∆|),
mais tout algorithme en temps polynomial qui fonctionne sur les exemples de taille moyenne
suffira à rapporter une partie des points.
On appelle aΣ∗-cycle en un état q un chemin de q vers lui-même sur un mot du langage aΣ∗,
c’est-à-dire commençant par un a (rappel : Σ = {a, b} est notre alphabet) : q

a−→ q′ → · · · → q.
Par exemple dans l’automate de l’introduction on a notamment :

— en 0, un aΣ∗-cycle 0 a−→ 1 b−→ 0 ;
— en 3, un aΣ∗-cycle 3 a−→ 3 a−→ 3 a−→ 3.

Question 9 Implémentez une fonction

a_cycles : automate -> bool array

qui renvoie un tableau indiquant, pour chaque état i, s’il existe un aΣ∗-cycle en i.
Pour les valeurs suivantes de f, calculez :

hash_ioa (Array.map (fun x -> if x then Some 1 else None)
(a_cycles (read_automate f)))

a) data/u0/petit.txt b) data/u0/moyen.txt c) data/u0/gros.txt

Question à développer pendant l’oral 9 Expliquez votre algorithme et sa complexité en temps.

Question 10 Implémentez une fonction

max_b : automate -> int option

qui renvoie :
— si l’automate n’admet pas de chemin acceptant, None ;
— si le nombre de b dans un chemin acceptant est non borné, None ;
— sinon, Some(nombre maximal de b dans un chemin acceptant).

Calculez max_b (read_automate f) pour f valant :

a) data/u0/q10a.txt b) data/u0/q10b.txt

c) data/u0/q10c.txt d) data/u0/q10d.txt

6 / 8

Question à développer pendant l’oral 10 Expliquez votre algorithme et sa complexité.

Nous en venons maintenant à la définition du degré d’un automate.
— Tout d’abord, étant donné un automate A avec un ensemble Q d’états, on définit un autre

automate A′ comme suit :
• les états de A′ sont les triplets d’états de A (l’ensemble d’états Q3 de A′ n’est donc

pas de la forme {0, . . . , N − 1} mais on décrit ici une construction abstraite) ;
• (p, q, q) a−→ (p, p, q) pour toute paire (p, q) ∈ Q2 telle que p ̸= q ;
• (p1, p2, p3) b−→ (q1, q2, q3) dans A′ ⇐⇒ ∃c ∈ {a, b} : ∀i ∈ {1, 2, 3}, pi

c−→ qi dans A ;
• l’état initial et l’état final n’ont pas d’importance car on ne s’intéresse qu’aux cycles.

Par exemple, dans (Aex)′ où Aex est l’automate donné dans l’introduction, on a :

(0, 2, 2) a−→ (0, 0, 2) b−→ (1, 5, 5)︸ ︷︷ ︸
provient d’un triplet de a-transitions (et non de b-transitions) dans Aex

b−→ (0, 2, 2)

— À partir de là, on peut définir l’ensemble K(A) des k ∈ N pour lesquels il existe une suite
de 2k + 2 états q0, p0, . . . , qk, pk dans A telle que :
• q0 est initial et pk est final dans A ;
• pour i ∈ {0, . . . , k}, il existe un chemin de qi à pi dans A ;
• pour i ∈ {0, . . . , k − 1}, il existe un aΣ∗-cycle en (pi, qi+1, qi+1) dans A′.

Par exemple, 1 ∈ K(Aex) car pour q0 = 0 initial, p0 = 0, q1 = 2 et p1 = 5 final, on a :
• deux chemins 0 mot vide−−−−−−→ 0 et 2 aba−−−→ 5 (par exemple) dans Aex ;
• un aΣ∗-cycle en (0, 2, 2) dans (Aex)′, déjà donné plus haut.

Le diagramme ci-dessous illustre la situation où 2 ∈ K(A) — et on peut vérifier que cette
situation ne se produit pas pour Aex (en fait, K(Aex) = {0, 1}) :

q0 (q0 initial)

p0 q1

p1 q2

(p2 final) p2

chemin dans A

aΣ∗-cycle en (p0,q1,q1)
chemin dans A

aΣ∗-cycle en (p1,q2,q2)

chemin dans A

— Enfin, on définit le degré de l’automate A comme suit (notamment, deg(Aex) = 1) :

deg(A) = sup(K(A) ∪ {0}) ∈ N ∪ {+∞}

Question 11 En utilisant cette définition et les fonctions a_cycles et max_b, implémentez

degre : automate -> int option

qui renvoie Some(degré de l’automate) si le degré est fini, ou bien None sinon.
Calculez degre (read_automate f) pour f valant :

a) data/u0/q11a.txt b) data/u0/q11b.txt

c) data/u0/q11c.txt d) data/u0/q11d.txt

7 / 8

♢
♢ ♢

♢

8 / 8

Fiche réponse type : Ambiguïté des automates finis

ũ0 : 0

Question 1

a) 80

b) 4 676

Question 2

a) 11

b) 32

c) 29

Question 3

a) 483

b) 833 631

c) 438 370

Question 4

a) 17

b) 15 816

Question 5

a) 3 306

b) 9 108

c) 792

Question 6

a) 4 326

b) 4 638

c) 1 164

Question 7

a) 129

b) 1 339

c) 9 102

Question 8

a) None

b) Some 14

c) Some 18

d) Some 20

I / II

Question 9

a) 3 685

b) 5 023

c) 4 383

Question 10

a) Some 67

b) Some 71

c) None

d) Some 39029

Question 11

a) Some 5

b) Some 2

c) None

d) Some 6

♢
♢ ♢

♢

II / II

Fiche réponse : Ambiguïté des automates finis
Nom, prénom, u0 : .

Question 1

a)

b)

Question 2

a)

b)

c)

Question 3

a)

b)

c)

Question 4

a)

b)

Question 5

a)

b)

c)

Question 6

a)

b)

c)

Question 7

a)

b)

c)

Question 8

a)

b)

c)

d)

I / II

Question 9

a)

b)

c)

Question 10

a)

b)

c)

d)

Question 11

a)

b)

c)

d)

♢
♢ ♢

♢

II / II

	Partie C
	Partie OCaml
	Vers un test d'ambiguïté efficace
	Degré asymptotique d'ambiguïté d'un automate

