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Such properties are (directly or indirectly) reflected in the EU Al Act.

explainable Decisions are human-comprehensible. ethical Aligned with human values, rights, and societal norms.

interpretable The functioning of a model can be understood. trustworthy Consistently reliable, safe, and worthy of confidence.

transparent Internals and design are accessible. accountable Responsibility is clear and traceable for system outcomes.
verifiable Formally provable against specifications. human-centric Puts people in control and respects their rights.
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Small perturbations can fool medical Al in high-stakes applications.
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Source: Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS: Adversarial attacks on medical

machine learning: Emerging vulnerabilities demand new conversations. Science. 2019;364(6439):128—-130.
https://www.science.org/doi/10.1126/science.aaw4399
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explainable Decisions are human-comprehensible. ethical Aligned with human values, rights, and societal norms.
interpretable The functioning of a model can be understood. human-centric Puts people in control and respects their rights.
verifiable Formally provable against specifications. trustworthy Consistently reliable, safe, and worthy of confidence.
transparent Internals, design, and limitations are accessible. accountable Responsibility is clear and traceable for system outcomes.
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what is computed? how is it computed? why does it matter?

classitication of (Al) systems

explainable Decisions are human-comprehensible. ethical Aligned with human values, rights, and societal norms.

interpretable The functioning of a model can be understood. human-centric Puts people in control and respects their rights.
verifiable Formally provable against specifications. trustworthy Consistently reliable, safe, and worthy of confidence.

transparent Internals, design, and limitations are accessible. accountable Responsibility is clear and traceable for system outcomes.
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Such properties are (directly or indirectly) retlected in the EU Al Act.

explainable Decisions are human-comprehensible. ethical Aligned with human values, rights, and societal norms.
interpretable The functioning of a model can be understood. human-centric Puts people in control and respects their rights.
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behavioral/functional structural/epistemic normative

what is computed? how is it computed? why does it matter?

classitication of (Al) systems

Such properties are (directly or indirectly) retlected in the EU Al Act.

- Fair: "[...] data sets shall be [...] sufficiently representative.” (Article 10(3))
- Interpretable: "[...] operation is sufficiently transparent [...]" (Article 13(1))

- Human-centric: "[...] be eftectively overseen by natural persons [...]" (Article 14(1))
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behavioral/functional structural/epistemic normative

what is computed? how is it computed? why does it matter?

classitication of (Al) systems

Such properties are (directly or indirectly) retlected in the EU Al Act.

- Provide technical criteria and methods.
- It satistied/applied sucesstully, creates presumption of compliance.

- But: Even standards rarely contain formal definitions.
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EU Artiticial Intelligence Act

Disclaimer: This is not legal advice.
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When does the Al Act apply?
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Article 1 [...] promote the uptake of human-centric and trustworthy artiticial intelligence (Al), while
Article 2 ensuring a high level of protection of health, satety, fundamental rights [...]
Article 3

Article 4
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Article 1 (1) Al system means
Article 2

Article 3

Article 4 (2) risk means [...]

(3) provider means [...]



Al systems

Article 1 . . . . .
(1) Al system means a machine-based system that is designed to operate with varying
Article 2 levels of autonomy and that may exhibit adaptiveness after deployment, and that [...]
infers, from the input it receives, how to generate outputs such as predictions, content,
Article 3 recommendations, or decisions that can influence physical or virtual environments; [...]
Article 4 (2) risk means [...]

(3) provider means [...]



Al systems

Article 1
Article 2
Article 3

Article 4

Recital 1

Recital 12

Recital 97

(1) Al system means a machine-based system that is designed to operate with varying
levels of autonomy and that may exhibit adaptiveness after deployment, and that [...]
infers, from the input it receives, how to generate outputs such as predictions, content,
recommendations, or decisions that can influence physical or virtual environments; [...]

(2) risk means [...]

(3) provider means [...]

[...] the definition should be based on key characteristics ot Al systems that distinguish it from

simpler traditional software systems or programming approaches and should not cover
systems that are based on the rules defined solely by natural persons to automatically execute

operations. A key characteristic of Al systems is their capability to infer. [...]




Al systems

Article 1
Article 2
Article 3

Article 4

Recital 1

Recital 12

Recital 97

(1) Al system means a machine-based system that is designed to operate with varying
levels of autonomy and that may exhibit adaptiveness after deployment, and that [...]
infers, from the input it receives, how to generate outputs such as predictions, content,
recommendations, or decisions that can influence physical or virtual environments; [...]

(2) risk means [...]

(3) provider means [...]

The techniques that enable interence while building an Al system include machine learning
approaches [...], and logic- and knowledge-based approaches [...]. The capacity ot an Al

system to infer transcends basic data processing by enabling learning, reasoning or
modelling. [...]
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Al system capability to infer

traditional system fully programmed
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(1) Al system means a machine-based system that is designed to operate with varying
levels of autonomy and that may exhibit adaptiveness after deployment, and that [...]
infers, from the input it receives, how to generate outputs such as predictions, content,
recommendations, or decisions that can influence physical or virtual environments; [...]

