
Recherche de Similarités Temporelles

Épreuve pratique d’algorithmique et de programmation
Concours commun des Écoles normales supérieures

Durée de l’épreuve : 3 heures 30 minutes

Juin 2025

ATTENTION !

à l’emplacement prévu sur votre fiche réponse
N’oubliez en aucun cas de recopier votre u0

Important.

Il vous a été donné un numéro u0 qui servira d’entrée à vos programmes. Les réponses attendues
sont généralement courtes et doivent être données sur la fiche réponse fournie à la fin du sujet.
À la fin du sujet, vous trouverez en fait deux fiches réponses. La première est un exemple des
réponses attendues pour le numéro particulier ũ0. Cette fiche est destinée à vous aider à vérifier
le résultat de vos programmes. Vous indiquerez vos réponses (correspondant à votre u0) sur la
seconde et vous la remettrez à l’examinateur à la fin de l’épreuve.
En ce qui concerne la partie orale de l’examen, lorsque la description d’un algorithme est deman-
dée, vous devez présenter son fonctionnement de façon schématique, courte et précise. Vous ne
devez en aucun cas recopier le code de vos procédures !
Quand on demande la complexité en temps ou en mémoire d’un algorithme en fonction d’un
paramètre n, on demande l’ordre de grandeur en fonction du paramètre, par exemple : O(n2),
O(n log n),...
Il est recommandé de commencer par lancer vos programmes sur de petites valeurs des para-
mètres et de tester vos programmes sur des petits exemples que vous aurez résolus
préalablement à la main ou bien à l’aide de la fiche réponse type fournie en annexe.
Enfin, il est recommandé de lire l’intégralité du sujet avant de commencer afin d’effectuer les
bons choix de structures de données dès le début.

1 Préliminaires

Nous allons étudier le problème de recherche de similarités dans des bases de données de séries
temporelles. Une série temporelle est une suite de réels représentant les valeurs successives d’une
grandeur au cours du temps. Étant donné une base de données D, contenant n séries (numérotées
avec i ∈ [0, n−1]) et une requête (une série temporelle Q), l’objectif est de trouver le plus proche
voisin de Q dans D. Pour cela, nous devons être capables de mesurer la similarité entre deux
séries de manière efficace. Nous pouvons aussi utiliser des méthodes d’approximation pour affiner
la recherche. Nous allons aborder ces deux points dans le sujet.
La partie 1 est nécessaire pour pouvoir traiter le reste du sujet. Les parties 2 et 3 sont indépen-
dantes, se concentrant sur des mesures de distances élastiques et des méthodes d’approximation
plus fines.
Dans la plupart des questions d’implémentation, calculer la réponse nécessite une implémentation
efficace. Nous vous suggérons de réfléchir à la complexité en temps avant de commencer l’implé-
mentation. Si votre algorithme n’est pas assez efficace pour calculer certaines réponses, nous vous
conseillons d’aborder les questions suivantes, avant de revenir optimiser votre implémentation.
Ce sujet contient des questions portant sur le calcul en virgule flottante. En OCaml, on utilisera
float_of_int pour convertir un entier en flottant, Float.floor pour calculer la partie entière
d’un flottant, et sqrt pour calculer la racine carrée d’un flottant. En Python, les équivalents
sont float() et math.floor() pour la conversion, et math.sqrt() pour la racine carrée (néces-
sitant d’importer le module math de la manière suivante : import math). Il n’est pas autorisé
d’utiliser un autre type de flottants que celui proposé par défaut dans Python, à savoir le type
retourné par la fonction float(), équivalent à float64. Enfin, nous rappelons que les opérateurs
OCaml d’addition, soustraction, multiplication et division sur des flottants sont +., -., *., et /.
respectivement.

1.1 Notations
Dans le sujet, n, k et l sont des entiers positifs, et strictement positifs dans le cas de n et l. Chaque
question d’implémentation vous fournira plusieurs valeurs de n, k ou l sur lesquelles tester vos
algorithmes.
Une série temporelle T de taille l est définie comme un vecteur [t0, t1, ..., tl−1] ∈ Rl. On note
|T | = l sa taille. Nous définissons la moyenne µ(T) de la série temporelle T par :

µ(T) =
1

l

l−1∑

k=0

tk

Enfin, nous notons Dn,l = [T0, . . . , Tn−1] une base de données contenant n séries temporelles de
taille l.

