Logique TD n°9bis

Luc Chabassier chabassier@lsv.fr Amélie Ledein ledein@lsv.fr

April 5, 2022

1 Constructive proofs

We write $\Gamma \vdash_c A$ if $\Gamma \vdash A$ in classical natural deduction and $\Gamma \vdash_i A$ if $\Gamma \vdash A$ in constructive (the "i" stands for *intuitionistic*).

Exercise 1: Constructive proofs and negations

Prove that $\vdash_i A \Rightarrow \neg \neg A$ and $\vdash_i \neg \neg \neg A \Rightarrow \neg A$. Draw the graph of vertices $\neg^k A$ for $k \in \mathbb{N}$ and of edges implications that are constructively provable. Which edge(s) are added in the classical case?

Exercise 2: Constructive properties

- 1. Prove that $A \vee \neg A$ is not provable in constructive natural deduction for all formulas A.
- 2. Prove that if $\vdash_i \exists x. A$, then there is a term t such that $\vdash_i (x/t)A$.
- 3. Prove that if $\vdash_i \forall x \exists y. A$, then there is a function f from closed terms to terms such that for every term t, $\vdash_i (y/f(t), x/t)A$.
- 4. Prove that the formula $\exists x. (P(x) \Rightarrow \forall y. P(y))$ is not provable in constructive natural deduction.

Exercise 3: Double negation translation

Given a formula A, we define its GÖDEL translation (or double negation translation) by structural induction over A:

- if A is atomic, $\mathcal{G}(A) = \neg \neg A$ $\mathcal{G}(-$
- $\mathcal{G}(\top) = \top$

- $\mathcal{G}(\neg A) = \neg \mathcal{G}(A)$
- $\mathcal{G}(A_1 \wedge A_2) = \mathcal{G}(A_1) \wedge \mathcal{G}(A_2)$
- $\mathcal{G}(\bot) = \bot$ $\mathcal{G}(A_1 \lor A_2) = \neg \neg (\mathcal{G}(A_1) \lor \mathcal{G}(A_2))$

- $\mathcal{G}(A_1 \Rightarrow A_2) = \mathcal{G}(A_1) \Rightarrow \mathcal{G}(A_2)$ $\mathcal{G}(\exists x. A) = \neg \neg \exists x. \mathcal{G}(A)$
- $\mathcal{G}(\forall x. A) = \forall x. \mathcal{G}(A)$

If Γ is a set of formulas, we write $\mathcal{G}(\Gamma)$ the set $\{\mathcal{G}(A) \mid A \in \Gamma\}$. The goal of this exercise is to prove that $\Gamma \vdash_c A$ iff $\mathcal{G}(\Gamma) \vdash_i \mathcal{G}(A)$.

1. Prove that for every formula $A, \vdash_i \neg \neg \mathcal{G}(A) \Rightarrow \mathcal{G}(A)$. You will at least treat the cases of $\neg ; \land ; \exists$.

You can use that $\neg \neg (A \land B) \Rightarrow (\neg \neg A \land \neg \neg B)$ is constructively provable.

- 2. Show that for every formula A, if $\Gamma \vdash_c A$ then $\mathcal{G}(\Gamma) \vdash_i \mathcal{G}(A)$. You will at least treat the cases of: introduction of \wedge and \vee ; elimination of \vee ; RAA.
- 3. Prove that for every formula A, $\vdash_c A \Leftrightarrow \mathcal{G}(A)$.
- 4. Show that for every formula A, if $\mathcal{G}(\Gamma) \vdash_i \mathcal{G}(A)$ then $\Gamma \vdash_c A$.

2 Kripke structures and constructive logic

Let \mathcal{K} be a Kripke model with worlds W and order \leq . Let ϕ be a valuation. We will write $\mathcal{K}, w, \phi \models A$ for $\llbracket \phi \rrbracket_{\phi}^w = 1$. When the context is clear, we may omit the structure and valuation in this notation.

Exercise 4: Kripke structures

In the following, X, Y, Z are constant predicates.

1. Is the structure:

a model of $(\neg Y \land X) \Rightarrow Z$?

- 2. Let \mathcal{K} be a Kripke structure with worlds W and order \leq , and $w \in W$ a world.
 - (a) What does $\mathcal{K}, w \models \neg \neg X$ mean?
 - (b) What does $\mathcal{K}, w \models \neg(\neg X \land \neg Y)$ mean?
- 3. Give Kripke counter-models for the following formulas if they are not provable (if they are provable, no need for a full proof):
 - (a) $X \Rightarrow \neg \neg X$ (b) $\neg \neg X \Rightarrow X$ (c) $\neg X \lor \neg \neg X$ (d) $\neg (X \land Y) \Rightarrow (\neg X \lor \neg Y)$ (e) $(\neg X \lor \neg Y) \Rightarrow \neg (Y \land X)$ (f) $(X \Rightarrow Y) \Rightarrow (\neg X \lor Y)$ (g) $\neg \neg (A \land B) \Leftrightarrow (\neg \neg A \land \neg \neg B)$ (h) $\neg \neg (A \Rightarrow B) \Leftrightarrow (\neg \neg A \Rightarrow \neg \neg B)$

4. Is the Kripke structure

a model of $\exists x. \exists y. x < y \land \neg (\exists z. x < z \land z < y)$?

