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The goal of this talk

You have already seen how to define theories and
write proofs in Dedukti (eg. the theory U)

Now we will see how to write automatic translators
from proof assistants to Dedukti

We will first discuss the general principles on writing
such translator to Dedukti

We then discuss the specific case of the
Agda2Dedukti translator
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How to translate from a proof
assistant to Dedukti

Step 0: Find (or define) a system O corresponding
to the proof assistant’s logic (not easy!)

Step 1: Define a Dedukti theory1 TO representing
the object logic in Dedukti, along with a translating
function J−K : ΛO → ΛDK.
The couple (TO, J−K) is an encoding of O.

Step 2: Starting from the proof assistant code,
implement the translating function

1Recall that a Dedukti theory is a pair (Σ,R)
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Different levels of correctness
Not all encodings are equal!

An encoding is sound if
⊢O M : A implies ⊢TO JMK : El JAK

An encoding is conservative if
⊢TO M : El JAK implies ∃N, ⊢O N : A

An encoding is adequate if for each type A,J−K is a compositional bijection between A and El JAK
Adequate

Sound 

Sound and Conservative
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Differences between core languages
Dependent types: Coq, Agda, Lean, …

Inductive types: Most proof assistants
(type-theory assistants also have inductive families)

Universe polymorphism: Coq, Agda, Lean, …

Impredicativity: All proof assistants, except Agda
and Epigram

Eta-equality & irrelevance: Present in different
levels in different proof assistants
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Differences between implementations
Curry-Howard assistants (Coq/Agda/Matita):
Proof terms are already in the internal syntax, easier
to translate

LCF-like assistants (Isabelle/HOL): No proof
terms, need to reconstruct them from proof
derivations

Other cases:
• PVS: Proofs derivations are not even internally

available... (see Gabriel’s talk for a solution)
• …
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What is Agda?

Agda is a dependently typed programming language
and proof assistant based on Martin-Löf type theory.

It has indexed datatypes, dependent pattern
matching, and explicit universe polymorphism.

Its type checker identifies terms up to β-equality
and η-equality for functions and records, and
supports definitional proof irrelevance.
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Data types in Agda

data _⊎_ (A B : Set) : Set where
left : A → A ⊎ B
right : B → A ⊎ B

data _≤_ : N → N → Set where
≤-zero : ∀ {n} → zero ≤ n
≤-suc : ∀ {m n} → m ≤ n → suc m ≤ suc n
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Pattern matching in Agda

_<_ : N → N → Set
m < n = m ≤ suc n

compare : (m n : N) → (m ≤ n) ⊎ (n < m)
compare zero n = left ≤-zero
compare (suc m) zero = right ≤-zero
compare (suc m) (suc n) with compare m n
... | left m≤n = left (≤-suc m≤n)
... | right n<m = right (≤-suc n<m)
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Agda as a PTS

At its core, Agda is a pure type system with sorts
Set ` where ` is a universe level.

U : (` : Level) → Set (lsuc `)
U ` = Set `

rule : (`1 `2 : Level)
(A : Set `1) (B : A → Set `2)

→ Set (`1 ⊔ `2)
rule _ _ A B = (x : A) → B x
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Encoding Agda terms in Dedukti

Variable JxK =

x

Def. symbol JfK =

f

Constructor JD.cK =

D__c

Lambda Jλx → uK =

x ⇒ JuK

Application Ju vK =

JuK JvK

Pi type J(x : A) → BK =

???

Universe JSet `K =

???
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Tarski- vs. Russell-style universes2

Agda uses Russell-style universes: Elements are
types themselves.

A : Setl
A type

In Dedukti, if A : Set, we cannot have a : A.
Thus, Dedukti uses a form of Tarski-style universes:
Elements are codes that can be interpreted as types.

c : U (set l)
El (set l) c type

2https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
13 / 52

https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf


Encoding Agda’s PTS in Dedukti

Sort : Type.
set : Lvl -> Sort.

U : (s : Sort) -> Type.
def El : (s : Sort) -> (a : U s) -> Type.

def axiom : Sort -> Sort.
[i] axiom (set i) --> set (s i).

def rule : Sort -> Sort -> Sort.
[i, j] rule (set i) (set j) --> set (max i j).