(2) risk means [...]

(3) provider means [...]

Al system capability to infer
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Q
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Article 1
Article 2
Article 3

Article 4

if-then-else logic (e.g., max)

(63) general-purpose Al model means an Al model, including where such an Al model is

trained with a large amount of data using self-supervision at scale, that displays

significant generality and is capable of competently pertorming a wide range of distinct

tasks regardless of the way the model is placed on the market and t

nat can be

integrated into a variety of downstream systems or applications, [....

Al system capability to infer

foundation model

multi-task pretrained model

Q

o neu
decision tree

ral network

trained on data, generalizes, infers @

trained on data, generalizes
infers non-anticipated conclusions

learned Mealy machine

fixed, human-defined rules, behave exactly as programmed

traditional system fully programmed

trained on data (e.g., Angluin L*), generalizes, infers



Al systems

Article 1 (63) general-purpose Al model means an Al model, including where such an Al model is

Article 2 trained with a large amount of data using selt-supervision at scale, that displays
significant generality and is capable of competently performing a wide range of distinct

Article 3 tasks regardless of the way the model is placed on the market and that can be
integrated into a variety of downstream systems or applications, [....

Article 4

definition a computer scientist would write.

| - Detinitions are deliberately closer to common sense than to

- Arguably biased towards machine learning systems.



When does the Al Act not apply?

élé Al Act, Article 2 (Scope)

- Military defence and national security Al system e Article 2 (3)

- Personal, non-professional use UL Article 2 (10)

- R&D and testing (non-commercial) UL Article 2 (6)

- Open-source/free Al components L Article 2 (12)



When does the Al Act not apply?

Qj@ Al Act, Article 2 (Scope)

- Military defence and national security Al system e Article 2 (3)

- Personal, non-professional use UL Article 2 (10)

- R&D and testing (non-commercial) UL Article 2 (6)

- Open-source/free Al components L Article 2 (12)

Al Act includes specific measures to support innovation (e.g., startups):

- Priority access to regulatory sandboxes to test high-risk Al systems.

- Some documentation obligations are proportionally reduced.
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To whom does the Al Act apply?

ég@ Al Act, Article 2 (Scope)

providers deployers

product
manufacturers

providers <

deployers ¢

Al system

compliant
tested
documented

responsible use
human oversight

| report incidents

place on market

put into service

standalone (e.g., API)
- embeddBd
» integratead

providers  deployers

product
manufacturers




How does the Al Act apply?

Article 1
Article 2
Article 3

Article 4

(1) Al system means a machine-based system that is designed to operate with varying
levels of autonomy and that may exhibit adaptiveness after deployment, and that [...]
infers, from the input it receives, how to generate outputs such as predictions, content,
recommendations, or decisions that can influence physical or virtual environments; [...]

(2) risk means means the combination ot the probability of an occurrence of harm and the
severity of that harm;

(3) provider means means a natural or legal person, public authority, agency or other body
that develops an Al system or a general-purpose Al model or that has an Al system or a
general-purpose Al model developed and places it on the market or puts the Al system
into service under its own name or trademark, whether for payment or free of charge;
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How does the Al Act apply?

@ Al Act, Article 5

risk assessment

Al system

unacceptable risk

Y
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minimal risk



How does the Al Act apply?

@ Al Act, Article 5

@ banned under Al Act

- manipulation

Al system risk assessment - exploitation

unacceptable risk social scoring

unverified predictive policing

biometric mass surveillance

minimal risk

Y
-




How does the Al Act apply?

@ Al Act, Annex | (safety component) & Annex |l

strict obligations apply

- health care

(e.g., Al diagnosis, medical device control)

risk assessment

Al system

- education
unacceptable riSk (e.g., automated grading, admission decisions)

- employment and HR
(e.g., CV screening, hiring recommendations)
- law enforcement
(e.g., biometric identification, crime analytics)
minimal risk

- critical infrastructure
(e.g., energy grid control, water supply)

ol
=)

- Justice

(e.g., Al support for judges, voter influence)

- migration and border control

(e.g., visa application assessment, lie detection)

(exceptions if task is "narrow")



How does the Al Act apply?

@ Al Act, Annex | (safety component) & Annex |l

risk assessment

» unacceptable risk

Al system

minimal risk I

GPAI models may trigger systemic risk obligations:
powerful & widespread use poses risk for society

strict obligations apply

health care

(e.g., Al diagnosis, medical device control)

education

(e.g., automated grading, admission decisions)

employment and HR

(e.g., CV screening, hiring recommendations)

law enforcement

(e.g., biometric identification, crime analytics)

critical infrastructure
(e.g., energy grid control, water supply)

justice

(e.g., Al support for judges, voter influence)

migration and border control

(e.g., visa application assessment, lie detection)

(exceptions if task is "narrow")
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Al Act

GDPR MDR

Standards

CEN/CENELEC,
SO, ICE, ...