1.2 Génération de nombres pseudo-aléatoires

Étant donné u0, on considère la suite u générée par la relation de récurrence suivante :

uk+1 = (1 103 515 245× uk + 12 345) mod 215

L’entier u0 vous est donné, et doit être recopié sur votre fiche réponse avec vos résultats. Une
fiche réponse type vous est donnée en exemple, et contient tous les résultats attendus pour une
valeur de u0 différente de la vôtre (notée ũ0). Il vous est conseillé de tester vos algorithmes avec

1 / 8

cet ũ0 et de comparer avec la fiche de résultats fournie. Pour chaque calcul demandé, avec le bon
choix d’algorithme le calcul ne devrait demander qu’au plus de l’ordre de la minute.

Lors du calcul de la suite uk, nous vous suggérons de faire attention au problème de dépassement
d’entier.

Question 1 Calculer les valeurs uk mod 1000 , avec :

a) k = 1 b) k = 54 c) k = 684 d) k = 3945

1.3 Génération de séries temporelles pseudo-aléatoires
A partir d’une certaine valeur de uk, nous pouvons générer une série temporelle T de taille l de
la manière suivante :

t0 = uk, v0 = uk

ti+1 =

{
ti + 1 si 2× vi+1 − 231 > 0

ti − 1 sinon
avec vi+1 = (1 164 317 245× vi + 12 442) mod 231

Une fois la série temporelle générée, nous normalisons chaque valeur ti comme suit :

ti = ti − µ(T)

0 50 100 150

−5

0

5

a) max = 6

0 50 100 150

−10

0

10

b) max = 14

0 50 100 150
−10

0

10

c) max = 7

0 50 100 150

−10

0

10

d) max = 10

Figure 1 – Séries temporelles pseudo-aléatoires (en utilisant ũ0) de la Question 2

La figure 1 illustre quatre exemples de séries temporelles pseudo-aléatoires. Dans la suite du
sujet, nous notons Tk la série temporelle générée avec la valeur uk.

Question 2 Calculer la partie entière de la valeur maximale ti des séries temporelles Tk (de taille
l = 200) pour les valeurs de k suivantes :

a) k = 1 b) k = 54 c) k = 684 d) k = 3945

1.4 Une première distance et son approximation
La distance euclidienne ED entre deux séries temporelles Ta = [ta,0, . . . , ta,l−1], Tb =
[tb,0, . . . , tb,l−1] de même taille l est définie comme suit :

ED(Ta, Tb) =

√√√√
l−1∑

k=0

(ta,k − tb,k)2

2 / 8

Pour de très longues séries temporelles, le calcul de la distance euclidienne peut être coûteux,
limitant significativement la rapidité de la recherche dans une base de données. Pour accélérer la
recherche, nous pouvons au préalable calculer une représentation simplifiée de la série temporelle.

0 100 200

−5

0

5

a) ratio DR(T̃1,T̃2)
ED(T1,T2)

=0.74

T1

T̃1

0 100 200

0

10 T2

T̃2

0 100 200

−5

0

5

b) ratio DR(T̃10,T̃20)
ED(T10,T20)

=0.76

T10

T̃10

0 100 200

−5

0

5

10
T20

T̃20

0 100 200

−5

0

5

10

c) ratio DR(T̃20,T̃30)
ED(T20,T30)

=0.80

T20

T̃20

0 100 200

−10

0

10 T30

T̃30

0 100 200

−5

0

5

d) ratio DR(T̃40,T̃4)
ED(T40,T4)

=0.90

T40

T̃40

0 100 200

−10

0

10

20
T4

T̃4

Figure 2 – Représentation PAA pour les séries temporelles (en utilisant ũ0) de la Question 3