Exercise 5: Independent connectives

We say that a binary connective \otimes is independent from a set of connectives C is there is no formula A using X and Y and built only with connectives from C such that $\vdash_i (X \otimes Y) \Leftrightarrow A$.

1. Show that if \lor is not independent from $\{\bot, \land, \neg, \Rightarrow\}$, then $\vdash_i \neg \neg (X \lor Y) \Leftrightarrow (\neg \neg X \lor \neg \neg Y)$. *Hint: use Exercise 4, questions 3. (g) and (h).* Conclude.

We consider the Kripke structure \mathcal{K} of worlds $W = \{\omega_1, \omega_2, \omega_3\}$ with $\omega_1 \leq \omega_3, \omega_2 \leq \omega_3$ and $\hat{X}^{\omega_1} = \hat{Y}^{\omega_2} = \hat{X}^{\omega_3} = \hat{Y}^{\omega_3} = 1$ and $\hat{Y}^{\omega_1} = \hat{X}^{\omega_2} = 0$.

Advice: draw the associated Kripke structure

2. Show that for all proposition A containing only X, Y, \bot, \neg, \lor and \Rightarrow , if $\omega_3 \models A$ then $\omega_1 \models A$ or $\omega_2 \models A$. Conclude that \land is independent from $\{\bot, \lor, \neg, \Rightarrow\}$.

Exercise 6: Excluded middle

We denote by \mathcal{P}_0 the set of nullary predicates in our language, which we assume nonempty. Let \mathcal{K} be the Kripke structure of worlds the *partial interpretations*, i.e. the ordered pairs (I, f) where $I \subseteq \mathcal{P}_0$ and $f : I \longrightarrow \{0, 1\}$. For every $X \in \mathcal{P}_0$, $\hat{X}^{(I,f)} = 1$ iff $X \in I$ and f(X) = 1.

The structure \mathcal{K} is ordered by \sqsubseteq , where $(I, f) \sqsubseteq (J, g)$ iff $I \subseteq J$ and for every $X \in I$, f(X) = g(X).

- 1. What does $\mathcal{K}, (I, f) \models \neg X$ mean, where $X \in I$?
- 2. Show that \mathcal{K} is a counter-model to $X \vee \neg X$.
- 3. Give a formula A which is not provable constructively, but which is satisfied by the structure \mathcal{K} .

Additional exercises on constructive logic

Exercise 7:

Let A be a propositional formula, provable in classical logic (a tautology). We define F_2 the ordered set $\omega_1 \leq \omega_2$. We call structure of base F_2 every Kripke structure of underlying ordered set F_2 . We call $\mathsf{LI} + A$ the set of formulas provable when adding to natural deduction the following rule:

$$\vdash (X_1/B_1,\ldots,X_n/B_n)A$$

For example, $\mathsf{LI} + (X \lor \neg X)$ is LC , the set of formulas provable in classical logic.

The goal of this exercise is to prove YANKOV's theorem : for every tautology A, LI + A = LC iff A is not satisfied in a structure of base F_2 .

- 1. Show that if LI + A = LC then A is not satisfied in a structure of base F_2 . *Hint:* you can use the counter-model to $\neg \neg X \Rightarrow X$ found in Exercise 1.
- 2. Let \mathcal{K} be the Kripke structure of underlying set F_2 such that $\hat{X}^{w_2} = 1$ and $\hat{X}^{w_1} = 0$. Assume that A has a single propositional variable X. Show that if A is not satisfied in \mathcal{K} then every structure \mathcal{K}' of underlying set W' satisfying A is such that for every world $w \in W'$, $\hat{X}^w = 0$ implies that there is a world $w' \geq w$ such that for every world $w'' \geq w'$, $\hat{X}^{w''} = 0$.
- 3. Conclude: if A is a formula with a single propositional variable X and \mathcal{K} does not satisfy A, then $A \vdash_i \neg \neg X \Rightarrow X$.
- 4. Let A a proposition of propositional variables X_1, \ldots, X_n . Show that if A is not satisfied by a structure of base F_2 , then there are formulas B_1, \ldots, B_n with one propositional variable X and such that \mathcal{K} does not satisfy $(X_1/B_1, \ldots, X_n/B_n)A$.
- 5. Conclude.
- 6. Show that if A_1, \ldots, A_n are tautologies and $\mathsf{LI} + A_1 \wedge \ldots \wedge A_n = \mathsf{LC}$, then there is $i \in \{1, \ldots, n\}$ such that $\mathsf{LI} + A_i = \mathsf{LC}$.

