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Preface

These are the notes of a lecture series given in the academic year 2023/2024 as part of
the MPRI 2.8 course “Advanced Techniques of Verification”.

The neural-network drawings presented in Sections 3.1 and 3.2 are adopted from Izaak
Neutelings [38].

Any comments, suggestions, errata, etc. are very welcome. Please send them by email to
**ll**@lmf.cnrs.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
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Chapter 1

Introduction

AI-based systems, particularly neural networks, are playing an important role in our daily
lives. Neural networks are used for image and speech recognition, in autonomous cars,
medical diagnostics, anomaly detection, financial and weather forecasting, etc. As they
are increasingly used in safety-critical applications (e.g., in autonomous cars or medical
diagnostics), there are of course high safety requirements for AI-based components. How-
ever, neural networks are black-box models with a rather intransparent structure where
small changes can have significant effects. Another reason to ask: Can we give formal
guarantees for a given neural network? Or, in other work, can we verify a neural network?

Formal methods are well-suited to provide answers here. They include techniques that
first mathematically model systems and requirements specifications and then algorith-
mically determine the compatibility of system and specification. Formal methods are
often associated with verifying systems written in some programming language. Now,
neural networks are not a program in this sense (they are written or trained by a ma-
chine). However, like ”programs,” they follow a precise sequence of instructions and are,
in principle, amenable to formal verification.

While the specification of programs is often natural (think of terms like termination or
deadlock freedom), it may appear unclear what correctness means for neural networks.
For example, when is an image classifier that is supposed to classify animals correct?
Probably, when it recognizes a dog as such, a cat as a cat, and so on. But to apply
formal methods, we must formalize correctness in a precise mathematical sense. Now,
to write down when a picture represents a dog and when a cat, is naturally incredibly
challenging. And if we could, we probably would not need a neural network anymore.
But there are many other desirable properties that we can formalize. For example, when
an image classifier is robust, that is, when small changes in a given image do not entirely
change the classification. Or when a neural network is fair, that is, when it does not take
sensitive features into account in order to assign credits or jobs.

Neural networks often serve as building blocks of larger systems and may act as a con-
troler, i.e., choose an action to be performed in a given state. We are then in the setting
of reactive systems. Verifying them is particularly challenging, as specifications usually
combine temporal properties with arithmetic expressions such a “whenever a system vari-
able x reaches a critical threshold γ, i.e., x ≥ γ, then there is a time point in the near
future when it falls back below the threshold, i.e., x < γ.
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CHAPTER 1. INTRODUCTION

Applying formal methods to neural networks is an exciting new field with many interesting
developments. We refer here to various survey papers and lecture notes [3, 10, 31, 54, 57]
that we recommend for further reading. We do not aim to provide optimal algorithms.
The goal of this lecture is to give a sense of what verification of a neural network means
and to explore its theoretical possibilities and limitations. However, one should remember
that scalability is an essential criterion for verification methods for neural networks, which
can have millions of parameters.
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Chapter 2

Preliminaries

In this chapter, we recall some standard concepts from linear algebra and automata the-
ory. Linear algebra allows one to describe neural networks in a compact, elegant manner.
We will use automata-based techniques (among others) to address their verification.

2.1 Sets, Functions, Vectors, Matrices

Sets and Functions. By N = {0, 1, 2, . . .}, we denote the set of natural numbers, and
by N+ = {1, 2, . . . , } the set of positive natural numbers. The set of real numbers is
denoted R, and the set of rational numbers by Q. As part of an input to a decision
problem or of an object like a matrix, we implicitly assume that a rational number is
effectively given in terms of binary encodings of its numerator and denominator. For
x, y ∈ R, we let [x, y] = {z ∈ R | x ≤ z ≤ y}, (x, y] = {z ∈ R | x < z ≤ y}, and so forth.

For functions f : A→ B and g : B → C, we denote by g ◦ f : A→ C the composition of
f and g, defined by (g ◦ f)(a) = g(f(a)) for all a ∈ A. Moreover, given A′ ⊆ A, we let
f
∣∣
A′

: A′ → B denote the restriction of f to the domain A′.

For a finite set A, the number of elements in A is denoted by |A|.

Vectors and Matrices. Let m,n ∈ N+. For a vector x ∈ Rn and i ∈ {1, . . . , n}, we
let xi refer to the i-th component of x, i.e., x = (x1, . . . , xn)>. If n = 1, we may simply
write x for x. Similarly, y = (y1, . . . , yn)>, x′ = (x′1, . . . , x

′
n)>, and so on. Moreover, for

a matrix A ∈ Rn×m, i ∈ {1, . . . , n}, and j ∈ {1, . . . ,m}, we let ai,j refer to the element
of A in the i-th row and j-th column, i.e.,

A =




a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,m


 ∈ Rm×n .

Similarly, A′ =
(
a′i,j
)
i,j

and so forth.

For f = (f1, . . . , fm) with f1, . . . , fm : R→ R and x ∈ Rm, we define

f(x) = (f1(x1), . . . , fm(xm))> ∈ Rm .
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CHAPTER 2. PRELIMINARIES

The vertical concatenation of matrices A ∈ Rm×n and B ∈ Rk×n is defined by A ��

B = C ∈ R(m+k)×n where ci,j = ai,j for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, and
ci,j = bi,j for all i ∈ {m+ 1, . . . ,m+ k} and j ∈ {1, . . . , n}. The horizontal concatenation
of A ∈ Rm×n and B ∈ Rm×k is defined accordingly by A �� B = C ∈ Rm×(n+k) where
ci,j = ai,j for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, and ci,j = bi,j for all i ∈ {1, . . . ,m} and
j ∈ {n+1, . . . , n+k}. The special case of vectors is defined analogously. In particular, the
vertical concatenation of x ∈ Rm and y ∈ Rn is x �� y = (x1, . . . , xm, y1, . . . , yn)> ∈ Rm+n.

For a given m ∈ N+ (which we suppose to be clear from the context), we let

argmax :

{
Rm → 2{1,...,m}

x 7→ {i ∈ {1, . . . ,m} | xi = max(x)} .

For m ∈ N+, the set of permutations π : {1, . . . ,m} → {1, . . . ,m} is denoted Sm. We
extend π to π : Rm → Rm letting π(x) = (xπ(1), . . . , xπ(m)).

Below we define two properties that play an important rule in the realm of neural net-
works:

Definition 2.1: Permutation Equivariance and Invariance

Let m ∈ N+ and A be a set.

– A function f : Rm → A is called permutation invariant if, for all x ∈ Rm and
π ∈ Sm, we have f(x) = f(π(x)).

– A function f : Rm → Rm is called permutation equivariant if, for all x ∈ Rm

and π ∈ Sm, we have f(π(x)) = π(f(x)).

2.2 Languages and Büchi Automata

Automata are a useful tool in verification and for deciding arithmetic theories such as
Presburger arithmetic and linear real arithmetic [20]. In this course, we will need to
decide linear real arithmetic and, to do so, rely on Büchi automata, which are devices
that run over infinite words (or strings). Later on, these infinite words will represent real
numbers.

An alphabet is a nonempty set (possibly infinite). Let Σ be an alphabet. A finite word
over Σ of length n ∈ N is a finite sequence w = u1 . . . un with u1, . . . , un ∈ Σ. We denote
the length n of w by |w|. If n = 0, then w is the empty word, denoted by ε. An infinite
word over Σ is a countably infinite sequence w = u1u2u3 . . . with u1, u2, . . . ∈ Σ. The set
of finite words over Σ is denoted by Σ∗, the set of nonempty finite words over Σ by Σ+

(i.e., Σ+ = Σ∗ \ {ε}), and the set of infinite words by Σω.

We will often deal with mappings of the form δ : Q × Σ → Q where Q is a (possibly
infinite) set. This mapping can be inductively extended to δ̂ : Q × Σ∗ → Q letting
δ̂(q, ε) = q and, for w ∈ Σ∗ and u ∈ Σ, δ̂(q, w · u) = δ(δ̂(q, w), u). Abusing notation, we
usually still write δ instead of δ̂.

In the remainder of this section, we consider finite alphabets.
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CHAPTER 2. PRELIMINARIES

Definition 2.2: Büchi Automaton

Let Σ be a finite alphabet. A Büchi automaton over Σ is a tuple A = (Q,∆, ι, F )
where

– Q is a finite set of states,

– ∆ ⊆ Q× Σ×Q is the set of transitions

– ι ∈ Q is the initial state, and

– F ⊆ Q is the set of final states.

Büchi automaton A recognizes a language L(A) ⊆ Σω as follows. A run of A is an
infinite sequence ρ = q0u1q1u2q2 . . . ∈ Q(ΣQ)ω such that q0 = ι and, for all i ∈ N+,
(qi−1, ui, qi) ∈ ∆. The label of ρ is defined as label(ρ) = u1u2u3 . . . ∈ Σω. Run ρ is called
accepting if it sees some final state infinitely often, i.e., the set {i ∈ N | qi ∈ F} is infinite.
Finally, the language recognized by A is defined by

L(A) = {label(ρ) | ρ is an accepting run of A} ⊆ Σω .

Example 2.1:

The figure below depicts a Büchi automaton A = (Q,∆, ι, F ) over the alphabet
Σ = {0, 1}. We have Q = {q0, q1}, ι = q0, and F = {q1}. The set of transitions ∆
includes (q0, 0, q0), (q0, 1, q1), etc. The language L(A) is the set of words from Σω

in which letter 1 occurs infinitely often.

0

1

q0 q1

0 1

q2q1

α α

β

β

α

α

1

3

2

3

1

3

2

3

Büchi automata enjoy several useful closure and decidability properties:

Theorem 2.1: Closure Properties of Büchi Automata

Let Σ be a finite alphabet and let A,A1,A2 be Büchi automata over Σ. We can
effectively construct a Büchi automaton

(a) A1 ∪ A2 over Σ such that L(A1 ∪ A2) = L(A1) ∪ L(A2);

(b) A1 ∩ A2 over Σ such that L(A1 ∩ A2) = L(A1) ∩ L(A2);

(c) A over Σ such that L(A) = Σω \ L(A).

Theorem 2.2: Büchi Automata Emptiness

The following problem is decidable:

Input: A finite alphabet Σ and a Büchi automaton over Σ.
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CHAPTER 2. PRELIMINARIES

Question: Is L(A) nonempty?

The complexity is linear in the number of states and transitions.

For more background on languages and automata, we refer the reader to [52].
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Chapter 3

Feed-Forward Neural Networks

In this chapter, we define feed-forward neural networks and their verification problem.
We also present a specification language for neural networks. It is based on linear real
arithmetic, which encompasses, as we will see, many pertinent properties of neural net-
works.

3.1 Definition of Neural Networks

A neural network is a stack of layers. Every layer transforms an input vector into an
output vector. The more layers we have, the deeper is the network. Technically, deep
learning starts when there are at least two layers. A layer and its computation are
depicted in Figure 3.1. It consists of n input nodes and m output nodes, and it maps an
input vector x = (x1, . . . , xm)> ∈ Rm to an output vector y = (y1, . . . , yn)> ∈ Rn. Here,
intermediate values zi are computed as a linear combination bi +

∑
j ai,j · xj. Thus, the

transformation induced by a layer can be written in terms of matrix multiplications.

x1

x2

x3

x4

xm

zn

z3

z2

z1

a1,1a1,1

a1,2a1,2

a1,3a1,3

a1,4a1,4

a1,ma1,m

...

...

+b1




z1

z2
...
zn


 =




a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m
...

...
. . .

...
an,1 an,2 . . . an,m







x1

x2
...
xm


+




b1

b2
...
bn




z = A · x + b

y = f(z)

Figure 3.1: A neural network layer with activation function f : Rn → Rn
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CHAPTER 3. FEED-FORWARD NEURAL NETWORKS

input hidden layers

output
layers

Figure 3.2: Structure of a neural network with 4 layers (+ 1 input layer)

Definition 3.1: Layer

Let m,n ∈ N+. A feed-forward layer with input dimension m and output dimension
n is a triple L = (A,b, f) where A ∈ Qn×m is the weight matrix, b ∈ Qn is the
bias vector, and f : Rn → Rn is the activation function.

We let in(L ) = m denote the input dimension of L . Moreover, out(L ) = n is the output
dimension, which is usually referred to as the number of neurons of L . In other words,
the weights of the i-th layer are given by the i-th row of A. We also let dim(L ) = (m,n)
(note the difference from the dimension of the matrix A. Layer L defines the function

JL K :

{
Rin(L ) → Rout(L )

x 7→ f(A · x + b) .

Let us turn to neural networks. A (feed-forward) neural network is a sequence of feed-
forward layers such that neighboring layers have compatible input/output dimensions.
The idea is that the output of one layer is the input to the next layer. Thus, the function
defined by a neural network is the composition of the functions defined by its layers.
The neural network illustrated in Figure 3.2 consists of 4 layers (we omit weights and
activation functions).

