
Sorting presorted data

Vincent Jugé

LIGM – Université Gustave Eiffel, ESIEE, ENPC & CNRS

09/12/2021

Joint work with
N. Auger, C. Nicaud, C. Pivoteau, A. Ghasemi & G. Khalighinejad

Université Gustave Eiffel Sharif University of Technology
Duke University

V. Jugé Sorting presorted data

Sorting data

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better?

No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are requiredEND

OF TAL
K!

V. Jugé Sorting presorted data

Sorting data

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better?

No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are requiredEND

OF TAL
K!

V. Jugé Sorting presorted data

Sorting data

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better? No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are required

END
OF TAL

K!

V. Jugé Sorting presorted data

Sorting data

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better? No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are requiredEND

OF TAL
K!

V. Jugé Sorting presorted data

Cannot we ever do better?

In some cases, we should. . .

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

V. Jugé Sorting presorted data

Cannot we ever do better?

In some cases, we should. . .

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs

2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)
New parameters: Run-length entropy: H =

∑ρ
i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,6,9,13]
Some merge sort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![6]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,6,9,13]
Some merge sort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![6]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,6,9,13]
Some merge sort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![6]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,6,9,13]
Some merge sort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![6]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,6,9,13]
TimSort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![6]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,6,9,13]
TimSort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![6]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[5]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[8] – TimSort works in time O(n log n)

4 Refined worst-case analysis[9] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[7,9]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1

2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[5]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[8] – TimSort works in time O(n log n)

4 Refined worst-case analysis[9] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[7,9]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[5]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[8] – TimSort works in time O(n log n)

4 Refined worst-case analysis[9] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[7,9]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3

4

P J J

1 Invented by Tim Peters[5]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[8] – TimSort works in time O(n log n)

4 Refined worst-case analysis[9] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[7,9]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[5]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[8] – TimSort works in time O(n log n)

4 Refined worst-case analysis[9] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[7,9]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[5]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[8] – TimSort works in time O(n log n)

4 Refined worst-case analysis[9] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[7,9]

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs

* Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs * Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs * Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs * Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs * Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[11] for α = φ = (1+
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 α(α− 1)rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3 ≡ ∞5 3 1 3

5 3 1 3

4

9

12
k = 1

0 2 2 3 4 0 1 4 5 1 2 3 5 4 3 ∞≡
k = 0

0 0 1 2 2 3 4 4 5 1 2 3 9 3 ∞≡
k = 0

0 0 1 1 2 2 2 3 3 4 4 5 12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

knew > kold − 1 after each merge:
one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[11] for α = φ = (1+
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 α(α− 1)rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3 ≡ ∞5 3 1 3

5 3 1 3

4

9

12

k = 1

0 2 2 3 4 0 1 4 5 1 2 3 5 4 3 ∞≡

k = 0

0 0 1 2 2 3 4 4 5 1 2 3 9 3 ∞≡
k = 0

0 0 1 1 2 2 2 3 3 4 4 5 12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

knew > kold − 1 after each merge:
one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[11] for α = φ = (1+
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 α(α− 1)rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3 ≡ ∞5 3 1 3

5 3 1 3

4

9

12

k = 1

0 2 2 3 4 0 1 4 5 1 2 3 5 4 3 ∞≡
k = 0

0 0 1 2 2 3 4 4 5 1 2 3 9 3 ∞≡

k = 0

0 0 1 1 2 2 2 3 3 4 4 5 12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

knew > kold − 1 after each merge:
one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[11] for α = φ = (1+
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 α(α− 1)rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3 ≡ ∞5 3 1 3

5 3 1 3

4

9

12

k = 1

0 2 2 3 4 0 1 4 5 1 2 3 5 4 3 ∞≡
k = 0

0 0 1 2 2 3 4 4 5 1 2 3 9 3 ∞≡
k = 0

0 0 1 1 2 2 2 3 3 4 4 5 12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

knew > kold − 1 after each merge:
one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[11] for α = φ = (1+
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 α(α− 1)rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3

≡ ∞

5 3 1 3

5 3 1 3

4

9

12

k = 1

0 2 2 3 4 0 1 4 5 1 2 3

5 4 3 ∞≡

k = 0

0 0 1 2 2 3 4 4 5 1 2 3

9 3 ∞≡

k = 0

0 0 1 1 2 2 2 3 3 4 4 5

12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

knew > kold − 1 after each merge:
one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[11] for α = φ = (1+
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 α(α− 1)rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3

≡ ∞5 3 1 3

5 3 1 3

4

9

12
k = 1

0 2 2 3 4 0 1 4 5 1 2 3

5 4 3 ∞≡

k = 0

0 0 1 2 2 3 4 4 5 1 2 3

9 3 ∞≡

k = 0

0 0 1 1 2 2 2 3 3 4 4 5

12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

knew > kold − 1 after each merge:
one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[11] for α = φ = (1+
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 α(α− 1)rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3