Exercise 8:

We call Heyting arithmetic the constructive theory of axioms those of Peano arithmetic, i.e. its theorems are all formulas provable in constructive logic from the Peano axioms. We write $HA \vdash_i A$ when A is a theorem of Heyting arithmetic.

1. Show that equality is decidable in Heyting arithmetic:

$$HA \vdash_i \forall x. \forall y. (x = y \lor x \neq y)$$

Hint: use induction and $\forall x.(x = 0 \lor \exists y. x = S(y)).$

- 2. The goal is to show that Heyting arithmetic has the witness property, i.e. if $HA \vdash_i \exists x. A$, then there is $n \in \mathbb{N}$ such that $HA \vdash_i (x/\underline{n})A$, where \underline{n} is the term $S^n(0) = S(\dots(S(0)))$. By contradiction, let us assume that for every natural number $n, HA \nvDash_i (x/\underline{n})A$. Then, for every n, there is a Kripke structure \mathcal{K}_n such that \mathcal{K}_n satisfies all Peano axioms but not $(x/\underline{n})A$. We built the structure $\mathcal{K} = \{\omega\} \sqcup \bigsqcup_{n \in \mathbb{N}} \mathcal{K}_n$ with smallest element ω , in which $\mathcal{D}_{\omega} = \mathbb{N}, S$ is interpreted as the successor, 0 as 0, + as the addition, \times as the multiplication and = as the equality.
 - (a) Show that \mathcal{K} is a Kripke structure.
 - (b) Show that $\mathcal{K}, \omega \not\models \exists x. A.$
 - (c) Show that \mathcal{K} satisfies all Peano axioms (you can restrict to the induction scheme).
- 3. We want to show that if $HA \vdash_i A \lor B$ then $HA \vdash_i A$ or $HA \vdash_i B$.

(a) Show that for all formulas A and B not containing the variable x,

 $HA \vdash_i (A \lor B) \Leftrightarrow \exists x. (x = 0 \Rightarrow A) \land (x \neq 0 \Rightarrow B)$

(b) Conclude.

Exercise 9: A topological semantic

We restrict ourselves to the propositional fragment of constructive logic, i.e. we consider only quantifier-free formulas. We give a first semantic to this logic, the topological semantics given by TARSKI.

A topological space is defined by a set E and a set $\mathcal{O} \subseteq \mathfrak{P}(E)$ such that:

- the empty set \emptyset is in \mathcal{O}
- E is in \mathcal{O}
- if $(U_i)_{i \in I}$ is a family of \mathcal{O} , then $\bigcup_{i \in I} U_i \in \mathcal{O}$
- if $(U_i)_{i \in I}$ is a finite family of \mathcal{O} , $\bigcap_{i \in I} U_i \in \mathcal{O}$

Elements of \mathcal{O} are said to be *open*. Given a subset $W \subseteq E$, we define:

- $c(W) = E \setminus W$, the complement of W
- i(W), the largest open set included in W, called the *interior* of W

A topological interpretation is defined by a topological space $\langle E, \mathcal{O} \rangle$ and a function σ from variables to \mathcal{O} . This interpretation is extended to all formulas A by structural induction:

- $\llbracket \top \rrbracket = E$ $\llbracket A_1 \lor A_2 \rrbracket = \llbracket A_1 \rrbracket \cup \llbracket A_2 \rrbracket$
- $\llbracket \bot \rrbracket = \varnothing$
- $\llbracket X \rrbracket = \sigma(X)$

- $\llbracket \neg A \rrbracket = i(c(\llbracket A \rrbracket))$
- $\llbracket A_1 \wedge A_2 \rrbracket = \llbracket A_1 \rrbracket \cap \llbracket A_2 \rrbracket$ $\llbracket A_1 \Rightarrow A_2 \rrbracket = i(c(\llbracket A_1 \rrbracket) \cup \llbracket A_2 \rrbracket)$

Note that $\llbracket A \rrbracket$ is open. We call $\llbracket \Gamma \rrbracket$ the open set $\bigcap_{A \in \Gamma} \llbracket A \rrbracket$.

- 1. Prove that if $\Gamma \vdash A$ is provable in constructive logic, then $\llbracket \Gamma \rrbracket \subseteq \llbracket A \rrbracket$ for every topological interpretation.
- 2. Give formulas that are not provable in constructive logic (excluded-middle, de Morgan formulas,...). You can use \mathbb{R} with its usual topology (generated by open intervals).

Remark: the converse to question 1 is true, but harder to prove.