Definition 3.2: Feed-forward Neural Network

A feed-forward neural network is a sequence N = (L (1), . . . ,L (`)) of layers L (k) =
(A(k),b(k), f (k)) such that out(L (k)) = in(L (k+1)) for all k ∈ {1, . . . , `− 1}.

As, in this, chapter, we only talk about feed-forward neural networks (rather than recur-
rent neural networks or graph neural networks), we just say neural network.

Note that, in the literature, the number of layers usually considers the collection of
input values as a separate layer, This indeed makes sense when looking at the graph
representation of a neural network (cf. Example 3.1). Thus, while N = (L (1), . . . ,L (`))
has ` layers, the “graph representation” exhibits `+ 1 layers.
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CHAPTER 3. FEED-FORWARD NEURAL NETWORKS

Similarly to a layer, in(N ) = in(L (1)) is the input dimension, and out(N ) = out(L (`))
the output dimension of N . In addition, we let dim(N ) = (in(N ), out(N )). The neural
network computes JN K : Rin(N ) → Rout(N ) defined as the function composition

JN K = JL (`)K ◦ . . . ◦ JL (1)K .

We will switch between a graph representation and matrix view at discretion. Moreover,
we will consider Rm and Rn as sets of vectors or sets of tuples whatever is more con-
venient. In particular, we may simply write JN K(x1, . . . , xm) = (y1, . . . , yn) instead of
JN K((x1, . . . , xm)>) = ((y1, . . . , yn)>).

Two neural networks N1 = (L (1)
1 , . . . ,L (`1)

1 ) and N2 = (L (1)
2 , . . . ,L (`2)

2 ) such that
out(N1) = in(N2) can be concatenated, and we let

N1 · N2 = (L (1)
1 , . . . ,L (`1)

1 ,L (1)
2 , . . . ,L (`2)

2 ) .

Note that dim(N1 · N2) = (in(N1), out(N2)).

Activation Functions. There are different types of activation functions used in prac-
tice. They usually depend on the concrete task at hand (e.g., classification vs. regression)
and the type of the layer (internal vs. output layer), but also on training-related issues
such as the choice of the loss function (a precise discussion is, however, not in the scope
of this course). Often, a layer L = (A,b, f) has a local activation function f in the
following sense: There is g : R→ R such that, for all x ∈ Rn and i ∈ {1, . . . , n}, we have
f(x) = (g(x1), . . . , g(xn))>. The definitions and graphs of some common local activation
functions are given in Figure 3.3 (the activation function NLReLU was recently studied
in [33]). Their extensions to Rn → Rn are denoted in the same way (σ, tanh, and ReLU),
where we always assume that n is clear from the context. Another example of a local
activation function is the identity function, which we denote by id : Rn → Rn (again
assuming that n is understood). An instance of a global activation function is

softmax :




Rn → Rn

x 7→ (y1, . . . , yn) where yi =
exi∑n
j=1 e

xj

It “squeezes” or normalizes a vector so that it represents a probability distribution. It is,
therefore, frequently used in classification tasks.

An important class of neural network employs ReLU activation functions (or the identity
function, mostly in output layers):

Definition 3.3: Standard and ReLU Neural Network

A neural network N = (L (1), . . . ,L (`)) with layers L (k) = (A(k),b(k), f (k)) is
called a ReLU neural network if, for all k ∈ {1, . . . , `}, we have f (k) ∈ {id,ReLU}.

Classification vs. Regression. As far as feed-forward neural networks are concerned,
two predominant classes of tasks are classification and regression. In a regression problem,
the goal is to predict a continuous, numerical value or quantity. In other words, one is

12



CHAPTER 3. FEED-FORWARD NEURAL NETWORKS

−3 −2 −1 1 2 3

−1

1

2

3

x

g(x)ReLU

NLReLU

sigmoid (σ)

tanh

ReLU(x) = max(0, x)

NLReLU(x) = ln(1 + ReLU(x))

σ(x) =
1

1 + e−x

tanh(x) =
ex − e−x
ex + e−x

Figure 3.3: (Local) activation functions given by g : R→ R

trying to find a relationship between input features and the output, which is a real-valued
number. Corresponding tasks can be price prediction, weather forecast, or estimating
health indicators. In a classification problem, objects are assigned a category or label
among m labels. In that case, frequently, the last layer has output dimension n and uses
a softmax activation function, which works well with the categorical cross-entropy loss
function during training. When N acts as a classifier with JN K : Rm → Rn, element
x ∈ Rn is assigned category min(argmax(JN K(x))) ∈ {1, . . . , n}. In the case of binary
classification (i.e., in presence of two classes to choose from), it is also common to have
n = 1 and σ as activation function in the last layer, and to choose one class or the other
depending on whether JN K(x) ∈ [0, 1] exceeds a given threshold γ ∈ [0, 1]. In the case of
binary classification, possible applications are object detection, fraud detection, medical
diagnostics, etc.

Example 3.1: Neural Networks

Below are two simple neural networks:

1

1

−1

1

−1

0

1

0

−1

(a)

x1

x2

ReLU

ReLU

ReLU

id

0.24

0.84

0.97

0.33

0.20

−0.10

1.13

1.03

−1.03

(b)

x1

x2

ReLU

ReLU

ReLU

id

+0.07

(a) We have N = (L (1),L (2)) where L (k) = (A(k),b(k), f (k)). Function f (1) is
the ReLU activation function and f (2) is the identity. Moreover, we have
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CHAPTER 3. FEED-FORWARD NEURAL NETWORKS

b(1) = (0, 0, 0)>, b(2) = (0),

A(1) =




1 −1
0 1
0 −1


 ∈ R3×2 , and A(2) =

(
1 1 −1

)
∈ R1×3 .

Note that N computes the maximum function, i.e., JN K(x1, x2) =
max(x1, x2) = max(x1 − x2, 0) + x2 for all (x1, x2) ∈ R2.

(b) This neural network has the same structure and activation functions as in
(a), but different weights: We have b(1) = (0, 0, 0)>, b(2) = (0.07),

A(1) =




0.33 0.2
−0.1 1.13

1.03 −1.03


 ∈ R3×2 , and A(2) =

(
0.24 0.84 0.97

)
∈ R1×3 .

It is, however, less clear what N computes. For example, we have
JN K(3, 2) = 3.049, JN K(4, 9) = 9.026, and JN K(4, 93) = 92.79.

The first neural network is taken from [21], where the authors study the question
how many layers are needed to compute certain functions in a ReLU neural network

Convolutional Neural Networks. Note that the neural networks that we defined
above are fully connected: every neuron is connected to all neurons in the previous layer.
In particular, all the weights/parameters in a weight matrix are, in principle, trainable
and can be adjusted by the learning algorithm. There are other types of neural networks,
such as convolutional neural networks (CNNs), that relax this condition. A CNN is
illustrated in Figure 3.4. Certain neurons in CNNs share weights and they are sparse
in the sense that some of the connections to preceding neurons are missing. A CNN
can be captured in terms of our definition by setting the corresponding weights to 0.
However, one should have in mind that, when considering training algorithms, one has
to make a distinction between trainable parameters and those that cannot be modified.
When defining neural networks as graphs, this is simple, as one would just omit the
corresponding edges.

3.2 A Specification Language for Neural Networks

In this section, we will discuss what it means for a neural network to be correct. Here,
we mean correctness in a strict mathematical sense. This, in turn, requires a formal
specification to be given. Below are some examples of specifications. After discussing
them, we will see a formal specification language that encompasses all of them.

(a) JN K : Rm → R computes the maximum function.

(b) JN K : Rm → Rm implements a sorting algorithm.

(c) JN K : Rm → Rn is permutation invariant.

(d) JN K : Rm → Rm is permutation equivariant.

14



CHAPTER 3. FEED-FORWARD NEURAL NETWORKS

convolutional

layers

fully-connected

hidden layers

input

output

layer

Figure 3.4: A convolutional neural network (CNN)

(e) JN K : Rm → Rn such that, for given sets R ⊆ Rm and K ⊆ {1, . . . ,m}, the following
holds: for all x,x′ ∈ R satisfying xi = x′i for all i ∈ K, we have argmax(JN K(x)) =
argmax(JN K(x′)).

(f) JN K : Rm → Rn such that, for a given set R ⊆ Rm and ε > 0, the following holds:
for all x ∈ R and x′ ∈ Rm such that ‖x,x′‖Manhattan ≤ ε, we have argmax(JN K(x)) =
argmax(JN K(x′)).1

(g) JN1K, JN2K : Rm → Rn such that, for a given set R ⊆ Rm, the following holds: for
all x ∈ R, we have argmax(JN1K(x)) = argmax(JN2K(x)).

Exercise 3.1:

For all of the above properties, discuss whether they are typically relevant for
machine-learning tasks and provide corresponding examples. Can you come up
with other relevant specifications? Are there specifications that imply others?

Solution:

(a) Computing the maximum function is not a typical machine-learning task: it
does not require learning from data to discover unknown or hidden patterns
(though, in principle, the task can be addressed by learning a machine-
learning model).

(b) The same discussion as for (a) applies to the sorting problem.

(c) Here, we aggregate multiple inputs into one or several values. Suppose every
input value is the age of a particular person in a group of m people, and
that the neural networks makes a prediction on the number of votes that
a particular candidate may receive in the upcoming election. The predic-
tion should not depend on the order of the input values. In other words,
permuting the input values should result in the same output value.

1For x,y ∈ Rm, the Manhattan distance of x and x′ is defined as ‖x,x′‖Manhattan =
∑m
i=1 |xi − x′i|.

15



CHAPTER 3. FEED-FORWARD NEURAL NETWORKS

(d) Similarly to the previous case, suppose that each input represents the prob-
ability of a medical staff member being infected, and the output determines,
for every medical staff member, whether they should be tested or quaran-
tined. Again, the decision per agent should not depend on the order of the
input values. That is, permuting the input values should result in the same
output values permuted.

(e) Suppose the neural network takes features of a person as input, such as age,
gender, salary, etc., and the neural network’s task is to decide whether a
loan is granted. This decision should be independent of sensitive features
like gender or ethnicity. Such a property is referred to as a fairness property.
The property thus considers that the features in {1, . . . ,m}\K are sensitive.

(f) We can think of N as an image classifier. If R represents a set of images,
e.g., the set the classifier was trained on, we would like N to be robust in
the sense that small perturbations on the input images do not change the
predictions. This would be particularly important when N is used in an
autonomous car to detect traffic signs.

(g) The formula states that neural networks N1 and N2 are equivalent on an
input set R. That is, for every input in R, they yield the same index/class
from {1, . . . , n}. Suppose that N2 is much smaller than N1. If the prop-
erty is satisfied, we could safely replace N1 with the more efficient neural
network N2.

Exercise 3.2:

Let n = 3. For each of the specifications (a) and (b), provide a neural network
satisfying it.

Exercise 3.3:

Consider the neural networks from Example 3.1 and the properties (a)–(f) above.
For every combination of a neural network N and a property ϕ, verify whether ϕ is
a suitable specification for N (syntactically) and, if so, whether N satisfies ϕ. Can
the two neural networks from the example be considered equivalent? And what
would a corresponding specification look like?

The formal specification language for neural networks will be based on linear real arith-
metic, a decidable logic that allows one to combine logical connectives with linear expres-
sions. It is defined over an infinite countable set of variables X = {x, y, x1, x2, . . .} that
range over the real numbers.2

2Note that we use x etc. to denote both real numbers and variables. Variables will be interpreted as
real numbers so that denoting them in the same way makes sense. However, it is important to keep in
mind that variables and real numbers are different objects.
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Definition 3.4: Linear Real Arithmetic

Formulas from LRA (linear real arithmetic) are given by the following grammar:

terms t ::= a · x | b | t+ t

formulas ϕ ::= t ≤ t | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

where x ∈ X and a, b ∈ Q.

An occurrence of a variable is free in an LRA formula ϕ if it is not in the scope of a
quantifier ∃/∀. A variable is called free in ϕ if it has some free occurrence in ϕ. Given
a tuple of variables x = (x1, . . . , xn), we may write ϕ(x) or ϕ(x1, . . . , xn) for a formula
ϕ whose free variables are among x1, . . . , xn (though not all of them need to have a free
occurrence). A sentence is a formula without free variables.

We define some common abbreviations such as x for 1 · x, t1 = t2 for t1 ≤ t2 ∧ t2 ≤ t1,
t1 < t2 for t1 ≤ t2 ∧ ¬(t1 = t2), ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ) ϕ ⇒ ψ for ¬ϕ ∨ ψ, ϕ ⇔ ψ for
(ϕ ⇒ ψ)∧ (ψ ⇒ ϕ), ∀x.ϕ for ¬∃x.¬ϕ, etc. We will also write ∃x1, . . . , xn.ϕ instead of
∃x1.∃x2. . . .∃xn.ϕ and so forth.