Pour une série T = [t0, . . . , tl−1] et un entier N tel que |T | est divisible par N et N
|T | < 1, la repré-

sentation PAA (Piecewise Aggregate Approximation) d’ordre N de T , notée T̃ = [x0, . . . , xN−1],
est définie par :

xi =
N

|T |

|T |
N ×(i+1)−1∑

j=
|T |
N ×i

tj

La Figure 2 montre quatre exemples de représentation PAA pour quatre paires de séries tem-
porelles. Nous pouvons maintenant définir une distance entre représentations PAA d’ordre
N . La distance DR entre deux représentations PAA d’ordre N , T̃a = [xa,0, . . . , xa,N−1] et
T̃b = [xb,0, . . . , xb,N−1] (avec |Ta| = |Tb| = l), est définie comme suit :

DR(T̃a, T̃b) =

√√√√ l

N

N−1∑

i=0

(xa,i − xb,i)2

De plus, DR est un minorant de ED (on l’admettra). Formellement :

∀Ta, Tb ∈ Rl,DR(T̃a, T̃b) ≤ ED(Ta, Tb)

Question 3 Pour deux séries temporelles Tk1 , Tk2 de taille l = 200, calculer le ratio DR(T̃k1
,T̃k2

)

ED(Tk1
,Tk2

)

(tronqué à deux chiffres après la virgule seulement) pour une représentation PAA d’ordre N = 5
et pour les paires (k1, k2) suivantes :

a) k1 = 1, k2 = 2 b) k1 = 10, k2 = 20 c) k1 = 20, k2 = 30 d) k1 = 40, k2 = 4

3 / 8

1.5 À la recherche du plus proche voisin
Si nous considérons la distance euclidienne, le plus proche voisin NN ∈ Dn,l d’une série temporelle
Q (de taille l) est défini comme l’unique élement de Dn,l tel que :

∀T ∈ Dn,l, ED(Q,NN) ≤ ED(Q,T)

Pour la question suivante, on précalculera la base de données Dn,l = [T0, T1, . . . , Tn−1] ainsi que
D̃n,l = [T̃0, T̃1, . . . , T̃n−1] pour n = 200, l = 200 et N = 5.

Question 4 Proposer une implémentation d’un algorithme findNN qui renvoie le plus proche
voisin NN ∈ Dn,l de Q avec une complexité en temps dans le meilleur cas en O(n × N + l).
Renvoyer k de telle sorte que Tk ∈ Dn,l est le plus proche voisin de Q pour les Q suivants :

a) Q = T201 b) Q = T202 c) Q = T203 d) Q = T204

Question à développer pendant l’oral 1 Quelle est la complexité en temps de votre implémen-
tation de findNN dans le pire cas en fonction de n,N et l ? Quelles conditions faut-il pour avoir
une complexité en temps en O(n×N + l) dans le meilleur cas ?

2 Une distance élastique

La distance euclidienne est une distance point-par-point, ne prenant pas en compte de pos-
sibles décalages temporels entre les sous-suites de deux séries temporelles (comme l’illustre la
Figure 3(a)).

(a) Distance Euclidienne (b) Dynamic Time Warping (DTW)

Figure 3 – Comparaison de la distance Euclidienne et Dynamic Time Warping (DTW)

Pour pallier cette limitation, nous pouvons utiliser une autre mesure de distance appelée Dynamic
Time Warping (DTW). L’objectif de cette dernière est de trouver le meilleur alignement possible
entre les points des séries temporelles. Pour deux séries temporelles Ta = [ta,0, . . . , ta,la−1] et
Tb = [tb,0, . . . , tb,lb−1] (de taille la et lb respectivement), DTW se calcule de la manière suivante :

DTW(Ta, Tb) = min
π∈A(Ta,Tb)

√ ∑

(i,j)∈π

(ta,i − tb,j)2

Dans l’équation ci-dessus, un chemin d’alignement π de taille K (illustré en Figure 4(a)) est
une suite de K paires d’entiers ((i0, j0), . . . , (iK−1, jK−1)) et A(Ta, Tb) est l’ensemble de tous
les chemins admissibles. Pour être considéré admissible, un chemin doit satisfaire les propriétés
suivantes :