(We will see how to to define Lvl later.)
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Encoding pi types

• Add a constant prod for encoding the pi type:

A : U sA x : El sA A ⊢ B : U sB
prod sA sB A B : U (rule sA sB)

• Identify elements of prod with the
metatheoretic arrow type:

El _ (prod sA sB A B)
= (x : El sA A) → El sB (B x)
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Encoding pi types in Dedukti

prod : (s_A : Sort) ->
(s_B : Sort) ->
(A : U s_A) ->
(B : (El s_A A -> U s_B)) ->
U (rule s_A s_B).

[s_A, s_B, A, B]
El _ (prod s_A s_B A B)

--> (x : El s_A A) -> El s_B (B x).
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Reconstructing sorts

For translating pi types, we need access to the sort
of the domain and codomain.

Luckily, Agda’s type checker already annotates each
type A with its sort s(A).

Examples. s(N) = Set, s(Set) = Set1,
s(Set1 → Set) = Set2
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Encoding Agda terms in Dedukti

Variable JxK = x
Def. symbol JfK = f
Constructor JD.cK = D__c
Lambda Jλx → uK = x ⇒ JuK
Application Ju vK = JuK JvK
Pi type J(x : A) → BK = ???

prod |s(A)| |s(B)|JAK (x ⇒ JBK)
where |Set `| = set J`K

Universe JSet `K = ???

(We will see how to translate levels later.)
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Encoding universes
• Add a constant u for encoding the Set type:

s : Sort
u s : U (axiom s)

• Identify elements of u s with the ones of U s:

El _ (u s) = U s

In Dedukti:
u : (s : Sort) -> U (axiom s).
[i] El _ (u s) --> U s.
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Encoding Agda definitions in Dedukti

Data types (no parameters or indices)s
data D : U where

c : A

{
=

D : El |s(U)| JUK .
D__c : El |U| JAK .

Function definitions (no pattern matching)s
f : A
f x = v

{
=

def f : El |s(A)| JAK .
[x] f x --> JvK .
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Implementation of Agda2Dedukti

Agda2Dedukti is implemented as an Agda backend.

This allows us to reuse parts of Agda’s
implementation:

• Internal syntax representation
• Type checking monad TCM
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Structure of the Agda typechecker
.agda file

lexer & parser ⇓
Concrete syntax

scope checker ⇓
Abstract syntax

type checker ⇓
Internal syntax

Agda2Dk
====⇒ .dk file

optimizer ⇓
Treeless syntax

MAlonzo ⇓
.hs file GHC

=====⇒ Binary
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Agda’s internal syntax3

data Term
= Var Int Elims -- x u v ..
| Lam ArgInfo (Abs Term) -- λ x → v
| Lit Literal -- 42, 'a', ...
| Def QName Elims -- f u v ..
| Con ConHead ConInfo Elims -- c u v ..
| Pi (Dom Type) (Abs Type) -- (x : A) → B
| Sort Sort -- Set, Set1, Prop, ...
| Level Level -- lzero, ...
| MetaV MetaId Elims -- _X_235
| DontCare Term
| Dummy String Elims

3Code from Agda.Syntax.Internal
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Agda’s TCM monad

Agda’s typechecker uses a type-checking monad
TCM:
type TCM a
getConstInfo :: QName -> TCM Definition
getBuiltin :: String -> TCM Term
getContext :: TCM Context
addContext :: (Name, Dom Type) -> TCM a -> TCM a
checkInternal :: Term -> Type -> TCM ()
reconstructParameters :: Type -> Term -> TCM Term
...
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Putting it all together
example : (1 ≤ 2) ⊎ (2 < 1)
example = left (≤-suc ≤-zero)

{|!_⊎___left|}
({|!_≤_|}

(Nat__suc Nat__zero)
(Nat__suc (Nat__suc Nat__zero)))

({|!_<_|}
(Nat__suc (Nat__suc Nat__zero))
(Nat__suc Nat__zero))

({|!_≤___≤-suc|}
Nat__zero
(Nat__suc Nat__zero)
({|!_≤___≤-zero|} (Nat__suc Nat__zero)))
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Translating datatypes and
constructors to constants

Data types and their constructors do not reduce,
so we translate them to constants in Dedukti.

Example. _≤_ is translated to:
{|!_≤_|} : El (set (s 0)) (prod (set 0) (set (s 0))

Nat (_0 => (prod (set 0) (set (s 0))
Nat (_0 => (u (set 0)))))).

{|!_≤___≤-zero|} : El (set 0) (prod (set 0) (set 0)
Nat (n => ({|!_≤_|} Nat__zero n))).