Moreover, for (tuples of) variables x, y = (y1, . . . , yn), y′ = (y′1, . . . , y
′
n), and a set

K ⊆ {1, . . . ,m}, we define the following abbreviations:

x ∈ y ≡
n∨

i=1

x = yi

x = max(y) ≡ x ∈ y ∧
n∧

i=1

yi ≤ x

argmax(y) = K ≡
∧

i∈K

yi = max(y) ∧
∧

i∈{1,...,m}\K

¬(yi = max(y))

argmax(y) = argmax(y′) ≡
∨

K⊆{1,...,n}

(argmax(y) = K ∧ argmax(y′) = K)

The latter definition takes into account that argmax returns the set of indices carrying
the maximal value in a tuple/vector.

Example 3.2:

Consider the formulas

ϕ1(x, y) = x < y ⇒ ∃z.(x < z ∧ z < y)

ϕ2(x, y) = x < y ⇒ ((x < 0.5 · x+ 0.5 · y) ∧ (0.5 · x+ 0.5 · y < y))

Both, ϕ1 and ϕ2 have free variables x and y. The formulas ∀x.∀y.ϕ1(x, y) and
∀x.∀y.ϕ2(x, y) are sentences, as they do not have any free variables.

The semantics of LRA formulas is defined inductively. To evaluate formulas with free
variables, such as ϕ(x, y) = (x ≤ 0.2 · y), we need to assign values to x and y. This is
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done by an interpretation function I : X → R. The above formula ϕ is evaluated to true
iff I(x) ≤ 0.2 · I(y). Towards the semantics, we will first assign to each term t a real
number I(t) ∈ R inductively as follows:

– I(a · x) = a · I(x)

– I(b) = b

– I(t1 + t2) = I(t1) + I(t2)

Now, models of formulas ϕ are interpretation functions:

– I |= t1 ≤ t2 if I(t1) ≤ I(t2)

– I |= ¬ϕ if I 6|= ϕ

– I |= ϕ ∨ ψ if I |= ϕ or I |= ψ

– I |= ∃x.ϕ if there is r ∈ R such that I[x 7→ r] |= ϕ

Here, I[x 7→ r] is the interpretation function that coincides with I on all variables apart
from x, while x is mapped to r.

We say that formula ϕ is satisfiable if there is an interpretation function I such that
I |= ϕ. Note that, to evaluate a formula (a term), it is enough to know the interpretation
of the free variables (variables, respectively) that occur in it. Therefore, given a formula
ϕ(x1, . . . , xn) and r1, . . . , rn ∈ R, we write |= ϕ(r1, . . . , rn) if I |= ϕ(x1, . . . , xn) for some
interpretation I such that maps I(xi) = ri for all i ∈ {1, . . . , n}. In the particular case
where ϕ is a sentence, satisfiability is independent of an interpretation function. That is,
we either have one of the following:

– I |= ϕ for all interpretation functions I

– I 6|= ϕ for all interpretation functions I

In the former case, we write |= ϕ, and we say that ϕ is true. In the latter case, ϕ is false.

Example 3.3:

We continue Example 3.2. The sentences ∀x.∀y.ϕ1(x, y) and ∀x.∀y.ϕ2(x, y) are
both true. On the other hand, ∀x.∀y.∃z.(x < z ∧ z < y) is false.

Definition 3.5: Satisfiability Problem

For a class of formulas F , the decision problem SAT(F) is defined as follows:

Input: A formula ϕ ∈ F .

Question: Is ϕ satisfiable?

Note that free variables in the given formula ϕ are implicitly interpreted as existential
variables, as the question is whether there is a suitable interpretation function. Moreover,
if ϕ is a sentence, then the problem amounts to asking if ϕ is true.
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The definition of SAT(F) applies to all classes of formulas F that we consider in this
lecture, as they will all be based on interpretation functions of the form I : X → R.

Theorem 3.1:

The problem SAT(LRA) is decidable.

Before we prove this theorem, we give our specification language for neural networks.
It is basically LRA, but with an additional predicate that allows us to talk about the
input-output relation induced by a neural network.

Definition 3.6: Neural Network Logic

Formulas from NNL (neural network logic) are given by the following grammar:

t ::= a · x | b | t+ t

ϕ ::= t ≤ t | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | N (x1, . . . , xm) = (y1, . . . , yn)

where N is a neural network with input dimension m ∈ N+ and output dimension
n ∈ N+, x, x1 . . . , xm, y1, . . . , yn ∈ X , and a, b ∈ Q.

Note that, in the formula N (x1, . . . , xm) = (y1, . . . , yn), the variables x1, . . . , xm and
y1, . . . , yn are free. As NNL is an extension of LRA, it only remains to define the semantics
of N (x1, . . . , xm) = (y1, . . . , yn):

I |= N (x1, . . . , xm) = (y1, . . . , yn) if JN K(I(x1), . . . , I(xm)) = (I(y1), . . . , I(yn))

Accordingly, given an NNL sentence ϕ, we write |= ϕ (and say that ϕ is true) if I |= ϕ
for some/all I. Given an NNL formula ϕ containing the neural networks N1, . . . ,Nk, we
may write ϕ[N1, . . . ,Nk] instead of just ϕ to highlight that ϕ talks about N1, . . . ,Nk.3

For a set of NNL formulas F and a set of activation functions A, we denote by F [A] the
set of formulas ϕ ∈ F such that every neural network occurring in ϕ uses only activation
functions from {id} ∪ A. To simplify notation further, we may just write a list of functions
instead of a set. For example, NNL[ReLU] is the set of NNL formulas whose neural
networks use the identity function or ReLU in their layers. Similarly NNL[ReLU, σ, tanh]
allows for activation functions from {id} ∪ {ReLU, σ, tanh}, while NNL[∅] admits only
the identity function.

Now, let us define some concrete NNL specifications:

Exercise 3.4:

Let N be a neural network with in(N ) = out(N ) = 2. Write NNL sentences ϕ1[N ]
and ϕ2[N ] such that the following hold:

– JN K is surjective iff |= ϕ1[N ]

3We could have defined NNL formulas using “neural network variables” so that models interpret these
variables as neural networks, but this would cause some notational overhead.
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– JN K is injective iff |= ϕ2[N ]

Solution:

– ϕ1[N ] = ∀y1, y2.∃x1, x2.N (x1, x2) = (y1, y2)

– ϕ2[N ] = ∀x1, x2, x
′
1, x
′
2, y1, y2.




N (x1, x2) = (y1, y2) ∧ N (x′1, x
′
2) = (y1, y2)

⇒
x1 = x′1 ∧ x2 = x′2




Exercise 3.5:

Write an NNL sentence for the XOR function: A given neural network N should
compute a function R2 → R that, for every input (x1, x2) ∈ {0, 1}2, outputs the
truth value x1 ⊕ x2.

Exercise 3.6:

Write NNL sentences for the properties (a)–(g) given at the beginning of Section 3.2:
For each property P among (a)–(f), define an NNL sentence ϕ[N ] such that |= ϕ[N ]
iff N satisfies P . For property (g), write an NNL sentence ϕ[N1,N2] such that
|= ϕ[N1,N2] iff N1,N2 satisfy (g).

Solution:

For a (definable) set R ⊆ Rm, let ϕR(x1, . . . , xm) be an LRA formula such that, for
all r1, . . . , rm ∈ R, we have (r1, . . . , rm) ∈ R iff |= ϕR(r1, . . . , rm).

(a) ∀x1, . . . , xm, y. (N (x1, . . . , xm) = y ⇒ y = max(x1, . . . , xm))

(b) ∀x1, . . . , xm, y1, . . . , ym.




N (x1, . . . , xm) = (y1, . . . , ym)

⇒
∧

1≤i<j≤m

yi ≤ yj ∧
∨

π∈Sm

m∧

i=1

xi = yπ(i)




(c) ∀x1, . . . , xm.∃y1, . . . , yn.
∧

π∈Sm

N (xπ(1), . . . , xπ(m)) = (y1, . . . , yn)

(d) ∀x1, . . . , xm, y1, . . . , ym.




N (x1, . . . , xm) = (y1, . . . , ym)

⇒
∧

π∈Sm

N (xπ(1), . . . , xπ(m)) = (yπ(1), . . . , yπ(m))
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(e) ∀x,x′,y,y′.




N (x) = y ∧ N (x′) = y′ ∧ ϕR(x) ∧ ϕR(x′) ∧
∧

i∈K

xi = x′i

⇒
argmax(y) = argmax(y′)




(f) ∀x,x′,y,y′, z.







N (x) = y ∧ N (x′) = y′ ∧ ϕR(x)

∧
m∧

i=1

(
xi ≤ x′i ⇒ zi = x′i − xi

∧ x′i < xi ⇒ zi = xi − x′i

)

∧ z1 + . . .+ zm ≤ ε




⇒
argmax(y) = argmax(y′)




(g) ∀x,y,y′.



N1(x) = y ∧ N2(x) = y′ ∧ ϕR(x)

⇒
argmax(y) = argmax(y′)




An NNL formula ϕ[N1, . . . ,Nk] is considered to represent a neural network specification.
Verifying N1, . . . ,Nk amounts to deciding whether ϕ[N1, . . . ,Nk] is satisfiable. We will
assume that N1, . . . ,Nk are all ReLU neural networks, i.e., ϕ ∈ NNL[ReLU]. To establish
decidability of verification, due to Theorem 3.1, it is then enough to show that ϕ can be
translated into an equivalent LRA sentence.

Definition 3.7:

Let F1 and F2 be classes of formulas (whose semantics depends on interpretation
functions I : X → R). We write F1 ≤ F2 if there is an algorithm that translates
every ϕ(x1, . . . , xn) ∈ F1 into ϕ̃(x1, . . . , xn) ∈ F2 such that, for all interpretation
functions I, we have I |= ϕ iff I |= ϕ̃.

If the translation can be done in polynomial time, then we write F1 ≤poly F2.

Proposition 3.1:

We have NNL[ReLU] ≤poly LRA.

Proof. We only need to consider formulas involving neural networks. To do so, we trans-
late every neural network N , say with input dimension m and output dimension n, into
an LRA formula ϕN (x1, . . . , xm, y1, . . . , yn) such that

for all r1, . . . , rm, s1, . . . , sn ∈ R, we have

JN K(r1, . . . , rm) = (s1, . . . , sn) iff |= ϕN (r1, . . . , rm, s1, . . . , sn)
(3.1)

We proceed by induction and first suppose that N = (L ) has one layer L = (A,b, f).
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If f = id, we set

ϕN (x1, . . . , xm, y1, . . . , yn) =
n∧

i=1

yi = bi +
m∑

j=1

ai,j · xj .

If f = ReLU, we set

ϕN (x1, . . . , xm, y1, . . . , yn) =
n∧

i=1

∃z.




z = bi +
m∑

j=1

ai,j · xj

∧
(

(z ≤ 0 ∧ yi = 0)

∨ (z > 0 ∧ yi = z)

)



.

Then, statement (3.1) holds by the very definitions.

Now assume N = (L (1), . . . ,L (`),L (`+1)) with ` ≥ 1. Let N1 = (L (1), . . . ,L (`)) and
N2 = (L (k+1)) and assume we already have formulas ϕN1(x1, . . . , xm, z1, . . . , zk) and
ϕN2(z1, . . . , zk, y1, . . . , yn) as required, where k = out(N1) = in(N2). Then, we set

ϕN (x1, . . . , xm, y1, . . . , yn) = ∃z1, . . . , zk.

(
ϕN1(x1, . . . , xm, z1, . . . , zk)

∧ ϕN2(z1, . . . , zk, y1, . . . , yn)

)
.

Indeed, for all r1, . . . , rm, s1, . . . , sn ∈ R we have

JN K(r1, . . . , rm) = (s1, . . . , sn)

iff (JN2K ◦ JN1K)(r1, . . . , rm) = (s1, . . . , sn)

iff there are p1, . . . , pk ∈ R:

(
JN1K(r1, . . . , rm) = (p1, . . . , pk)

and JN2K(p1, . . . , pk) = (s1, . . . , sn)

)

iff there are p1, . . . , pk ∈ R:

(
|= ϕN1(r1, . . . , rm, p1, . . . , pk)

and |= ϕN2(p1, . . . , pk, s1, . . . , sn)

)

iff |= ϕN (r1, . . . , rm, s1, . . . , sn) .

Now, to translate a given NNL formula ϕ into the LRA formula ϕ̃ as required, we re-
place, in ϕ, every occurrence of an atomic subformula N (x1, . . . , xm) = (y1, . . . , yn) by
ϕN (x1, . . . , xm, y1, . . . , yn).

Exercise 3.7:

For the NNL sentence ϕ for the maximum function, and the neural network N
from Example 3.1(a), determine ϕ̃ according to Proposition 3.1.

As a corollary from Proposition 3.1 and Theorem 3.1 (decidability of SAT(LRA)), we
obtain the following result:

Theorem 3.2:

The problem SAT(NNL[ReLU]) is decidable.

We still need to show Theorem 3.1, i.e., decidability of LRA, which deserves its own
section.
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3.3 Proof of Decidability of LRA

We use automata-theoretic techniques, which are versatile tools for deciding arithmetic
theories and can often be easily extended to cover even richer theories [20]. The automata-
theoretic approach to deciding arithmetic theories goes back to Büchi [11]. Given an LRA
formula ϕ, the idea is to construct a Büchi automaton Aϕ such that ϕ is satisfiable iff
the language of Aϕ is nonempty.

