Advanced Complexity

TD n°4

Guillaume Scerri

October 9, 2025

Exercise 1: Language theory

Show that the following problems are PSPACE-complete:

- 1. NFA Universality:
 - INPUT : a non-deterministic automaton A over alphabet Σ
 - QUESTION : $\mathcal{L}(A) = \Sigma^*$?

Bonus : what is the complexity of this problem for a DFA?

- 2. NFA Equivalence
 - INPUT: two non-deterministic automata A_1 and A_2 over the same alphabet Σ
 - QUESTION : $L(A_1) = L(A_2)$

Bonus: what is the complexity of this problem for a DFA?

- 3. DFA Intersection Vacuity:
 - INPUT : deterministic automata A_1, \ldots, A_m for some m
 - QUESTION : $\bigcap_{i=1}^{m} L(A_i) = \emptyset$?

Exercise 2: Did you get padding?

Show that if P = PSPACE, then EXPTIME = EXPSPACE.

Exercise 3: Too fast!

Show that $ATIME(log \ n) \neq L$.

Exercise 4: Direct application

Show that EXPSPACE = AEXPTIME.

Hint: You may use that if f is space-constructible, then:

$$SPACE(poly(f(n)) = ATIME(poly(f(n)))$$

Exercise 5: Closure under morphisms

Given a finite alphabet Σ , a function $f: \Sigma^* \to \Sigma^*$ is a morphism if $f(\Sigma) \subseteq \Sigma$ and for all $a = a_1 \cdots a_n \in \Sigma^*$, $f(a) = f(a_1) \cdots f(a_n)$ (f is uniquely determined by the value it takes on Σ).

- 1. Show that NP is closed under morphisms, that is: for any language $L \in NP$, and any morphism f on the alphabet of L, $f(L) \in NP$.
- 2. Show that if P is closed under morphisms, then P = NP.

Exercise 6: Padding and unary languages

Recall that a *unary* language is any language over a one-letter alphabet. Prove that if a unary language is NP-complete, then P = NP.

- 2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.
- 3. Prove that if $\mathsf{SPACE}(2^{O(n)}) = \mathsf{TIME}(2^{O(n)})$, then every unary language in PSPACE is actually in P.