≡ ∞5 3 1 3

5 3 1 3

4

9

12
k = 1

0 2 2 3 4 0 1 4 5 1 2 3

5 4 3 ∞≡

k = 0

0 0 1 2 2 3 4 4 5 1 2 3

9 3 ∞≡

k = 0

0 0 1 1 2 2 2 3 3 4 4 5

12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

knew > kold − 1 after each merge:
one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[11] for α = φ = (1+
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 α(α− 1)rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3

≡ ∞5 3 1 3

5 3 1 3

4

9

12
k = 1

0 2 2 3 4 0 1 4 5 1 2 3

5 4 3 ∞≡

k = 0

0 0 1 2 2 3 4 4 5 1 2 3

9 3 ∞≡

k = 0

0 0 1 1 2 2 2 3 3 4 4 5

12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

knew > kold − 1 after each merge:
one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [13]
In merge trees induced by φ-merge sort, each node is at least φ times
larger than its great-grandchildren

Proof:

. . . a b c

> a + c > 2c

. . .cba

> a + max{b, c}
> (1 + 1/φ)a

Corollary:
Each run R lies at depth O(1 + log(n/r))

φ-merge sort has a merge cost O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [13]
In merge trees induced by φ-merge sort, each node is at least φ times
larger than its great-grandchildren

Proof:

. . . a b c

> a + c > 2c

. . .cba

> a + max{b, c}
> (1 + 1/φ)a

Corollary:
Each run R lies at depth O(1 + log(n/r))

φ-merge sort has a merge cost O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [13]
In merge trees induced by φ-merge sort, each node is at least φ times
larger than its great-grandchildren

Proof:

. . . a b c

> a + c > 2c

. . .cba

> a + max{b, c}
> (1 + 1/φ)a

Corollary:
Each run R lies at depth O(1 + log(n/r))

φ-merge sort has a merge cost O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [13]
In merge trees induced by φ-merge sort, each node is at least φ times
larger than its great-grandchildren

Proof:

. . . a b c

> a + c > 2c

. . .cba

> a + max{b, c}
> (1 + 1/φ)a

Corollary:
Each run R lies at depth O(1 + log(n/r))

φ-merge sort has a merge cost O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (2/2)

Fast-growth property
A merge algorithm A has the fast-growth property if

there exists an integer k > 1 and a real number θ > 1 such that
in each merge tree induced by A,

going up k times multiplies the node size by θ or more

Theorem (continued)

Timsort[5], α-merge sort[11], adaptive Shivers sort[12], Peeksort and
Powersort[10] have the fast growth-property

Corollary: These algorithms work in time O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (2/2)

Fast-growth property
A merge algorithm A has the fast-growth property if

there exists an integer k > 1 and a real number θ > 1 such that
in each merge tree induced by A,

going up k times multiplies the node size by θ or more

Theorem (continued)

Timsort[5], α-merge sort[11], adaptive Shivers sort[12], Peeksort and
Powersort[10] have the fast growth-property

Corollary: These algorithms work in time O(n + nH)

V. Jugé Sorting presorted data

What about ?

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

Few runs vs few values:

lex inv

V. Jugé Sorting presorted data

What about ?

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

Few runs vs few values:

lex

inv

V. Jugé Sorting presorted data

What about ?

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

Few runs vs few values vs few dual runs:

lex inv

V. Jugé Sorting presorted data

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

0 1 1 0 2 1 0 2 0 2 0 1

1 Chunk your data in non-decreasing, non-overlapping dual runs
2 New parameters: Number of dual runs (ρ?) and their lengths (r?i)

New parameters: Dual-run entropy: H? =
∑ρ?

i=1(r?i /n) log2(n/r?i)

New parameters: Dual-run entropy: H? 6 log2(ρ?) 6 log2(n)

Theorem [13]
Every fast-growth merge sort requires O(n + nH?) comparisons if it uses
Timsort’s optimized run-merging routine

and we still cannot do better than Ω(n + nH?)

V. Jugé Sorting presorted data

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

0 1 1 0 2 1 0 2 0 2 0 1

1 Chunk your data in non-decreasing, non-overlapping dual runs
2 New parameters: Number of dual runs (ρ?) and their lengths (r?i)

New parameters: Dual-run entropy: H? =
∑ρ?

i=1(r?i /n) log2(n/r?i)

New parameters: Dual-run entropy: H? 6 log2(ρ?) 6 log2(n)

Theorem [13]
Every fast-growth merge sort requires O(n + nH?) comparisons if it uses
Timsort’s optimized run-merging routine

and we still cannot do better than Ω(n + nH?)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

12

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)

2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x

3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Fast merging procedure
Merging ≈ finding an integer (several times)[3,4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
2 Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[4,5]:
4 Ask y = 1, 2, . . . , t+ 1, t+ 2, t+ 4, t+ 8, . . ., then find the bits of x − t

* Merge cost:
∑

i log2(1 + k→i) + log2(1 + `→i)

V. Jugé Sorting presorted data

Amortized cost evaluation

How much time is spent comparing elements from a dual run R??

6 r?

6 r?

k
lo
g
θ
(n
/
r?