In the description below, we adopt several constructions and some notation from the paper
[43], where Sälzer et al. provide translations of neural networks into Büchi automata.

Encoding Real Numbers as Words. The main idea is to encode a real number as a
word over the alphabet Σ = {0, 1, •,+,−}, and a k-tuple of real numbers as a word over
Σk. We call a word w ∈ Σω well-formed if it is of the form

w = sun−1 . . . u0 • v1u2 . . . ∈ {+,−}{0, 1}∗{•}{0, 1}ω

with n ≥ 0, s ∈ {+,−}, and un−1, . . . , u0, v1, u2, . . . ∈ {0, 1}. Then, w encodes the real
number in decimal system

dec(w) = (−1)sign(s) ·
(
n−1∑

i=0

ui · 2i +
∞∑

i=1

vi ·
1

2i

)

where sign(+) = 0 and sign(−) = 1. Note that w determines a unique value dec(w).
On the other hand, given r ∈ R, there may be several well-formed words w ∈ Σω such
that dec(w) = r. For example, we have dec(+0 • 000 . . .) = dec(−000 • 000 . . .) = 0 and
dec(+0110 • 1000 . . .) = dec(+110 • 0111 . . .) = 6.5.

Let k ≥ 0. A word

w =



u1,1

...
uk,1






u1,2

...
uk,2






u1,3

...
uk,3


 . . . ∈ (Σk)ω

may be seen as the k-tuple (u1,1u1,2u1,3 . . . , . . . , uk,1uk,2uk,3 . . .) of words over Σ. Thus,
a language L ⊆ (Σk)ω can, equivalently, be considered as a relation L ⊆ (Σω)k and the
latter is the view that we mostly adopt in the following.

Now, a tuple (w1, . . . , wk) ∈ (Σk)ω of well-formed words encodes the tuple of real numbers
(dec(w1), . . . , dec(wk)) ∈ Rk. However, the algorithmic manipulations we perform on
automata to simulate arithmetic operations require that the comma • in the binary
representations be aligned. Therefore, we introduce the set of (k-ary) well-formed words,
denoted WFk. A word from (Σk)ω is well-formed if it is of the form



s1
...
sk






u1,n−1

...
uk,n−1


 . . .



u1,0

...
uk,0






•
...
•






v1,1

...
vk,1






v1,2

...
vk,2


 . . .

such that si ∈ {+,−}, ui,j ∈ {0, 1}, and vi,j ∈ {0, 1} for all i and j. In particular, all •
are aligned in the same column. If k = 0, we have a unique infinite word over a singleton
alphabet, which we define to be well-formed. Recall that we may consider WFk ⊆ (Σω)k.
For w ∈ (Σω)k, we let wi refer to the i-th component of w, i.e., w = (w1, . . . , wk).
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{+, −}k

{0, 1}k

{•}k

{0, 1}k

Figure 3.5: The Büchi automaton Akwf

Proposition 3.2:

For k ≥ 0, we can effectively construct a Büchi automaton Akwf over Σk such that
L(Akwf) = WFk.

Proof. The automaton Akwf is given in Figure 3.5. It checks that each “row” is contained
in {+,−}{0, 1}∗{•}{0, 1}ω and that the •-symbols are aligned in the same column.

We present two further useful automata constructions.

Proposition 3.3: Büchi Automata Projection

Let k ≥ 1 and i ∈ {0, 1, . . . , k}. Let A be a Büchi automaton over Σk. We can
effectively construct a Büchi automaton proj≤i(A) over Σi such that

L(proj≤i(A)) = {(w1, . . . , wi) | (w1, . . . , wk) ∈ L(A)} .

Proof. Let A = (Q,∆, ι, F ) be a Büchi automaton over Σk. The Büchi automaton
proj≤i(A) has the same structure (i.e., the same states, initial states, transitions, final
states). The only thing that changes are the transition labels, which instead of k symbols,
[u1, . . . , uk], only contain the first i symbols [u1, . . . , ui]. That is, we set proj≤i(A) =
(Q,∆′, ι, F ) with

∆′ = {(p, [u1, . . . , ui], q) | (p, [u1, . . . , uk], q) ∈ ∆} .

Note that, when i = 0, proj≤i(A) is a Büchi automaton over a single-letter alphabet.
The correctness proof is now straightforward.

Applying projection to well-formed words does not necessarily preserve closure under
removing leading zeros. Therefore, we will make use of another useful closure property.

Proposition 3.4:

Let k ≥ 1 and let A be a Büchi automaton over Σk such that L(A) ⊆ WFk. We
can construct a Büchi automaton cl(A) over Σk such that L(cl(A)) is the least set
satisfying the following:

– L(A) ⊆ L(cl(A)) and

– for all words w ∈ L(cl(A)) of the form w = (s1, . . . , sk)(0, 0, . . . , 0)w′ (i.e.,
s1, . . . , sk ∈ {+,−}), we have (s1, . . . , sk)w

′ ∈ L(cl(A)).
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Exercise 3.8:

Prove Proposition 3.4.

From LRA to Büchi automata. We are now ready to describe how Büchi automata
can be used to decide whether a given LRA sentence is true. We start with some con-
structions for k-ary relations of real numbers that will serve as building blocks in the
translation. They are due to [43].

Proposition 3.5: Büchi Automata Constructions

Let k ≥ 1, i, j, i1, i2 ∈ {1, . . . , k}, and a, b ∈ Q. We can effectively construct
automata Aki=j, Aki≤j, Aki=add(i1,i2), Aki=mult(a,j), and Aki=const(b) over Σk such that

L(Aki=j) = {w ∈WFk | dec(wi) = dec(wj)}

L(Aki≤j) = {w ∈WFk | dec(wi) ≤ dec(wj)}

L(Aki=add(i1,i2)) = {w ∈WFk | dec(wi) = dec(wi1) + dec(wi1)}

L(Aki=mult(a,j)) = {w ∈WFk | dec(wi) = a · dec(wj)}

L(Aki=const(b)) = {w ∈WFk | dec(wi) = b}

Proof. We start with equality and addition. The other automata will build on them. We
only consider constructions with pairwise distinct indices. The remaining cases follow
similar patterns.

Equality. The equality Büchi automaton A2
1=2 is depicted in Figure 3.6. Note that

two binary representations of real numbers can still be equal when they have different
signs. The right-hand side of the automaton also takes care of real numbers that have a
suffix of the form 1ω. The general case Aki=j allows for arbitrary values in the components
different from i and j (while checking that the word be well-formed).

Addition. Consider first the Büchi automaton Bki=add(i1,i2) as illustrated in Figure 3.7

for the special case B3
3=add(1,2) (the cases with different signs are similar, since x3 = x1−x2

iff x1 = x2 + x3 and so on). It performs bitwise addition of the first two numbers, while
checking, each time, whether a carry bit has to be produced. Whereas this procedure
yields, for all possible input strings, at least one valid result, L(Bki=add(i1,i2)) does not

contain all w ∈WFk such that dec(wi) = dec(wi1)+dec(wi1). For example, L(B3
3=add(1,2))

does not contain the word



+
+
+






0
0
1






0
0
0





•
•
•






1
1
0






1
1
0






1
1
0






1
1
0


 . . .

but instead 


+
+
+






0
0
0






0
0
1





•
•
•






1
1
1






1
1
1






1
1
1






1
1
1


 . . .
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A21=2

[
•
•

]

[
•
•

]

[
•
•

]
[
0

0

]

[
0

1

]

[
1

0

]

[
1

1

]

[
+

+

]

[
+

−

] [
−
+

]

[
−
−

]

[
0

0

]

[
•
•

]

[
0

0

]
[
0

1

]

[
1

0

]

[
0

1

] [
0
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Figure 3.6: The Büchi automaton A2
1=2

We include all admissible triples using an additional tape and the equality automaton
defining

Aki=add(i1,i2) = cl(proj≤k(Bk+1
k+1=add(i1,i2) ∩ Ak+1

i=k+1)) .

Multiplication. The cases a ∈ {0, 1} are easy. Suppose a = 2. We create an additional
tape, k + 1, to “copy” the value of tape j using the Büchi automaton for equality. Tape
i should then contain the sum of tapes j and k + 1. We finally erase tape k + 1. All this
is realized by

Aki=mult(2,j) = cl(proj≤k(Ak+1
k+1=j ∩ Ak+1

i=add(j,k+1))) .

Now suppose a is an integer such that a ≥ 3 (negative constants are handled similarly).
Let un−1 . . . u0 ∈ {0, 1}∗ be the binary representation of a of minimal length, i.e., a =
dec(+un−1 . . . u0 • 000 . . .). Furthermore, let K = {i1, . . . , id} ⊆ {0, . . . , n− 1} be the set
of indices ` such that u` = 1. In particular, n− 1 ∈ K. Note that, for all x ∈ R, we have

a · x =
n−1∑

`=0

u` · 2` · x =
∑

`∈K

u` · 2` · x .

Thus, we can set

Aki=mult(a,j) = cl(proj≤k(Ak+n
k+1=j ∩

n−1⋂

`=1

Ak+n
k+1+`=mult(2,k+`) ∩ Ak+n

i=add(k+1+i1,...,k+1+id))) .
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Figure 3.7: The intermediate Büchi automaton B3
3=add(1,2)

Note that we use a Büchi automaton performing an addition of possibly more than two
elements. We obtain the corresponding Büchi automaton by induction, letting, for n ≥ 3,

Aki=add(i1,...,in) = cl(proj≤k(Ak+1
k+1=add(i1,...,in−1) ∩ Aki=add(in,k+1)))

Finally, suppose that a = m
n

for integers m,n ∈ N+. For any real numbers x, y ∈ R, we
have x = m

n
· y iff n · x = m · y. Thus, we can set

Aki=mult(a,j) = cl(proj≤k(Ak+2
k+1=mult(n,i) ∩ Ak+2

k+2=mult(m,j) ∩ Ak+2
k+1=k+2)) .

The remaining constructions are left as an exercise.

Exercise 3.9:

Determine the Büchi automata Aki≤j and Aki=const(b) (for b ∈ Q).

From LRA to Büchi Automata. We now have all the ingredients to transform a
given formula into a Büchi automaton that we can then test for nonemptiness. For
simplicity, we suppose we are given a sentence, without free variables. Given an LRA
sentence, we first transform it into a logically equivalent formula in Prenex normal form,
i.e., into a sentence of the form

Ψ = θ1x1 . . . θmxm.Φ(x1, . . . , xm)

where θ1, . . . , θm ∈ {∃,¬∃}, the x1, . . . , xm are pairwise distinct, and Φ is quantifier-free.
For background on the Prenex normal form, we refer the reader to [14]. Let t1, . . . , tn be
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all distinct occurrences of terms in Φ, including4 x1, . . . , xm. That is, m ≤ n and ti = xi
for all i ∈ {1, . . . ,m}.
With w = (w1, . . . , wm, wm+1, . . . , wn) ∈ WFn, we associate an arbitrary interpretation
function Iw such that Iw(xi) = dec(wi) for all i ∈ {1, . . . ,m}.

Lemma 3.1:

We can construct a Büchi automaton Aterm over Σn such that

L(Aterm) = {w ∈WFn | Iw(ti) = dec(wi) for all i ∈ {m+ 1, . . . , n}} .

Proof. We set

Aterm =
n⋂

i=m+1

Bni

where

Bni =





Ani=add(j,k) if ti = tj + tk

Ani=mult(a,j) if ti = a · xj
Ani=const(b) if ti = b

with a, b ∈ Q. Correctness follows from Proposition 3.5 by induction.

Example 3.4:

Consider the sentence

Ψ = ¬∃x1.∃x2. (x1 ≤ x2 ∧ ¬((x1 ≤ 0.5 · x1 + 0.5 · x2) ∧ (0.5 · x1 + 0.5 · x2 ≤ x2)))︸ ︷︷ ︸
Φ(x1, x2)

in Prenex normal form. The terms occurring in Φ are x1, x2, 0.5 · x1, 0.5 · x2, 0.5 ·
x1 + 0.5 · x2, and we have

x1

x2

0.5 · x1

0.5 · x2

0.5 · x1 + 0.5 · x2




+
+
+
+
+







0
1
0
0
0







1
0
0
1
1







•
•
•
•
•







0
0
1
0
1







0
0
0
0
0







0
0
0
0
0







0
0
0
0
0



. . . ∈ L(Aterm) .

Using Aterm, we now proceed by induction to transform any subformula ϕ(x1, . . . , xm) of
Φ (including Φ) into a Büchi automaton Bϕ over Σn such that, for all w ∈ L(Aterm),

w ∈ L(Bϕ) iff Iw |= ϕ(x1, . . . , xm) . (3.2)

Term Comparison. Suppose ϕ(x1, . . . , xm) = (ti ≤ tj). We set

Bti≤tj = Ani≤j .
4Strictly speaking, a variable is not a term.
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Let w = (w1, . . . , wn) ∈ L(Aterm). We will show (3.2).