4 / 8

(P1) Le début et la fin de Ta et Tb coïncident :
π0 = (0, 0) et πK−1 = (la − 1, lb − 1)

(P2) La suite (i0, . . . , iK−1) est croissante et contient tous les indices de Ta (de 0 à la−1)
et de même (j0, . . . , jK−1) est croissante et contient tous les indices de Tb :

ik−1 ≤ ik ≤ ik−1 + 1 et jk−1 ≤ jk ≤ jk−1 + 1 pour tout k
(P3) Chaque paire (i, j) dans π est unique.

Question à développer pendant l’oral 2 Pour deux séries temporelles Ta et Tb de taille la et lb,
quelle est l’ordre de grandeur de la complexité en temps dans le pire cas de la solution triviale
consistant à évaluer tous les chemins admissibles dans A(Ta, Tb) ?

Pour permettre un calcul efficace de DTW pour deux séries temporelles Ta et Tb de taille la et lb,
on pourra identifier une relation de récurrence entre DTW et un sous-problème. Nous notons qu’il
peut, en général, exister plusieurs chemins optimaux. Cependant, dans les questions suivantes,
les valeurs ont été choisies de sorte que tous les chemins optimaux aient la même longueur.

Question 5 Implémenter une fonction renvoyant la distance DTW et la longueur du chemin
optimal π. Calculer la longueur du chemin optimal π modulo 1000 pour les paires de séries
temporelles Ta, Tb (de taille la, lb) suivantes :

a) T1, T2 et l1 = 50, l2 = 60 b) T10, T20 et l10 = 100, l20 = 80

c) T30, T40 et l30 = 2000, l40 = 1500 d) T40, T4 et l40 = 5000, l4 = 5000

Question à développer pendant l’oral 3 Quelle est la complexité en temps de votre implémen-
tation de DTW dans le pire cas en fonction de la et lb ?

Question à développer pendant l’oral 4 Quelle est la complexité en mémoire de votre implé-
mentation de DTW dans le pire cas en fonction de la et lb ?

2.1 Une élasticité restreinte
L’élasticité de la mesure DTW est robuste à de possibles décalages temporels. Cependant, le
chemin optimal peut correspondre à des décalages extrêmes, inadéquats pour mesurer la similarité
entre deux séries temporelles. Pour pallier ce problème, nous pouvons contraindre les chemins
possibles dans A(Ta, Tb). Une contrainte couramment utilisée s’appelle la bande de Sakoe–Chiba
(illustrée par la Figure 4(b)). Dans le cas spécifique de séries temporelles de même taille,
cette dernière contraint le calcul de DTW (d’une taille de bande w) de la manière suivante :

∀(i, j) ∈ π, |i− j| ≤ w

Pour la question suivante, nous ne considérons que le cas de séries temporelles
de même taille. Nous nommons DTWw la fonction calculant la distance DTW contrainte en
utilisant la bande de Sakoe–Chiba de taille w.

Question 6 Implémenter une fonction renvoyant la distance DTWw et la longueur du chemin
optimal π sous contrainte. Calculer la longueur du chemin π modulo 1000 pour les valeurs w et
les paires de séries temporelles Ta, Tb (de taille l) suivantes :

a) T1, T2 avec w = 10, l = 102 b) T10, T20 avec w = 20, l = 103

c) T30, T40 avec w = 50, l = 104 d) T40, T4 avec w = 5, l = 105

5 / 8

(a) Aucune contrainte (b) Bande de Sakoe-Chiba

𝑇!

𝑇" 𝑇"

Taille du chemin 𝜋 ∶ 340 Taille du chemin 𝜋 ∶ 238

Figure 4 – Comparaison de la distance DTW avec ou sans contrainte pour des séries temporelles
de taille l = 200.

Question à développer pendant l’oral 5 Quelle est la complexité en temps et en mémoire de
votre implémentation de DTWw dans le pire cas en fonction de l et w ?