{|!_≤___≤-suc|} : El (set 0) (prod (set 0) (set 0) Nat
(m => (prod (set 0) (set 0)

Nat (n => (prod (set 0) (set 0)
({|!_≤_|} m n)
(_0 => ({|!_≤_|} (Nat__suc m) (Nat__suc n)))))))).
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Reconstruction of data parameters

Constructors in Agda do not store their parameters.

Reconstructing parameters requires a type-directed
traversal of the syntax.

We can reuse Agda’s reconstructParameters,
which does exactly this!
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Filling implicit arguments &
reconstructing parameters

Agda’s type checker infers implicit arguments during
type checking.

Agda2Dk makes all implicit arguments explicit and
reconstructs constructor parameters.

left (≤-suc ≤-zero) : (1 ≤ 2) ⊎ (2 < 1)

⇓
left (≤-suc {m = 0} {n = 1} (≤-zero {n = 1}))

⇓
left (1 ≤ 2) (2 < 1) (≤-suc 0 1 (≤-zero 1))
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Translating clauses to rewrite rules
Functions in Agda are defined by a set of clauses,
so we translate them to a constant + a set of
rewrite rules.

Example. compare is translated to:
def compare : El (set 0) (prod (set 0) (set 0)

Nat (m => (prod (set 0) (set 0)
Nat (n => ({|!_⊎_|} ({|!_≤_|} m n) ({|!_<_|} n m)))))).

[n] compare Nat__zero n -->
{|!_⊎___left|} ({|!_≤_|} Nat__zero n)

({|!_<_|} n Nat__zero) ({|!_≤___≤-zero|} n).
[m] compare (Nat__suc m) Nat__zero -->

{|!_⊎___right|} ({|!_≤_|} (Nat__suc m) Nat__zero)
({|!_<_|} Nat__zero (Nat__suc m))
({|!_≤___≤-zero|} (Nat__suc (Nat__suc m))).

[m, n] compare (Nat__suc m) (Nat__suc n) -->
{|!with-66|} m n (compare m n).

(where {|!with-66|} is a helper function generated by Agda.)
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Drawbacks of generating rewrite rules

Generating a new rewrite rule for each clause means
that we are extending the theory with each
definition.

Moreover, checking correctness (completeness &
termination) of rewrite rules is very hard.

Ongoing work: Instead, we can translate
definitions by pattern matching to eliminators.4

4Ask Thiago for details!
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Universe polymorphism
Sometimes one wishes to use a definition at
multiple universes (e.g. List Nat but also List Set0)

Bad solution One Listi and one mapi for each univ i

Universe polymorphism Allows definitions that
can be used at multiple universe levels

data List {i} (A : Set i) : Set i where
[] : List A
_::_ : A → List A → List A

map : {i j : Level} → {A : Set i} → {B : Set j}
→ (f : A → B) → List A → List B

map f [] = []
map f (x :: l) = f x :: map f l
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Other ways of having universe
polymorphism

Before going on, a comparison with another proof
assistant you know.

Coq Agda
Typical ambiguity

Yes No

Cumulativity (Seti ⊆ Seti+1)

Yes No

Definitions carry constraints

Yes No

Very different versions
In this talk we only see the encoding of Agda’s
universe polymorphism5

5For Coq’s version, see Gaspard Ferey’s PhD thesis
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Universe polymorphism in Dedukti
Idea Generalize encoding of the arrow type
setOmega : Sort.

forall : (l : (Lvl -> Sort)) ->
((i : Lvl) -> U (l i)) -> U setOmega.

[l, t] El _ (forall l t) -->
(i : Lvl) -> El (l i) (t i).

We extend the translation function with
Level quantification J(i : Level) → AK = forall (i ⇒ Js(A)K)

(i ⇒ JAK)
Level application JM lK = JMK JlK
Level abstraction Jλi.MK = i ⇒ JMK
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Back to List

Now the constant List can be given the type
El setOmega

(forall (i => set (suc i))
(i => prod (set (suc i))

(set (suc i))
(u (set i))
(_ => u (set i))))

Which, as expected, computes to
(i : Lvl) -> U (set i) -> U (set i)
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Universe levels
Levels are given by the syntax

l1, l2 ::= i | lzero | lsuc | l1 ⊔ l2 .

