Logique TD n°11

Luc Chabassier chabassier@lsv.fr Amélie Ledein ledein@lsv.fr

Exercise 1: Resolution

The signature is $\mathcal{P} = \{ = (2) \}$, $\mathcal{F} = \{ a(0), b(0), f(1) \}$. The goal of the exercise is to use resolution to prove that every injective function over a set of less than two elements is surjective.

We consider the sequent $A_1, A_2, A_3, A_4, A_5 \vdash B$ where:

$$A_{1} = \forall x. \forall y. (x = y \Rightarrow y = x)$$

$$A_{2} = \forall x. \forall y. \forall z. [(x = y \land y = z) \Rightarrow x = z]$$

$$A_{3} = \forall x. \forall y. (f(x) = f(y) \Rightarrow x = y)$$

$$A_{4} = \forall x.(x = a \lor x = b)$$

$$B = \forall y. \exists x. (f(x) = y)$$

If you have trouble with this exercise, try beginning with Exercise 3 of TD10.

- 1. Compute the clausal forms C_1, \ldots, C_4, C associated to formulas $A_1, \ldots, A_4, \neg B$. In the following we use the symbol c for the symbol introduced in the skolemization step of the procedure over formula $\neg B$.
- 2. Derive $C_5 = \neg(f(x) = y) \lor \neg(c = y)$ from clauses C_1, C_2, C .
- 3. Derive $C_6 = \neg(f(f(x)) = y) \lor \neg(f(c) = y)$ from clauses C_1, C_2, C_3, C .
- 4. Derive $C_7 = \neg(f(x) = a) \lor \neg(f(y) = b)$ from clauses C_4, C_5 .
- 5. Derive $C_8 = \neg (f(c) = b)$.
- 6. Derive $C_9 = f(c) = b$.
- 7. Show that \perp is derivable. Conclude using the correctness of resolution.

Exercise 2: Lifting lemma

Let T be a set of clauses.

Reminder concerning the rules of system R_0 :

 $\frac{P \lor C \quad \neg P \lor C'}{C \lor C'} \text{ IdRes} \qquad \frac{L \lor L \lor C}{L \lor C} \text{ IdFact} \qquad \frac{C}{C\{x \to t\}} \text{ Subst}$

Prove the lifting lemma: if T' is a set of copies of clauses of T and θ a substitution such that:

- no free variable appears in two different clauses of T',
- \perp is derivable from $\theta T'$ in system R_0 ,

then \perp is derivable from T in R.

Exercise 3: Logic programming

Let \mathcal{F}, \mathcal{P} be a signature. We say that a function $h: T(\mathcal{F})^n \longrightarrow T(\mathcal{F})$ is computable by resolution if there exists a set of clauses C written using function symbols in \mathcal{F} and of predicate symbols in $\mathcal{P} \sqcup \{H(n+1)\}$ such that for every *n*-uple of closed terms t_1, \ldots, t_n and every closed term u over signature $\mathcal{F}, R(u)$ is derivable from $C \cup \{\neg H(t_1, \ldots, t_n, x) \lor R(x)\}$ iff $u = h(t_1, \ldots, t_n)$ (R is a fresh predicate symbol, i.e. not in $\mathcal{P} \sqcup \{H(n+1)\}$).

1. We work over signature $\mathcal{F} = \{ 0(0), S(1) \}$ and $\mathcal{P} = \emptyset$. We consider predicate symbol H = Add(3) and set of clauses C:

$$\begin{array}{lll} Add(0,x,x) \\ \neg Add(x,y,z) & \lor & Add(S(x),y,S(z)) \end{array}$$

- (a) Show that R(S(S(0))) is derivable from set of clause C and clause $\neg Add(S(0), S(0), x) \lor R(x)$.
- (b) We write $S^n(0)$ for the closed term $S(\ldots(S(0))\ldots)$ with *n* symbols *S*. Show that addition is computable by resolution using these clauses, where addition is defined over closed terms of \mathcal{F} as $add(S^n(0), S^m(0)) = S^{n+m}(0)$.
- 2. Working over signature $\mathcal{F} = \{ 0(0), S(1) \}$ and $\mathcal{P} = \{ Add(3) \}$, give the set of clauses computing the multiplication of two natural numbers, where multiplication over closed terms is defined by $mul(S^n(0), S^m(0)) = S^{n \times m}(0)$.
- 3. Show that the concatenation of lists and reversal of a list are computable by resolution: give the signature and the associated sets of clauses.

There are many other examples: the usual boolean operators, minimum and maximum of two natural numbers, the function $n \mapsto 2^n$...