Suppose w ∈ L(Bϕ). Since w ∈ L(Aterm), we have Iw(ti) = dec(wi) and Iw(tj) = dec(wj).
By w ∈ L(Ani≤j) and Proposition 3.5, we have dec(wi) ≤ dec(wj). Thus, Iw(ti) ≤ Iw(tj),
which implies Iw |= ti ≤ tj.

Conversely, suppose Iw |= ti ≤ tj. Then, Iw(ti) ≤ Iw(tj). Since w ∈ L(Aterm), we also
have dec(wi) ≤ dec(wj), which implies w ∈ L(Ani≤j). We conclude w ∈ L(Bti≤tj).

Disjunction. Suppose ϕ(x1, . . . , xm) = ϕ1 ∨ ϕ2. We set

Bϕ1∨ϕ2 = Bϕ1 ∪ Bϕ2 .

To show (3.2), let w ∈ L(Aterm). We have w ∈ L(Bϕ1∨ϕ2) iff w ∈ L(Bϕ1)∪L(Bϕ2) iff (by
induction hypothesis) Iw |= ϕ1 ∨ ϕ2.

Negation. Suppose ϕ(x1, . . . , xm) = ¬ψ. We set

B¬ψ = Bψ .

Let us show (3.2). For w ∈ L(Aterm), we have w ∈ L(B¬ψ) iff w 6∈ L(Bψ) iff (by induction
hypothesis) Iw 6|= ψ iff Iw |= ¬ψ.

We thus hold a Büchi automaton BΦ over Σn such that, for all w ∈ L(Aterm),

w ∈ L(BΦ) iff Iw |= Φ(x1, . . . , xm) .

Consider the Büchi automaton AΦ = cl(proj≤m(BΦ ∩ Aterm)).

Lemma 3.2:

We have
L(AΦ) = {w ∈WFm | Iw |= Φ(x1, . . . , xm)} .

Proof. Let w ∈ L(AΦ). There is w′ = (w′1, . . . , w
′
n) ∈ L(BΦ ∩ Aterm) such that, for all

i ∈ {1, . . . ,m}, the word w′i equals wi modulo (possibly) extra leading zeros. In particular,
dec(w′i) = dec(wi) for all i ∈ {1, . . . ,m}. Due to w′ ∈ L(BΦ), we have Iw′ |= Φ and,
therefore, Iw |= Φ.

Conversely, assume w = (w1, . . . , wm) ∈ WFm such that Iw |= Φ(x1, . . . , xm). Let
w′ = (w′1, . . . , w

′
n) ∈WFn such that,

– for all i ∈ {1, . . . ,m}, w′i equals wi but possibly has extra leading zeros,

– for all i ∈ {m+ 1, . . . , n}, dec(w′i) = Iw(ti).

Then, we have w′ ∈ L(Aterm) and, since Iw′ |= Φ, w′ ∈ L(BΦ). Altogether, we have
(w′1, . . . , w

′
m) ∈ proj≤m(BΦ ∩ Aterm) and, finally, w = (w1, . . . , wm) ∈ L(AΦ).

29



CHAPTER 3. FEED-FORWARD NEURAL NETWORKS

Towards a Büchi automaton for Ψ = θ1x1 . . . θm.xmΦ(x1, . . . , xm) where θi ∈ {∃,¬∃},
we add quantifier (and so eliminate free variables) by induction: For i = m, . . . , 0 (the
number of free variables yet to be eliminated), letting

Ψi = θi+1xi+1 . . . θmxm.Φ(x1, . . . , xi) ,

we build a Büchi automaton AΨi
over Σi such that

L(AΨi
) = {w ∈WFi | Iw |= Ψi(x1, . . . , xi)} . (3.3)

Note that AΨm = AΦ. Now, let i = m− 1, . . . , 0. Towards AΨi
, we will have to eliminate

free variable xi+1.

Existential Quantification. If θi+1 = ∃, then we set

AΨi
= cl(proj≤i(AΨi+1

)) .

We show (3.3). We certainly have AΨi
⊆WFi. Let w = (w1, . . . , wi) ∈WFi.

Suppose w ∈ L(AΨi
). Then, there is w′ ∈ L(AΨi+1

) ⊆ WFi+1 such that, for all i ∈
{1, . . . ,m}, w′i equals wi modulo extra leading zeros. By induction hypothesis, we have
that Iw′ |= Ψi+1(x1, . . . , xi+1). But this implies Iw |= ∃xi+1.Ψi+1(x1, . . . , xi+1).

Conversely, suppose Iw |= Ψi = ∃xi+1.Ψi+1(x1, . . . , xi+1). There is a real number r ∈ R
such that Iw[xi+1 7→ r] |= Ψi+1(x1, . . . , xi+1). Let w′ = (w′1, . . . , w

′
i+1) ∈WFi+1 such that

dec(w′i+1) = r and, for all i ∈ {1, . . . ,m}, w′i equals wi but possibly has extra leading
zeros. We have Iw′ |= Ψi+1(x1, . . . , xi+1). By induction hypothesis, w′ ∈ L(AΨi+1

). We
conclude w ∈ L(AΨi

).

Negated Existential Quantification. If θi = ¬∃, then we set

AΨi
= cl(proj≤i(AΨi+1

)) ∩ Aiwf .

That is, we first apply projection and closure as in the previous case, then complement
the automaton, and finally intersect it with Aiwf. By the preceding discussion, we have

w ∈ L(AΨi
)

iff w ∈WFi and Iw 6|= ∃xi+1.Ψi+1(x1, . . . , xi+1)

iff w ∈WFi and Iw |= ¬∃xi+1.Ψi+1(x1, . . . , xi+1)︸ ︷︷ ︸
= Ψi

.

To wrap up, we obtain the Büchi automaton AΨ0 over Σ0 (a singleton alphabet) such
that L(AΨ0) 6= ∅ iff |= Ψ0 (recall that Ψ0 = Ψ). Nonemptiness of the language of a Büchi
automaton is a decidable problem due to Theorem 2.2.

Historical Notes and Remarks on Complexity. LRA corresponds to the first-
order theory of real numbers with addition, denoted by FO(R,+, <). Tarski showed
that even FO(R,+, · , <), i.e., non-linear real arithmetic (including multiplication), is
decidable [51]. While his algorithm was nonelementary, FO(R,+, · , <) was shown to
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be solvable in doubly exponential time [12]. The automata-based decidability proof for
FO(R,+, <) presented in this section can be easily extended to FO(R,+, <,Z), which has
an additional unary predicate for the integers Z. Another well-known decidable theory is
FO(N,+, <), also known as Presburger arithmetic. On the other hand, FO(N,+, · , <),
i.e., Peano arithmetic, is undecidable due to Gödel [19].

The automata-theoretic approach to deciding FO(R,+, <,Z) is due to Büchi [11]. Note
that projection and negation together may cause an exponential blow-up in the automata
size, which a priori does not allow us to infer an elementary bound on the automata
size and computation time. Boigelot, Jodogne, and Wolper showed that the models of
every FO(R,+, <,Z)-formula are recognized by a weak deterministic Büchi automaton,
in which every strongly connected component contains either only final states or only non-
final states [9]. Löding showed that minimization of these automata can be reduced, in
linear time, to the minimization of DFAs [34]. Moreover, a doubly and triply exponential
upper bound on the size of minimal weak deterministic Büchi automata for formulas
from FO(R,+, <) and FO(R,+, <,Z) were shown by Klaedtke [29] and, respectively,
Eisinger [15]. For Presburger arithmetic and finite automata, a triply exponential upper
bound is due to Klaedtke [28]. These (finite) automata can even be computed in triply
exponential time, as was shown by Durand-Gasselin and Habermehl [13]. These results
suggest that automata-based decision procedures may still enjoy a good complexity and
run well in practice. Various automata-based libraries for deciding arithmetic theories
are available [1, 6, 9].

NNL specifications can often do without quantifier alternation, i.e., they belong to the
existential fragment, which has a favorable complexity. We will address this in the next
section. We will also discuss theories that correspond to deciding NNL sentences with
activation functions such as σ and tanh [23].

3.4 An Efficiently Solvable Fragment of NNL

Our goal is now to identify a fragment of NNL[ReLU] that comes with an efficiently
solvable satisfiability problem. Observe that many specifications that we have seen pre-
viously have a relatively simple structure in the sense that they can do without quantifier
alternation. For example, consider Exercise 3.4. While ϕ1 has one quantifier alternation,
ϕ2 is the negation of an existential formula:

ϕ2[N ] = ¬∃x1, x2, x
′
1, x
′
2, y1, y2.




N (x1, x2) = (y1, y2) ∧ N (x′1, x
′
2) = (y1, y2)

∧
¬(x1 = x′1) ∨ ¬(x2 = x′2)




We will indeed show that satisfiability for existential NNL[ReLU] formulas is NP-complete
(and, therefore, satisfiability for universal NNL[ReLU] formulas coNP-complete).

Let us first define the corresponding fragment:
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Definition 3.8: Existential NNL (∃NNL)

Formulas from ∃NNL are given by the following grammar:

t ::= a · x | b | t+ t

ϕ ::= t ≤ t | t < t | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ |
N (x1, . . . , xm) = (y1, . . . , yn) | ¬ (N (x1, . . . , xm) = (y1, . . . , yn))

where N is a neural network with input dimension m ∈ N+ and output dimension
n ∈ N+, x, x1 . . . , xm, y1, . . . , yn ∈ X , and a, b ∈ Q.

Note that, as formulas are in negation normal form (negation is pushed inwards), we
include atomic formulas of the form t1 < t2 and ¬ (N (x1, . . . , xm) = (y1, . . . , yn)), which
are otherwise no longer expressible. We also use the abbreviations t1 = t2 ≡ t1 ≤
t2 ∧ t2 ≤ t1 and t1 6= t2 ≡ t1 < t2 ∨ t2 < t1. Note that existential quantifiers are not
strictly necessary when considering satisfiability. However, we include them to be able to
preserve the number of free variables when translating forth and back between various
logics.

We will see that we can translate ∃NNL[ReLU] into existential LRA, which is defined
analogously:

Definition 3.9: Existential Linear Real Arithmetic (∃LRA)

Formulas from ∃LRA are generated by the following grammar:

t ::= a · x | b | t+ t

ϕ ::= t ≤ t | t < t | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ

where x ∈ X and a, b ∈ Q.

We use the abbreviations t1 = t2 and t1 6= t2 as in ∃NNL.

Theorem 3.3: Complexity of ∃LRA

The problem SAT(∃LRA) is NP-complete.

The decision procedure can resort to SMT solvers combining, for example, DPLL(T),
Simplex (linear programming) and Tseitin’s transformation. See [3] or [30] for a detailed
exposition.

Actually, we still need to say what the size of a formula is. It is the length of the formula
when constants are written in binary encoding: The length of a rational number m/n
(the fraction being simplified), with m ∈ Z and n ∈ N+, is defined as 1 + dlog(|m| +
1) + 1e + dlog(n + 1) + 1e. Similarly, concerning ∃NNL[ReLU], we define the size of a
matrix/vector as the sum of the sizes of all its coefficients.

Our goal is to show the following result:
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Theorem 3.4:

The problem SAT(∃NNL[ReLU]) is NP-complete.

The lower bound follows from the obvious fact that ∃LRA ≤poly ∃NNL[ReLU]. However,
we will show it for a smaller fragment of ∃NNL.

The upper bound stated in Theorem 3.4 is due to the following reduction:

Lemma 3.3:

We have ∃NNL[ReLU] ≤poly ∃LRA.

Proof. We proceed like in the general case of Lemma 3.1 and translate N , say with input
dimension m and output dimension n, into ∃LRA formulas ϕN (x1, . . . , xm, y1, . . . , yn) and
ϕ′N (x1, . . . , xm, y1, . . . , yn) such that, for all r1, . . . , rm, s1, . . . , sn ∈ R the following hold:

– JN K(r1, . . . , rm) = (s1, . . . , sn) iff |= ϕN (r1, . . . , rm, s1, . . . , sn)

– JN K(r1, . . . , rm) 6= (s1, . . . , sn) iff |= ϕ′N (r1, . . . , rm, s1, . . . , sn)

We define ϕN (x1, . . . , xm, y1, . . . , yn) exactly like in the proof of Lemma 3.1. Note that
this gives indeed rise to an ∃LRA formula. Moreover, we set

ϕ′N (x1, . . . , xm, y1, . . . , yn) = ∃z1, . . . , zn.




ϕN (x1, . . . , xm, z1, . . . , zn)

∧
n∨

i=1

yi 6= zi


 ,

which is an ∃LRA formula, too. The overall translation produces a formula of polynomial
size.

