Complexité avancée - TD 3

Guillaume Scerri

October 03, 2024

- Exercise 1 (Restrictions of the SAT problem). 1. Let 3-SAT be the restriction of SAT to clauses consisting of at most three literals (called 3-clauses). In other words, the input is a finite set S of 3-clauses, and the question is whether S is satisfiable. Show that 3-SAT is NP-complete for logspace reductions (assuming SAT is).
 - 2. Let 2-SAT be the restriction of SAT to clauses consisting of at most two literals (called 2-clauses). Show that 2-SAT is in P, using proofs by resolution.
 - 3. Show that 2-UNSAT (i.e, the unsatisfiability of a set of 2-clauses) is NL-complete.
 - 4. Conclude that 2-SAT is NL-complete. You may use the fact that co NL = NL.

We recall the space-hierarchy theorem.

Theorem 1 (Space-hierarchy theorem). For two space-constructible functions f and g such that f = o(g), we have $\mathsf{DSPACE}(f) \subseteq \mathsf{DSPACE}(g)$.

- **Exercise 2** (Poly-logarithmic space). 1. Let polyL = $\bigcup_{k \in \mathbb{N}} \mathsf{SPACE}(\log^k)$. Show that polyL does not have a complete problem for logarithmic space reduction.¹
 - 2. Recall that $PSPACE = \bigcup_{k \in \mathbb{N}} SPACE(n^k)$. Does PSPACE have a complete problem for logarithmic space reduction? Why doesn't the proof of the previous question apply to PSPACE?
- **Exercise 3** (Padding argument). 1. Show that if $\mathsf{DSPACE}(n^c) \subseteq \mathsf{NP}$ for some c > 0, then $\mathsf{PSPACE} \subseteq \mathsf{NP}$.

Hint: for $L \in \mathsf{DSPACE}(n^k)$ one may consider the language $\tilde{L} = \{(x, w_x) \mid x \in L\}$. where w_x is a word written in unary.

2. Deduce that DSPACE $(n^c) \neq NP$.

Exercise 4 (On the existence of One-way function). A one-way function is a bijection f from k-bit integers to k-bit integers such that f is computable in polynomial time, but f^{-1} is not. Prove that for all one-way functions f, we have

$$A := \{(x,y) \mid f^{-1}(x) < y\} \in (\mathsf{NP} \cap \mathsf{coNP}) \backslash \mathsf{P}$$

Exercise 5 (Regular languages). Let REG denote the set regular/rational languages.

1. Show that for all $L \in \mathsf{REG}$, L is recognized by a TM running in space 0 and time $n+1.^2$

¹Note that, from this, we can deduce that polyL \neq P.

²In fact, regular languages exactly correspond to languages that can be recognized in such a way.

2. Exhibit a language recognized by a TM running in space $\log n$ and time O(n) that is not in REG.

Exercise 6 (Yet another NL-complete problem). For a finite set X, a subset $S \subseteq X$, and a binary operator $*: X \times X \to X$ defined on X, we inductively define $S_{0,*} := S$ and $S_{i+1,*} := S_{i,*} \cup \{x * y \mid x,y \in S_{i,*}\}$. The closure of S with regard to * is the set $S_* = \bigcup_{i \in \mathbb{N}} S_{i,*}$.

Show that the following problem is NL-complete.

- Input: A finite set X, a binary operation $*: X \times X \to X$ that is associative (i.e. (x*y)*z = x*(y*z) for all $x, y, z \in X$), a subset $S \subseteq X$ and a target $t \in X$.
- Output: Yes if and only $t \in S_*$.