3 Une approximation plus fine

Bien que la PAA offre une méthode simple et efficace pour réduire la dimension des séries tem-
porelles, elle présente une limite importante : la division uniforme des segments peut cacher
certaines évolutions temporelles. Pour résoudre ce problème, l’approche APCA (Adaptive Pie-
cewise Constant Approximation) est plus flexible et précise.
L’APCA améliore la PAA en permettant une segmentation adaptative des séries temporelles. Au
lieu d’imposer des segments de taille fixe, elle ajuste dynamiquement la longueur des intervalles
dans le but de minimiser l’approximation. Formellement, l’approximation APCA consiste à diviser
une série en N segments adaptatifs, chacun représenté par :

— Un intervalle [bi, ei] où bi et ei sont respectivement les indices de début et de fin du
segment i.

— Une valeur constante xi qui représente tous les points de l’intervalle.
Ainsi, une approximation APCA de T est donnée par :

APCA(T) = {(xi, [bi, ei])}N−1
i=0 , avec b0 = 0, eN−1 = l − 1

où chaque segment i satisfait :

ei = bi+1 − 1, xi =
1

ei − bi + 1

ei∑

j=bi

tj

Pour un certain segment s = (xi, [bi, ei]), nous définissons ls = ei − bi + 1 comme étant la taille
du segment s, ainsi que Err(s, T) l’erreur d’approximation de s sur T de la manière suivante :

Err(s, T) =
ei∑

j=bi

(tj − xi)
2

6 / 8

Comme nous aurons à évaluer cette erreur d’approximation un grand nombre de fois, il est
important de la calculer de manière efficace. Pour illustrer ce point, nous nous intéressons dans
la question suivante à la recherche du segment smin = (xmin, [bmin, bmin+ ls[) de taille ls de telle
sorte que, pour tout segment s de taille ls :

Err(smin, T) ≤ Err(s, T)

Question 7 Implémenter une fonction computeMinimalCost(T, ls) qui identifie le segment smin

et renvoie bmin modulo 1000. Évaluer votre implémentation sur les T (de taille l) et ls suivants :

a) T0 avec l = 103 et ls = 102 b) T5 avec l = 104 et ls = 103

c) T10 avec l = 105 et ls = 104 d) T20 avec l = 106 et ls = 105

Question à développer pendant l’oral 6 Quelle est la complexité en temps de votre implémen-
tation de computeMinimalCost dans le pire cas en fonction de l ?

3.1 Une première approche : un algorithme glouton
Nous pouvons utiliser un algorithme glouton pour calculer une représentation APCA qui n’est
pas nécessairement optimale. Cet algorithme, nommée Bottom-up APCA, considère dans un
premier temps la partition la plus fine, c’est-à-dire l segments de taille 1, puis, à chaque itération,
fusionne les deux segments consécutifs conduisant à la plus faible erreur d’approximation (c’est-
à-dire Err(s, T) avec s le nouveau segment fusionné). Pour cette sous-partie exclusivement, nous
considérons seulement la partie entière de l’erreur d’approximation. L’algorithme s’arrête une
fois que le nombre de segments atteint N . Le pseudo-code d’une telle solution est le suivant :

fonction BuAPCA(T,N)
Créer la liste segments contenant l segments de taille 1.
Calculer la liste mergeCost contenant la partie entière de l’erreur
d’approximation si on fusionne deux segments consécutif (l − 1
elements)

tant que |segments| > N :
Fusionner les deux premiers segments consécutifs (dans l’ordre
d’apparition dans mergeCost) correspondant à
min(mergeCost)

Mettre à jour mergeCost (toujours avec la partie entière de
l’erreur d’approximation) et segments

fin
renvoyer segments

fin

On rappelle que les fonctions math.floor(x) en Python et Float.floor x en OCaml permettent
de calculer la partie entière d’un flottant x.
Pour la question suivante uniquement, afin de tenir compte des erreurs d’arrondi inhérentes au
calcul en virgule flottante, nous accepterons des résultats avec une marge d’erreur de plus ou
moins 10.