We will now present a stronger lower bound, due to [26, 44, 45], for the reachability
fragment of ∃NNL[ReLU]:

Definition 3.10: Reachability Formulas

A formula from REACH is an ∃NNL formula of the form

N (x1, . . . , xm) = (y1, . . . , yn) ∧ ϕ1(x1, . . . , xm) ∧ ϕ2(y1, . . . , yn)

where ϕ1 and ϕ2 are quantifier-free formulas generated by the grammar

t ::= a · x | b | t+ t

ϕ ::= t ≤ t | ϕ ∧ ϕ

with x ∈ X and a, b ∈ Q.

In particular, all variables are implicitly existentially quantified.
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Theorem 3.5: Reachability is NP-hard [44,45]

The problem SAT(REACH[ReLU]) is NP-hard.

Proof. We follow [44, 45] and provide a polynomial-time reduction from 3SAT (satisfia-
bility of 3CNF formulas). A 3CNF formula is a conjunction of clauses. Every clause is
the disjunction of three literals. A literal is a propositional variable Xi or its negation
¬Xi. An example formula over the variables X1, X2, X3, X4 with three clauses is

(X1 ∨X2 ∨X3)︸ ︷︷ ︸
C1

∧ (¬X1 ∨X2 ∨ ¬X3)︸ ︷︷ ︸
C2

∧ (¬X2 ∨X3 ∨X4)︸ ︷︷ ︸
C3

.

The satisfiability problem for 3CNF formulas is NP-complete: Given a 3CNF formula
Φ = C1 ∧ . . . ∧ Ck over variables X1, . . . , Xm, is there a valuation val : {X1, . . . , Xm} →
{0, 1} such that val(Φ) = 1 (with the canonical extension of val to formulas)?

We will first build a neural network N such that

JN K
∣∣
{0,1}m :




{0, 1}m → R

r = (r1, . . . , rm) 7→ val r(C1) + . . .+ val r(Ck)

where val r(Xi) = ri for all i ∈ {1, . . . ,m}. The neural network N is illustrated in the
upper part of Figure 3.8. Correctness follows because, for all r1, r2, r3 ∈ {0, 1}, we have

1− ReLU(1− r1 − r2 − r3)

= 1−max(0, 1− r1 − r2 − r3)

=





0 if r1 = r2 = r3 = 0

1 otherwise.

It follows that

Φ is satisfiable iff




N (x1, . . . , xm) = y

∧
m∧

i=1

(xi = 0 ∨ xi = 1)

∧ y = k




is satisfiable.

However, the latter is not a REACH formula (there cannot be a suitable REACH formula,
as {0, 1}m is not a hyperreactangle). So we add some more neurons to N that allow us
to enforce xi ∈ {0, 1} in the sentence (cf. lower part of Figure 3.8). We then obtain a
neural network N ′ with in(N ′) = m and out(N ′) = m+ 1.

Note that, for all r ∈ R, the following holds:

bool(r)

= ReLU(r − 0.5) + ReLU(0.5− r)− 0.5

=

{
r − 1 if r ≥ 0.5

−r if r < 0.5
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Figure 3.8: Neural network for (X1 ∨X2 ∨X3) ∧ (¬X1 ∨X2 ∨¬X3) ∧ (¬X2 ∨X3 ∨X4)

In particular, we have bool(r) = 0 iff r ∈ {0, 1}. Therefore,

Φ is satisfiable iff




N ′(x1, . . . , xm) = (y, z1, . . . , zm)

∧
m∧

i=1

zi = 0

∧ y = k




is satisfiable.

As the latter is a REACH formula whose size (in particular N ′) is polynomial, we are
done.

Theorem 3.6: NP-hardness for ReLU layers [44,45]

NP-hardness from Theorem 3.5 also holds for ReLU neural networks such that all
but the last layers are ReLU layers.
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Figure 3.9: Replacing an id neuron with ReLU neurons

Proof. We replace a neuron with activation function id by a gadget employing activation
function ReLU. This is illustrated in Figure 3.9. Indeed, we have

(
b+

m∑

i=1

aixi

)
· a′j

= ReLU
(
b+

m∑

i=1

aixi

)
· a′j + ReLU

(
−
(
b+

m∑

i=1

aixi
))
· (−a′j)

= ReLU
(
b+

m∑

i=1

aixi

)
· a′j + ReLU

(
−b+

m∑

i=1

−aixi
)
· (−a′j)

This concludes the proof.

NP-hardness results for even stronger restrictions on the neural networks can be found
in [44,45,56].

Observe that, when the only activation function allowed is the identity function id, sat-
isfiability of REACH[∅] can be reduced to a linear-programming problem. Therefore, we
obtain the following result:

Theorem 3.7:

The problem SAT(REACH[∅]) is solvable in polynomial time.

Recall that many NNL specifications are negations of ∃NNL[ReLU] sentences. As a
corollary of Theorem 3.4, we can cover this case, too:

Theorem 3.8:

The following decision problem is coNP-complete.

Input: A sentence ϕ ∈ ∃NNL[ReLU].

Question: Do we have |= ¬ϕ?
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ex − e−x
ex + e−x

Figure 3.10: (Local) activation functions given by g : R→ R

Exercise 3.10:

In Theorem 3.8, why do we have to restrict inputs to sentences?

3.5 Beyond ReLU Neural Networks

So far, we mainly considered ReLU neural networks. But how about decidability for
general neural networks? In this section, we establish equivalence between verification for
a particular set of activation functions and LRA extended by the exponential function [23].

Definition 3.11: First-Order Formulas over the Real Exponential Field

Formulas from REF (first-order formulas over the real exponential field) are defined
as follows:

t ::= a | x | t+ t | t · t | et

ϕ ::= t ≤ t | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ
where x ∈ X and a ∈ Q.

The semantics of the new terms is given as follows (for an interpretation function I):

– I(et) = eI(t)

– I(t1 · t2) = I(t1) · I(t2)

Let NNL∗ be a shorthand for NNL[ReLU,NLReLU, σ, tanh]. We recall these activation
functions in Figure 3.10. The decidability status of SAT(REF), also called Tarski’s ex-
ponential function problem, is unknown. We show a result, due to [23], stating that the
problem is effectively equivalent to SAT(NNL∗).

Theorem 3.9: Expressive Equivalence of NNL∗ and REF [23]

We have NNL∗ ≤ REF and REF ≤ NNL∗.
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Proof. The statement follows from the two propositions below.

Proposition 3.6:

We have NNL∗ ≤ REF.

Proof. It remains to consider neural networks N = (L ) with L = (A,b, f) and f = σ
or f = tanh or f = NLReLU. Let m = in(L ) and n = out(L ).

We construct an REF formula ϕN (x1, . . . , xm, y1, . . . , yn) such that, for all real numbers
r1, . . . , rm, s1, . . . , sn ∈ R,

JN K(r1, . . . , rm) = (s1, . . . , sn) iff |= ϕN (r1, . . . , rm, s1, . . . , sn) .

We set

ϕN (x1, . . . , xm, y1, . . . , yn) =
n∧

i=1

∃z.




z = bi +
m∑

j=1

ai,j · xj

∧ αf (z, yi)


 .

where

αf (z, yi) =





yi · (1 + ez) = ez if f = σ

yi · (e2z + 1) = (e2z − 1) if f = tanh
(

(z ≤ 0 ∧ yi = 0)

∨ (z > 0 ∧ eyi = z + 1)

)
if f = NLReLU

The rest of the induction follows exactly the lines of the proof of Proposition 3.1.

Now, we translate REF formulas into NNL∗ formulas. In the following, let η = NLReLU.

Proposition 3.7:

We have REF ≤poly NNL∗.

Towards the proof, we establish a series of intermediary results:

Lemma 3.4:

For every function f : R → R from {ReLU, η, σ, tanh, σ−1, tanh−1}, there is an
NNL∗ formula ϕf (x, y) ∈ such that, for all interpretation functions I, we have

I |= ϕf (x, y) iff f(I(x)) = I(y) .

Proof. For f ∈ {ReLU, η, σ, tanh}, let Nf = (L ) where L = ((1), (0), f). We have
JNfK = f . Therefore, we can set ϕf (x, y) = (Nf (x) = y). Moreover, we let ϕσ−1(x, y) =
(Nσ(y) = x) and ϕtanh−1(x, y) = (Ntanh(y) = x).

Henceforth, we will write f(x) = y as a shorthand for ϕf (x, y).
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Lemma 3.5:

There is an NNL∗ formula ϕln(x, y) such that, for all interpretation functions I, we
have

I |= ϕln(x, y) iff ln(I(x)) = I(y) .

Proof. We will express ln in terms of σ−1, tanh−1, and η:

– For all r ∈ R such that r ≥ 1:

η(r − 1) = ln(r)

– For all r ∈ R such that 0 < r < 1:

σ−1(r) = ln(r)− ln(1− r)

tanh−1(r) =
1

2
(ln(1 + r)− ln(1− r))

σ−1(r)− 2 tanh−1(r) + η(r) = ln(r)− ln(1− r)− ln(1 + r) + ln(1− r) + ln(1 + r)

= ln(r)

Thus, we can set

ϕln(x, y) =




x > 0

∧ (x ≥ 1 ⇒ ∃z.(z = x− 1 ∧ η(z) = y))

∧ (x < 1 ⇒ ∃z1, z2, z3.




y = z1 − 2 · z2 + z3

∧ σ−1(x) = z1

∧ tanh−1(x) = z2

∧ η(x) = z3







.

This concludes the proof.

Lemma 3.6:

There is an NNL∗ formula ϕexp(x, y) such that, for all interpretation functions I,
we have

I |= ϕexp(x, y) iff eI(x) = I(y) .

Proof. We set ϕexp(x, y) = ϕln(y, x) (obtained by exchanging x and y in ϕln(x, y)).

Henceforth, we will write ex = y as a shorthand for ϕexp(x, y).

Lemma 3.7:

There is an NNL∗ formula ϕmult(x, y, z) such that, for all interpretation functions
I, we have

I |= ϕmult(x, y, z) iff I(x) · I(y) = I(z) .
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Proof. Recall that, for all r, s ∈ R with r, s > 0, we have r · s = eln(r)+ln(s). We can set

ϕmult(x, y, z) =




∧ (x = 0 ∨ y = 0) ⇒ z = 0

∧ (x > 0 ∧ y > 0) ⇒ ∃z1, z2, z3.




ln(x) = z1

∧ ln(y) = z2

∧ z1 + z2 = z3

∧ ez3 = z




∧ (x < 0 ∧ y > 0) ⇒ ∃z1, z2, z3, x
′, z′.




x′ = −x
ln(x′) = z1

∧ ln(y) = z2

∧ z1 + z2 = z3

∧ ez3 = z′

∧ z = −z′




∧ · · ·




Completing the formula is left as an exercise.

Exercise 3.11:

Fill the dots in the definition of ϕmult(x, y, z) in the proof of Lemma 3.7.

Henceforth, we will write x · y = z as a shorthand for ϕmult(x, y, z).

We are now ready to prove Proposition 3.7 stating that REF ≤ NNL∗:

Proof of Proposition 3.7. Consider a formula ϕ = (t1 ≤ t2) and let T be the set of
subterms occurring in t1 or t2. We replace ϕ with

∃(zt)t∈T.(zt1 ≤ zt2 ∧ ψt1 ∧ ψt2)

where ψt1 and ψt2 are defined inductively by

ψa = (za = a)
ψx = (zx = x)
ψt+t′ = (zt + zt′ = zt+t′ ∧ ψt ∧ ψt′)
ψt · t′ = (zt · zt′ = zt · t′ ∧ ψt ∧ ψt′)
ψet = (ezt = zet ∧ ψt)

Doing this with all inequalities t1 ≤ t2, we obtain the desired NNL∗ formula.
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Chapter 4

Recurrent Neural Networks

Feed-forward neural networks process one single input vector and produce an output
vector. In this chapter, we look at neural networks that process sequences. More precisely,
they may translate sequences of input vectors into sequences of output vectors, or serve
as sequence classifiers.

4.1 Definition and Semantics

We consider a simple class of recurrent neural networks, also known as Elman neural
networks [16], rather than more advanced architectures such as long short-term memory
(LSTM) [22].

Definition 4.1: Recurrent Neural Network

A recurrent neural network (RNN) is a triple R = (L in,L out,h(0)) where, for some
m,n, o ∈ N+,

– L in is a feed-forward layer with dim(L in) = (n+m,n),

– L out is a feed-forward layer with dim(L out) = (n, o),

– h(0) ∈ Qn is the initial (hidden) state vector.

If L in uses activation function f and L out uses activation function g, we call R an
(f, g)-RNN. We call

– state(R) = n the state dimension of R (i.e., the dimension of each hidden state),

– in(R) = m the input dimension of R (i.e., the dimension of each input symbol),

– out(R) = o the output dimension of R (i.e., the dimension of each output symbol).

