Complexité avancée - TD 2

Guillaume Scerri

September 25, 2025

Exercise 1 (Acceleration results). Given a proper function f, show the following acceleration results.

- 1. If $L \in \mathsf{SPACE}(O(f))$ then $L \in \mathsf{SPACE}(f)$, what about NSPACE.
- 2. If $L \in \mathsf{TIME}(O(f))$ then $L \in \mathsf{TIME}(f(n) + n)$, what about NTIME.
- 3. If $f(n) \ge n$, if $L \in \mathsf{TIME}(O(f))$ then $L \in \mathsf{TIME}(f(n))$

Exercise 2 (A few NL-complete problems). Show that the following problems are NL-complete.

- 1. Deciding if a non-deterministic automaton \mathcal{A} accepts a word w.
- 2. Deciding if a directed graph is strongly connected.
- 3. Deciding if a directed graph has a cycle.

Exercise 3 (Restrictions of the SAT problem). 1. Let 3-SAT be the restriction of SAT to clauses consisting of at most three literals (called 3-clauses). In other words, the input is a finite set S of 3-clauses, and the question is whether S is satisfiable. Show that 3-SAT is NP-complete for logspace reductions (assuming SAT is).

- 2. Let 2-SAT be the restriction of SAT to clauses consisting of at most two literals (called 2-clauses). Show that 2-SAT is in P, using proofs by resolution.
- 3. Show that 2-UNSAT (i.e, the unsatisfiability of a set of 2-clauses) is NL-complete.
- 4. Conclude that 2-SAT is NL-complete. You may use the fact that co NL = NL.

Exercise 4 (Space hierarchy theorem). Consider two space-constructible functions f and g such that f = o(g). Prove that $\mathsf{DSPACE}(f) \subseteq \mathsf{DSPACE}(g)$.

Hint: You may consider a language $L = \{(M, w') \mid \text{ the simulation (by a universal } TM) \text{ of } M \text{ on } (M, w') \text{ rejects } \}$ with an appropriate restriction on the simulation of M.

Exercise 5 (NL alternative definition). A Turing machine with certificate tape, called a verifier, is a <u>deterministic</u> Turing machine with an extra read-only input tape called the certificate tape, which moreover is read once (i.e. the head on that tape can either remain on the same cell or move right, but never move left). A verifier takes as input a word x in the alphabet, along with word x written in the certificate tape.

Define NL_{certif} to be the class of languages L such that there exists a polynomial $p: \mathbb{N} \to \mathbb{N}$ and a verifier M running in logarithmic space such that:

 $x \in L$ iff $\exists u, |u| \leq p(|x|)$ and M accepts on input (x, u)

- 1. Show that $NL_{certif} = NL$
- 2. What complexity class do you obtain if you remove the read-once constraint in the definition of a machine with certification tape? Justify your answer. You may use the fact that SAT is NP-complete for logspace reduction.