7 / 8

Question 8 Implémenter la fonction BuAPCA(T,N) renvoyant l’APCA approximée de T de N
segments. Pour des séries temporelles de taille l, calculer la longueur du segment le plus long,
c’est-à-dire max(xi,[ei,bi])∈APCA(T,N)(ei − bi + 1), modulo 1000, pour :

a) T0 avec l = 103 et N = 10 b) T5 avec l = 104 et N = 7

c) T10 avec l = 2× 104 et N = 20 d) T50 avec l = 5× 104 et N = 50

Question à développer pendant l’oral 7 Quelle est la complexité en temps dans le pire cas votre
implémentation de BuAPCA ?

Question à développer pendant l’oral 8 Sans l’implémenter, quelle stratégie pourriez-vous
mettre en place pour avoir une implémentation de BuAPCA avec une complexité en temps dans
le pire cas en O(l × log l) ?

3.2 Une solution optimale
L’algorithme BuAPCA ne permet pas toujours d’obtenir une approximation optimale d’une série
temporelle. Pour un nombre de segments N donné, une APCA est optimale si elle minimise la
somme des erreurs de ses segments, pour la fonction Err définie précédemment. La Figure 5
montre quatre exemples de représentation APCA optimales. Pour les séries temporelles de la
question suivante, l’APCA optimale est unique.

0 25 50 75 100

0

5

a) APCA(T0, N = 10)

0 50 100 150 200

−5

0

5

b) APCA(T5, N = 7)

0 250 500 750 1000

−20

0

20

c) APCA(T10, N = 5)

0 2000 4000

−50

0

50

d) APCA(T50, N = 3)

Figure 5 – Représentation APCA pour les séries temporelles (en utilisant ũ0) de la Question 9

Question 9 Implémenter la fonction APCA(T,N) renvoyant l’APCA optimale de T avec N seg-
ments. Pour ces séries temporelles de taille l, calculer la longueur du segment le plus long,
c’est-à-dire max(xi,[ei,bi])∈APCA(T,N)(ei − bi + 1), modulo 1000, pour :

a) T0 avec l = 100 et N = 10 b) T5 avec l = 200 et N = 7

c) T10 avec l = 1000 et N = 5 d) T50 avec l = 5000 et N = 3

Question à développer pendant l’oral 9 Quelle est la complexité en temps de votre implémen-
tation de APCA dans le pire cas en fonction de l et N ? Comparer avec la complexité en temps
de la solution triviale consistant à tester toutes les segmentations possibles.

♢
♢ ♢

♢

8 / 8

Fiche réponse type : Recherche de Similarités Temporelles

ũ0 : 79

Question 1

a)
564

b)
561

c)
491

d)
772

Question 2

a)
6

b)
14

c)
7

d)
10

Question 3

a)
0.74

b)
0.76

c)
0.80

d)
0.90

Question 4

a)
48

b)
157

c)
148

d)
57

Question 5

a)
84

b)
140

c)
281

d)
887

Question 6

a)
170

b)
340

c)
483

d)
631

I / II

Question 7

a)
594

b)
426

c)
329

d)
904

Question 8

a)
188

b)
430

c)
830

d)
256

Question 9

a)
15

b)
107

c)
414

d)
995

♢
♢ ♢

♢

II / II

Fiche réponse : Recherche de Similarités Temporelles

Nom, prénom, u0 : .

Question 1

a)

b)

c)

d)

Question 2

a)

b)

c)

d)

Question 3

a)

b)

c)

d)

Question 4

a)

b)

c)

d)

Question 5

a)

b)

c)

d)

Question 6

a)

b)

c)

d)

I / II

Question 7

a)

b)

c)

d)

Question 8

a)

b)

c)

d)

Question 9

a)

b)

c)

d)

♢
♢ ♢

♢

II / II

	Préliminaires
	Notations
	Génération de nombres pseudo-aléatoires
	Génération de séries temporelles pseudo-aléatoires
	Une première distance et son approximation
	À la recherche du plus proche voisin

	Une distance élastique
	Une élasticité restreinte

	Une approximation plus fine
	Une première approche: un algorithme glouton
	Une solution optimale