However, states are considered to be hidden, and the type of the input-output relation is
solely described by dim(R) = (m, o). When we see R as a sequence-to-sequence trans-
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· · · L in

L out

h(τ−1) ∈ Rn h(τ) ∈ Rn

x(τ) ∈ Rm

L in

L out

h(τ+1) ∈ Rn

x(τ+1) ∈ Rm

· · ·

y(τ+1) ∈ Roy(τ) ∈ Ro

Figure 4.1: Sequence processing by an RNN through time

ducer1, we consider the mapping

JRK :

{
(Rm)+ → (Ro)+

x(1) . . .x(`) 7→ y(1) . . .y(`)

where, for all discrete time points τ ∈ {1, . . . , `},

h(τ) = JL inK(h(τ−1)

�� x
(τ))

y(τ) = JL outK(h(τ))

Recall that h(τ−1)

�� x
(τ) is the vertical concatenation of h(τ−1) and x(τ). The computation

is illustrated in Figure 4.1. That is, along the way, R also computes a sequence of hidden
states h(1) . . .h(`) ∈ (Rm)+. Note that JRK is length preserving, i.e., an input sequence
containing ` vectors is always mapped to an output sequence containing ` vectors.

It can actually be useful to view R as an (infinite) automaton coming with a state-
transition function δR : Rn × Rm → Rn defined by δR(h,x) = JL inK(h �� x), which is
canonically extended to sequences. When considering R as a sequence-to-vector trans-
ducer, we would be iterested in the mapping

⟪R⟫ :

{
(Rm)+ → Ro

w 7→ JL outK(δR(h(0), w)) .

RNNs as String Transducers. Though input and output symbols are vectors over
real numbers, they allow us to deal with symbols from a finite alphabet as well. This is
important in natural language processing, where words are considered as single symbols
and are encoded, for example via one-hot encoding, as vectors.

1We use the terms sequence and string interchangeably. However, we rather avoid the term word in
this context. In NLP, words often refer to what we call letters (or tokens).
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Definition 4.2: One-Hot Encoding

Let Σ be a finite alphabet with |Σ| = m. A one-hot encoding encΣ of Σ is an
injective mapping Σ → {0, 1}m ⊆ Rm such that, for all α ∈ Σ, the vector x =
encΣ(α) satisfies

∑m
i=1 xi = 1. For example, for Σ = {α, β}, we may set encΣ(α) =

(1, 0)> and encΣ(β) = (0, 1)>.

The corresponding one-hot decoding is the mapping decΣ : Rm → Σ defined by
decΣ(x) = α where α is such that argmax(encΣ(α)) = min(argmax(x)). For exam-
ple, we have decΣ((0.7, 0.5)>) = decΣ((0.5, 0.5)>) = α, and decΣ((0.2, 0.5)>) = β.

Remark 4.1: Binary Alphabets

If Σ is a binary alphabet such as {α0, α1}, we may also choose the dimension to
be m = 1 and define encΣ(αi) = i as well as decΣ(x) = α1 iff x > θ (or x ≥ θ)
for some given threshold θ. This is particularly common in the output layer in
combination with activation function σ and threshold θ = 0.5.

The mappings encΣ and decΣ are extended to sequences as expected, i.e., encΣ(α1 . . . α`) =
encΣ(α1) . . . encΣ(α`) and decΣ(x(1) . . .x(`)) = decΣ(x(1)) . . . decΣ(x(`)). In the following,
we assume that all finite alphabets come with their one-hot encoding/decoding.

Let Σ and Γ be finite alphabets with associated one-hot encodings encΣ and encΓ, and
decodings decΣ and decΓ. Furthermore, assume |Σ| = in(R) and |Γ| = out(R). Then,
RNN R defines the mappings

JRKΣ,Γ :

{
Σ+ → Γ+

w 7→ decΓ(JRK(encΣ(w)))
⟪R⟫Σ,Γ :

{
Σ+ → Γ

w 7→ decΓ(⟪R⟫(encΣ(w)))

Remark 4.2: Alternative Semantics

If the activation function of L out is softmax, we may consider the mapping

⟪R⟫probΣ,Γ :

{
Σ+ → Distr(Γ)

w 7→ ⟪R⟫(encΣ(w))

where Distr(Γ) is the set of probability distributions over Γ. The idea is that, for
the vector y = ⟪R⟫probΣ,Γ (w), the probability of selecting β ∈ Γ as the next letter is
yargmax(encΓ(β)). This view has applications in in character-level language modeling
or text generation.

In the context of reactive systems, which are supposed to run forever, it is partic-
ularly interesting to consider infinitary versions of JRK and ⟪R⟫, which are of the
following form and whose definitions are as expected:

JRKω : (Rm)ω → (Ro)ω

JRKωΣ,Γ : Σω → Γω
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RNNs as String Classifiers. Let R be an RNN and m = in(R). If out(L out) = 1,
then R can be viewed as a classifier of strings over Rm: For ./ ∈ {≥, >,=} and θ ∈ R,
we define

L./ θ(R) = {w ∈ (Rm)+ | ⟪R⟫(w) ./ θ}
to be the language of R, i.e., the set of strings that have a sufficient “score“, or acceptance
probability, and are therefore classified by R as positive.2

Suppose we are given a finite alphabet Σ. The RNN R is called an RNN over Σ if
m = |Σ|. Like above, R can then take one-hot encoded letters from Σ as inputs. If, again,
out(L out) = 1, we can interpret R as a classifier of strings over Σ. For ./ ∈ {≥, >,=}
and θ ∈ R, we let

L./ θΣ (R) = {w ∈ Σ+ | ⟪R⟫(encΣ(w)) ./ θ}
be the language of R over Σ.

Example 4.1: Example Applications of RNNs

Among the classical practical applications of RNNs, let us mention price prediction,
text translation, or text classification. Several concrete use cases are given in the
blog article [25]. Consider, for example, an email spam classifier that processes a
text, i.e., a sequence over a finite alphabet Σ (where each letter represents a single
word), and outputs a probability of being classified as spam. In other words, we are
interested in filtering emails contained in a language of the form L≥ θ

Σ (R). Hereby,
it is up to the user to decide on the threshold θ to achieve a reasonable trade-off
between sensitivity (true positive rate) and specificity (true negative rate).

4.2 Undecidability of the Emptiness Problem

In this section, we demonstrate that, unfortunately, determining the emptiness of the
language of a given RNN, when treated as a string classifier, is undecidable.

Theorem 4.1: Undecidability of RNN Language (Non)emptiness

For all ./ ∈ {≥, >,=}, the following decision problem is undecidable:

Input: A finite alphabet Σ and a (ReLU, σ)-RNN R over Σ with out(R) = 1.

Question: Do we have L
./ 1

2
Σ (R) 6= ∅ ?

As this fundamental decision problem is already undecidable for RNNs, this will also be
the case for the majority of non-trivial verification tasks. Thus, it is important to identify
suitable abstractions or restrictions. There has been an ongoing and fruitful effort to
establish positive verification results specifically designed for RNNs [2, 24,27,42,53].

The rest of this section is dedicated to the proof of Theorem 4.1. We first show that
(ReLU, σ)-RNNs can simulate all probabilistic finite automata (PFAs). PFAs were intro-

2If the activation function of L out is the sigmoid function σ, we can also interpret the score as
acceptance probability.
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duced and studied by Rabin [41]. Their (non)emptiness problem is undecidable and they
are strictly more expressive than finite automata.

Definition 4.3: Probabilistic Finite Automaton (PFA)

Let Σ be a finite alphabet. A probabilistic finite automaton (PFA) over Σ is a tuple
A = ((Pα)α∈Σ,λ,γ) where, for some n ∈ N+,

– Pα = (pαj,i) ∈ ([0, 1] ∩Q)n×n such that, for all i ∈ {1, . . . , n}, ∑n
j=1 p

α
j,i = 1,

– λ ∈ {0, 1}n is the initial state vector (a column vector) such that
∑n

i=1 λi = 1,

– γ ∈ {0, 1}n is the final state vector (a row vector).

Note that Pα is a left stochastic matrix. We call it the transition-probability matrix of
α ∈ Σ. The intuition is that A has an (implicit) set of states Q = {q1, . . . , qn}, and
pαj,i is the probability that, when reading α in state qi, we go to state qj.

3 Thus, A has
an equivalent representation as a state-transition graph (Q, ι,∆, F ), which is basically a
finite automaton with transition probabilities. The initial state is ι = qi for λi = 1, and
the set of final states is F = {qi | i ∈ {1, . . . , n} with γi = 1}. Moreover, we have a set of
transitions ∆ ⊆ Q×Σ× (0, 1]×Q containing, for all α ∈ Σ and all i, j ∈ {1, . . . , n} such
that pαj,i > 0, the transition (qi, α, p

α
j,i, qj). We will switch between these representations

at discretion.

PFA A defines the mapping

δA :

{
Rn × Σ→ Rn

(x, α) 7→ Pα · x .

Suppose that δA gets (x, α) as arguments and that x represents a probability distribution
over {q1, . . . , qn}, i.e., xi is the probability of being in state qi. Then, letting x′ = δA(x, α),
x′i can naturally be interpreted as the probability of being in state qi after reading α. Using
the extension of δA to strings, we obtain the mapping

JAK :

{
Σ∗ → [0, 1]

w 7→ γ · δA(λ, w) .

Thus, starting from the initial state, JAK(w) is the probability of reaching a final state
after reading w. Finally, for ./ ∈ {≥, >,=} and θ ∈ [0, 1], we define the language

L./ θ(A) = {w ∈ Σ+ | JAK(w) ./ θ} .

We restrict to nonempty strings here, aligning with the definition of RNN languages.

3We choose pαj,i rather than the more standard pαi,j , as it reflects the the way computations are
represented in the layers of RNNs, where the transition matrix on the left is multiplied with the current
state on the right hand side.
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Remark 4.3: Reactive vs. Generative Probabilistic Automata

PFAs due to Rabin are also called reactive, as they yield a probability distribution
when providing an input. On the other hand, generative probabilistic automata
(also called Segala automata [46]) generate the next letter according to a probability
distribution over Σ×Q. In formal terms, we may consider that reactive PFAs (as
we study here) are equipped with a transition function δ : Q × Σ → Distr(Q),
whereas generative PFAs have a transition function of type δ : Q→ Distr(Σ×Q).

Example 4.2: Probabilistic Finite Automaton

Let Σ = {α, β}. Consider the PFA A = ((Pα,Pβ),λ,γ) over Σ given by

λ =

(
1

0

)
Pα =

(
1
3

1
3

2
3

2
3

)
Pβ =

(
0 1

1 0

)
γ =

(
1 0

)

Alternatively, A can be represented by its state-transition diagram:

0

1

q0 q1

0 1

q2q1

α α

β

β

α

α

1

3

2

3

1

3

2

3

For k ∈ N, we have

JAK(αβk) =
(
1 0

)
·
(

0 1

1 0

)k

·
(

1
3

1
3

2
3

2
3

)
·
(

1

0

)
=





1
3

if k is even

2
3

if k is odd

It is easy to see that every string ending in α leads to the final state with proba-
bility 1

3
. Thus, no such strings is in L≥

1
2 (A). Altogether, we obtain

L≥
1
2 (A) = {βk | k is odd} ∪ {wαβk | w ∈ {α, β}∗ and k is odd} .

Note that the image of JAK is finite since we have JAK(w) ∈ {0, 1
3
, 2

3
, 1} for all

w ∈ Σ+. In general, however, this is not the case.

PFAs enjoy some essential closure properties:

Lemma 4.1: Closure Properties of PFAs

Let Σ be a finite alphabet, p ∈ [0, 1] be rational, and A and B be PFAs over Σ.
We can effectively construct PFAs C1, C2, C3 over Σ such that, for all w ∈ Σ+,

– JC1K(w) = 1− JAK(w),

– JC2K(w) = p · JAK(w) + (1− p) · JBK(w), and
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– JC3K(w) = JAK(w) · JBK(w).

Exercise 4.1:

Prove Lemma 4.1.

The next theorem states that RNNs with a particular set of activation functions are at
least as expressive as PFAs. It constitutes the first step towards showing that emptiness
of RNNs is undecidable.

Theorem 4.2: RNNs Recognize All PFA Languages

Let Σ be a finite alphabet and A be a PFA over Σ. Moreover, let ./ ∈ {≥, >,=}
and θ ∈ [0, 1] be rational. We can effectively construct a (ReLU, σ)-RNN R over
Σ such that out(R) = 1 and

L
./ 1

2
Σ (R) = L./ θ(A) .

Before we prove the theorem formally, we illustrate the construction using an example.

Example 4.3: From PFAs to RNNs

An obvious first idea is to choose L in such that in(L in) = |Σ| (with one-hot
encoded letters as inputs) and state(L in) = |Q| as state dimension. The corre-
sponding matrix Ain would then have dimension |Q| × (|Q|+ |Σ|). However, in A,
we have |Σ| · |Q|2 transition probabilities, which thus may not fit into Ain.