Right to be forgotten

The data subject shall have the right to obtain from the

controller the erasure of personal data concerning him
or her without undue delay and the controller shall

have the obligation to erase personal data without
undue delay [...]

LIL GDPR, Article 17(1)
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UL 6pPR Article 22



Al Act in the regulation landscape

Right to be forgotten
The data subject shall have the right to obtain from the

controller the erasure of personal data concerning him
Al Act or her without undue delay and the controller shall
have the obligation to erase personal data without
undue delay [...]
UL GDPR, Article 17(1)
GDPR MDR
Challenge decisions
Standards [...] the right not to be subject to a decision based
CEN/CENELEC solely on automated processing |...]
SO, ICE, ...

...] at least the right to obtain human intervention on

the part of the controller, to express his or her point of

Compliance with European harmonized standards view and to contest the decision.
orovides a legal presumption of conformity with the regulation.

UL 6pPR Article 22



Obligations for high-risk systems and GPAI models

Article description related attributes

Article 5 Prohibited Al Practices ethical human-centric

Article 9 Lifecycle Risk Management safe robust trustworthy
Article 10 Data Quality and Fairness fair ethical trustworthy
Article 11 Technical Documentation transparent verifiable accountable
Article 13 ransparency and Explainability explainable interpretable transparent
Article 14 Human Oversight human-centric trustworthy accountable
Article 15 Accuracy and Robustness safe robust trustworthy
Article 24 Conformity Assessment verifiable accountable
Article 55 GPAI Obligations trustworthy ethical human-centric
Article 72 Post-Market Monitoring accountable trustworthy robust




Obligations for high-risk Al systems

Article 10 Data and Data Governance

(3) Training, validation and testing data sets shall be relevant, sufficiently representative, and
to the best extent possible, free of errors and complete in view of the intended purpose.
They shall have the appropriate statistical properties, including, where applicable, as
regards the persons or groups of persons in relation to whom the high-risk Al system is

intended to be used. [...]

fair ethical trustworthy

ISO/IEC TR 24027:2021 — Bias in Al Systems
- Detect bias in data (e.g., sampling)
- Mitigate bias in data (e.g., re-sampling, re-weighting)

- Bias detection metrics for models (e.g., statistical parity)




Obligations for high-risk Al systems

Transparency and Provision of Information to Deployers

(1) High-risk Al systems shall be designed and developed in such a way as to ensure that
their operation is sufficiently transparent to enable deployers to interpret a system’s
Article 13 output and use it appropriately. [...]

explainable interpretable transparent

ISO/IEC TR 24028:2020 — Trustworthiness in Al

- Local surrogate models for per-decision explanations (e.g., LIME)

- Feature attribution techniques (e.g., SHAP-like methods)

- Explanation methods should be tailored to the user’s role and technical background,
ensuring that outputs are interpretable and actionable in context



More formal-methods opportunities

Human Oversight L Al Act, Article 14

[Natural persons] shall be enabled, as appropriate ana
oroportionate [...] to intervene [...]

Process Mining

Build process models and verity human oversight.

[Pery, Rafiei, Simon, van der Aalst: Trustworthy Artificial Intelligence and Process
Mining: Challenges and Opportunities. ICPM Workshops 2021: 395-407]

Transparency 4 Al Act, Article 13

Post-Market Monitoring L Al Act, Article 72

Providers shall establish and document a post-market
monitoring system [...]

Runtime Monitoring

Monitor log files at runtime to detect deviations.

[Colombo, Pace, Seychell: Runtime Verification and Al: Addressing Pragmatic
Regulatory Challenges. AlSolLA 2024: 225-241]

[...] enable deployers to interpret a system’s output and use it appropriately. [...]

Automata Learning

Learn automata as surrogate models of RNNs.

[Bollig, Leucker, Neider: A Survey of Model Learning Techniques for Recurrent
Neural Networks. Lecture Notes in Computer Science 13560, 2022: 81-97]

Logical Reasoning

Qutsource logical reasoning in LLMs.

[Liu, Xu, Huang, Wang, Wang, Yang, Li: Logic-of-Thought: Injecting Logic into
Contexts for Full Reasoning in Large Language Models. CoRR abs/2409.17539 (2024)]



Conclusion: The Al Act as a work in progress

- The Al Act requires high-risk Al systems to be fair, robust, and explainable.
- Logic and formal methods can help make these goals precise and veritiable.

- We are in a transition phase: The legal framework is in place, but the technical
standards are still being developed.

- QGreat opportunity for formal-methods researchers to contribute.
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