)

6 w log2(1+ r?/w)

6 w log2(1+ r?/w)

w = 3

w = 2

w 6 r?

w 6 r?/ k
√
θ

Overall, we perform at most:
+ comparisons with R?

O(n + nH?) comparisons in total

V. Jugé Sorting presorted data

Amortized cost evaluation

How much time is spent comparing elements from a dual run R??

6 r?

6 r?

k
lo
g
θ
(n
/
r?

)

6 w log2(1+ r?/w)

6 w log2(1+ r?/w)

w = 3

w = 2

w 6 r?

w 6 r?/ k
√
θ

Overall, we perform at most:
+ comparisons with R?

O(n + nH?) comparisons in total

V. Jugé Sorting presorted data

Amortized cost evaluation

How much time is spent comparing elements from a dual run R??

6 r?

6 r?

k
lo
g
θ
(n
/
r?

)

6 w log2(1+ r?/w)

6 w log2(1+ r?/w)

w = 3

w = 2

w 6 r?

w 6 r?/ k
√
θ

Overall, we perform at most:
+ comparisons with R?

O(n + nH?) comparisons in total

V. Jugé Sorting presorted data

Amortized cost evaluation

How much time is spent comparing elements from a dual run R??

6 r?

6 r?

k
lo
g
θ
(n
/
r?

)

6 w log2(1+ r?/w)

6 w log2(1+ r?/w)

w = 3

w = 2

w 6 r?

w 6 r?/ k
√
θ

Overall, we perform at most:
+ comparisons with R?

O(n + nH?) comparisons in total

V. Jugé Sorting presorted data

Amortized cost evaluation

How much time is spent comparing elements from a dual run R??

6 r?

6 r?

k
lo
g
θ
(n
/
r?

)

6 w log2(1+ r?/w)

6 w log2(1+ r?/w)

w = 3

w = 2

w 6 r?

w 6 r?/ k
√
θ

Overall, we perform at most:
k r? logθ(n/r?) +

∑
h>0 r

?/θh/k log2(1 + θh/k) comparisons with R?

O(n + nH?) comparisons in total

V. Jugé Sorting presorted data

Amortized cost evaluation

How much time is spent comparing elements from a dual run R??

6 r?

6 r?

k
lo
g
θ
(n
/
r?

)

6 w log2(1+ r?/w)

6 w log2(1+ r?/w)

w = 3

w = 2

w 6 r?

w 6 r?/ k
√
θ

Overall, we perform at most:
O(r? log(n/r?) + r?) comparisons with R?

O(n + nH?) comparisons in total

V. Jugé Sorting presorted data

Conclusion

TimSort is good in practice and in theory: O(n + nH) merge cost
TimSort is good in practice and in theory: O(n + nH?) comparisons

Both its merging policy and merging routine are great!
Use TimSort’s merging routine in Swift and Rust!

* We still need to evaluate constants hidden in the O notations (WIP)

V. Jugé Sorting presorted data

Conclusion

TimSort is good in practice and in theory: O(n + nH) merge cost
TimSort is good in practice and in theory: O(n + nH?) comparisons
Both its merging policy and merging routine are great!

Use TimSort’s merging routine in Swift and Rust!
* We still need to evaluate constants hidden in the O notations (WIP)

V. Jugé Sorting presorted data

Conclusion

TimSort is good in practice and in theory: O(n + nH) merge cost
TimSort is good in practice and in theory: O(n + nH?) comparisons
Both its merging policy and merging routine are great!
Use TimSort’s merging routine in Swift and Rust!

* We still need to evaluate constants hidden in the O notations (WIP)

V. Jugé Sorting presorted data

Conclusion

TimSort is good in practice and in theory: O(n + nH) merge cost
TimSort is good in practice and in theory: O(n + nH?) comparisons
Both its merging policy and merging routine are great!
Use TimSort’s merging routine in Swift and Rust!

* We still need to evaluate constants hidden in the O notations (WIP)

V. Jugé Sorting presorted data

Some references

[1] Optimal computer search trees and variable-length alphabetical codes,
Hu & Tucker (1971)

[2] A new algorithm for minimum cost binary trees, Garsia & Wachs (1973)
[3] An almost optimal algorithm for unbounded searching, Bentley & Yao (1976)
[4] Optimistic Sorting and Information Theoretic Complexity, McIlroy (1993)
[5] Tim Peters’ description of TimSort,

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[6] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[7] OpenJDK’s java.utils.Collection.sort() is broken, de Gouw et al. (2015)
[8] Merge strategies: from merge sort to TimSort, Auger et al. (2015)
[9] On the worst-case complexity of TimSort, Auger et al. (2018)
[10] Nearly-optimal mergesorts, Munro & Wild (2018)
[11] Strategies for stable merge sorting, Buss & Knop (2019)
[12] Adaptive ShiversSort: an alternative sorting algorithm, Jugé (2020)
[13] Galloping in natural merge sorts, Ghasemi, Jugé & Khalighinejad (2022+)

V. Jugé Sorting presorted data

svn.python.org/projects/python/trunk/Objects/listsort.txt