Levels are not freely generated, they satisfy:
Idempotence a ⊔ a = a
Associativity (a ⊔ b) ⊔ c = a ⊔ (b ⊔ c)
Commutativity a ⊔ b = b ⊔ a
Distributivity lsuc (a ⊔ b) = lsuc a ⊔ lsuc b
Neutrality a ⊔ lzero = a
Subsumption a ⊔ lsucn a = lsucn a
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The challenge of representing
universe polymorphism

To establish the encoding’s soundness,

l1 ≡ l2 should imply Jl1K ≡ Jl2K
Possible solutions:

1. Representing levels as naturals? Closed terms
do not satisfy all equalities (e.g. i ⊔ j ̸≡ j ⊔ i).

2. Representing levels as a set of variables with
natural increments? (current solution)
Works well, but there is a catch (next slide).

3. Decision procedure integrated in Dedukti?
We leave this to the future generations.
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Current solution: levels as sets
Idea. Every level l admits a unique canonical form

l = max{n, i1 + m1, ..., ik + mk}
where i1, .., ik ∈ FV(l), n,m1, ..,mk ∈ N and mj ≤ n.

A rewrite system can calculate such forms by using
rewriting modulo associativity-commutativity.

But idempotence and subsumption require a
non-linear rule:

max{i + n, i + m} = i +max{n,m}
This breaks confluence of pre-terms, and prevents
proving conservativity without changing Dedukti.
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From Agda to Dedukti
1. Principles on translating from a proof assistant to Dedukti

2. Encoding Agda in Dedukti

3. Implementation of Agda2Dedukti

4. Inductive types and dependent pattern matching

5. Universe polymorphism

6. Eta equality & irrelevance

7. Conclusion
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Eta equality in Agda

Agda supports two kinds of eta-equality:
1. Eta for functions:

f : (x : A) → B
f = (λx → f x) : (x : A) → B

2. Eta for records:6

u : Σ A B
u = (proj1 u, proj2 u) : Σ A B

6Also known as surjective pairing for Σ.
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Definitional singleton types
Agda supports eta for all record types, not just Σ!
In particular, it has eta for the unit type:

record ⊤ : Set where -- no fields
constructor tt

eta-unit : (x y : ⊤) → x ≡ y
eta-unit x y = refl

Two distinct variables might be equal!

⇒ To check if two terms are convertible, it does not
suffice to compare their normal forms.
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Encoding eta in Dedukti
1. Eta-expand everything when translating?

This is not stable under substitution:

(λa : A.a){Nat → Nat/A}

is not in eta-long form, but λa : A.a and
Nat → Nat are.

2. Eta-reduce everything when translating?
This is not stable under substitution and β:

(λx.y x x){(λx′.z)/y} ↪−→β λx.z x ↪−→η z

but λx.y x x ̸↪−→η and λx′.z ̸↪−→η.
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Encoding eta in Dedukti
3. Add eta-equality to the metatheory?

This only handles eta for the arrow type.

4. Use eta-reduction for record types?
This does not work for unit type, and needs
non-linearity for the others:
mk_pair (pi_1 p) (pi_2 p) --> p

5. Annotate terms with their types to be able to
match them to eta expand? e.g.
eta (arrow nat nat) f --> x => f x
We get huge terms, and the other rules make
the system non-confluent on pre-terms.
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Encoding eta in Dedukti

The next idea. Extend Dedukti with
typed-directed rewrite rules.

Take inspiration from already existing works:
• Agda’s implementation of eta
• Andromeda 2’s extensionality rules

Or maybe there are still other unexplored options?
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Definitional irrelevance
Agda also supports definitional proof irrelevance 7

for irrelevant functions and elements of Prop:

postulate
P : Prop
f : P → N

P-irrelevant : (x y : P) → f x ≡ f y
P-irrelevant x y = refl

This causes very similar problems to eta for ⊤,
that also requires type-directed conversion to solve.

7In PVS we have a simpler form of proof irrelevance, which can be
encoded in Dedukti.
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Summary
Many features of a dependently typed language can be
encoded in Dedukti directly:

• Defined symbols are mapped to constants.

• Clauses are mapped to rewrite rules.

Other features require some more work:

• Erased constructor parameters need to be reconstructed.

• Universe levels require an equational theory.

Finally, other features we don’t yet know how to encode:

• Eta-equality for record types?

• Definitional proof irrelevance?
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Future work
Like most translators, Agda2Dedukti is a WIP

In the future, we would like to have
• Compilation of clauses to elimination principles
• A conservative encoding of universe

polymorphism
• Adequate and computational encoding of

Agda8

• An encoding of eta-equality and irrelevance
(probably needs to extend Dedukti)

8For details, see Thiago’s talk about Adequate and Computational
Encodings in Dedukti, at FSCD 2022
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