The solution will be to “augment” the set of states so that every state has in-
coming transitions of a unique letter type. Consider, for example, the PFA A
from Example 4.2. Recall that Σ = {α, β} and suppose encΣ(α) = (1, 0)> and
encΣ(β) = (0, 1)>. The PFA A′ illustrated in Figure 4.2a, is equivalent to the PFA
A from Example 4.2, i.e., JAK(w) = JA′K(w) for all w ∈ Σ∗. However, every state
of A′ now has only incoming transitions labeled with a dedicated letter α or β
(which we accordingly call an α- or β-state). Note that A′ is given by the following
ingredients:

λ =




1

0

0

0




Pα =




1
3

1
3

1
3

1
3

2
3

2
3

2
3

2
3

0 0 0 0

0 0 0 0




Pβ =




0 0 0 0

0 0 0 0

0 1 0 1

1 0 1 0




γ =
(
1 0 1 0

)

Thanks to the transformation, the transition-probability matrices Pα and Pβ no
longer “overlap”: for all i, j ∈ {1, 2, 3, 4}, at most one of pαj,i and pβj,i is non-zero.

That is, the sum Pα and Pβ accommodates all probabilities occurring in A′ in a
single matrix of dimension R4×4. The layer L in of the desired RNN is illustrated in
Figure 4.2b for a neuron belonging to the α-state q2. If the input letter is α, i.e., the
input vector is (1, 0)>, the output neuron indeed receives the updated probability
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of being in q2 after processing the input. If, on the other hand, the input is β and,
respectively, (0, 1)>, then the result before applying ReLU will be ≤ 0 so that the
overall result is 0. As q2 is an α-state, the probability of being in q2 after processing
β is indeed 0.

The study of the expressive power of RNNs and their extensions and variants in terms of
formal languages has a long tradition and is still is an active research field [36]. In this
context, a prominent result by Siegelmann and Sontag states that RNNs can simulate
all Turing machines [48]. A general technique of transforming finite-state machines into
equivalent RNNs goes back to Minsky [37]. It has recently been generalized to generative
PFAs [50], which define probability distributions over Σ∗ (cf. Remark 4.2). Here, we apply
this technique to translate (reactive) PFAs into RNNs, aiming to show undecidability of
the RNN emptiness problem.

Now, let us formally prove Theorem 4.2.

Proof of Theorem 4.2. Let Σ be a finite alphabet and m = |Σ|. Let A = ((Pα)α∈Σ,λ,γ)
be a PFA over Σ, with state-transition representation (Q, ι,∆, F ) where Q = {q1, . . . , qn}.
Moreover, fix ./ ∈ {≥, >,=} and a rational number θ ∈ [0, 1].

Without loss of generality, we assume that, for every i1, i2, j ∈ {1, . . . , n}, α, β ∈ Σ, and
p1, p2 ∈ (0, 1] such that (qi1 , α, p1, qj) ∈ ∆ and (qi2 , β, p2, qj) ∈ ∆, we have α = β.4 We call
state qj whose incoming transitions all carry letter α an α-state. Note that the transition
probability matrices are not “overlapping”, i.e., for all α, β ∈ Σ and i, j ∈ {1, . . . , n} such
that pαj,i > 0 and pβj,i > 0, we have α = β.

4If A does not satisfy this property, we can convert it choosing Q × Σ as new set of states and
introducing, for all (qi, α, p, qj) ∈ ∆, transitions ((qi, β), α, p, (qj , α)) for all β ∈ Σ.
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We now formally construct the corresponding (ReLU, σ)-RNN R = (L in,L out,h(0)) over

Σ such that out(L out) = 1 and L
./ 1

2
Σ (R) = L(A).

– We let h(0) = λ.

– Define L in = (Ain,bin,ReLU) as follows: Let Ain = P �� C be the concatenation of
the matrices P ∈ [0, 1]n×n and C ∈ {0, 1}n×m defined by

P =
∑

α∈Σ

Pα

and, for all j ∈ {1, . . . , n} and k ∈ {1, . . . ,m},

cj,k =

{
1 if argmax(encΣ(α)) = k

0 otherwise.

Finally, for all j ∈ {1, . . . , n}, we set binj = −1.

– We define L out = (Aout,bout, σ) by Aout = γ and bout = (−θ).

Correctness Proof. Let us show that, for all hidden states h ∈ [0, 1]n and α ∈ Σ,
δR(h, encΣ(α)) = δA(h, α). Let x = encΣ(α). We have

δR(h, encΣ(α)) = δR(h,x) = JL inK(h �� x)

= ReLU(Ain · (h �� x) + bin)

= ReLU((P �� C) · (h �� x) + bin)

= ReLU(P · h + C · x + bin)

= ReLU((
∑

β∈Σ Pβ) · h + C · x + bin)

Let y = (y1, . . . , yn)> = C · x + bin. For all j ∈ {1, . . . , n}, we have

yj =

{
0 if qj is an α-state

−1 otherwise.

Thus, letting z = (
∑

β∈Σ Pβ) · h + y ∈ Rn, we get, for all j ∈ {1, . . . , n},

{
zj = Pα

j · h if qj is an α-state

zj ≤ 0 otherwise.

where Pα
j is the j-th row of Pα. We conclude

δR(h, encΣ(α)) = ReLU(z) = Pα · h = δA(h, α) .
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With this, we obtain that, for all w ∈ Σ+,

⟪R⟫(encΣ(w)) ./ 1
2

iff JL outK(δR(h(0), encΣ(w))) ./ 1
2

iff JL outK(δA(λ, w)) ./ 1
2

iff σ(γ · δA(λ, w)− θ) ./ 1
2

iff γ · δA(λ, w)− θ ./ 0

iff γ · δA(λ, w) ./ θ

iff JAK(w) ./ θ

We have shown L
./ 1

2
Σ (R) = L./ θ(A).

To prove Theorem 4.1, i.e., undecidability of RNN language emptiness, it remains to
establish the corresponding facts for PFAs, depending on ./ ∈ {≥, >,=}.
The following undecidability results for PFAs are due to [7] and [39]. The proofs were
later simplified and strengthened in [18]. For a concise overview of what is decidable and
undecidable in PFAs, we refer to [17].

Theorem 4.3: Undecidability of PFA Language Emptiness [7, 39]

The following three decision problems are undecidable:

Input: A finite alphabet Σ and a PFA A over Σ.

Question 1: Do we have L= 1
2 (A) 6= ∅ (i.e., JAK(w) = 1

2
for some w ∈ Σ+)?

Question 2: Do we have L≥
1
4 (A) 6= ∅ ?

Question 3: Do we have L>
1
8 (A) 6= ∅ ?

Proof. We first consider Question 1. The proof is a reduction from the following modified
Post’s correspondence problem (modified PCP)5.

Input: A finite alphabet Σ and morphisms f1, f2 : Σ∗ → {0, 1}∗ such that fi(α) ∈
1(0 + 1)∗ for all i ∈ {1, 2} and α ∈ Σ.

Question: Is there w ∈ Σ+ such that f1(w) = f2(w)?

Given an instance f1, f2 of the modified PCP, we will effectively construct a PFA A over
Σ such that, for all w ∈ Σ+, we have f1(w) = f2(w) iff JAK(w) = 1

2
, which implies the

theorem.

5The standard undecidable PCP does not have the restriction fi(α) ∈ 1(0 + 1)∗. However, when we
start with an unrestricted instance of the form g1, g2 : Σ → {0, 1}+, we can translate it into f1, f2 :
Σ → {0, 1}∗ defined by fi = f ◦ gi where f : {0, 1}∗ → {0, 1}∗ is the morphism given by f(0) = 10 and
f(0) = 11. Then, fi(α) starts with 1 for all α ∈ Σ. Moreover, we easily see that g1(w) = g2(w) for some
w ∈ Σ+ iff f1(w) = f2(w) for some w ∈ Σ+
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Let ε = 0 and, for u1 . . . uk ∈ {0, 1} with k ≥ 1,

u1 . . . uk = 0.ukuk−1 . . . u1 (in binary)

=
uk
21

+
uk−1

22
+ . . .+

u1

2k
.

Thanks to the modified PCP, we have, for all w ∈ Σ∗, f1(w) = f2(w) iff f1(w) = f2(w).

Towards the PFA A, we will construct two PFAs A1 and A2 over Σ such that, for all
i ∈ {1, 2} and w ∈ Σ∗, we get

JAiK(w) = fi(w) . (4.1)

We then combine A1 and A2 using Lemma 4.1 and obtain a PFA A over Σ such that, for
all w ∈ Σ∗,

JAK(w) =
1

2
(JA1K(w) + (1− JA2K(w))) .

Then, we are done as JAK(w) = 1
2

iff f1(w) = f2(w) iff f1(w) = f2(w).

PFA Evaluating Binary Numbers. The main building block in the construction
of both A1 and A2 will be a PFA B = ((P0,P1),λ,γ) over {0, 1} such that, for all
ν ∈ {0, 1}∗, JBK(ν) = ν.6 Thus, B “evaluates” ν. It is given by

λ =

(
1

0

)
P0 =

(
1 1

2

0 1
2

)
P1 =

(
1
2

0

1
2

1

)
γ =

(
0 1

)

We show JBK(ν) = ν, by induction on k = |ν|. The claim clearly holds for k = 0, i.e.,
ν = ε. Moreover, for the case k = 1,

JBK(0) = p0
2,1 = 0.0 = 0

and JBK(1) = p1
2,1 = 0.1 = 1

Now suppose, for ν = u1 . . . uk with k ≥ 1, that JBK(ν) = ν holds. Moreover, assume

δB(λ, ν) =

(
1− p
p

)

for suitable p ∈ [0, 1]. In particular,

p = JBK(ν) = ν . (4.2)

Let u ∈ {0, 1}. We have

JBK(u1 . . . uku) =
(
0 1

)
·Pu ·

(
1− p
p

)
=





p

2
if u = 0

1

2
+
p

2
if u = 1

=
u

2
+
p

2

(4.2)
= 0.u + 0.0uk . . . u1 = 0.uuk . . . u1 = u1 . . . uku

6Note that P0 and P1 should not be confused with powers of some matrix P.

51



CHAPTER 4. RECURRENT NEURAL NETWORKS

Construction of A. Let i ∈ {1, 2}. Building on the PFA B = ((P0,P1),λ,γ), we now
construct the PFA Ai = ((Pα)α∈Σ,λ,γ) over Σ such that, for all strings w ∈ Σ∗, we have
JAiK(w) = fi(w). For ν = u1 . . . uk with k ≥ 1, define Pν = Puk · . . . · Pu1 . With this,
given a letter α ∈ Σ, we let Pα = Pfi(α). Indeed, for all w = α1 . . . α` ∈ Σ∗, we obtain

JAiK(w) = γ ·Pα` · . . . ·Pα1 · λ
= γ ·Pfi(α`) · . . . ·Pfi(α1) · λ
= γ ·Pfi(w) · λ = fi(w) .

This concludes the proof of undecidability of the first problem.

Questions 2 and 3. Question 1 can be reduced to Question 2 as follows: From the
given PFA A, we construct, using Theorem 4.1, a PFA B over Σ such that, for all w ∈ Σ∗,
we have

JBK(w) = JAK(w) · (1− JAK(w)) .

Note that 1
4

is the global maximum of the function r 7→ r · (1− r), which is only reached
for the argument r = 1

2
. Thus, we have JBK(w) ≥ 1

4
iff JAK(w) = 1

2
.

Undecidability of Question 3 can be obtained by analyzing the transition probabilities in
the automata considered so far. We refer the reader to [18].

We now have shown Theorem 4.1, using the effective constructions from Theorems 4.2 and
4.3 to reduce PFA emptiness problems for ./ ∈ {≥, >,=} to RNN emptiness. Specifically,
for every PFAA over Σ, we constructed (ReLU, σ)-RNNsR1,R2,R3 over Σ whose output
layers have output dimension 1 and such that the following hold:

L
= 1

2
Σ (R1) = L= 1

2 (A)

L
≥ 1

2
Σ (R2) = L≥

1
4 (A)

L
> 1

2
Σ (R3) = L>

1
8 (A)
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Chapter 5

Attention and Transformers

Transformers have been introduced by Vaswani as a powerful alternative to RNNs and
their variants [55]. Like RNNs, transformers can be used as sequence-to-sequence trans-
ducers, as they process sequences of arbitrary length. For language-recognition tasks, we
will consider only the encoder (or decoder) part, as is the case in popular language-model
architectures like BERT and GPT.

Verification issues for transformers have only been addressed sparingly so far. The main
purpose of this chapter is to highlight a few interesting questions for future research.

5.1 Attention

An essential component of a transformer is attention, specifically, an attention head.
There is an analogy between attention heads and channels of convolutional neural net-
works. Both allow the network to focus on different aspects and parts of an input.
Therefore, one usually has several attention heads per layer.

Definition 5.1: Attention Head

An attention head H = (Q,K,V) is given by three matrices (i.e., linear transfor-
mations) Q,K ∈ Qnkey×n and V ∈ Qnvalue×n for some n, nkey, nvalue ∈ N+. They are
respectively called query, key, and value matrix.

We let in(H) = n, out(H) = nvalue, and dim(H) = (n, nvalue). Later, we will see that n
can be understood as the dimension of the hidden state of a transformer. Attention head
H defines a mapping

JHK :

{
(Rn)+ × Rn → Rnvalue

(z(1) . . . z(`),x) 7→ y

which allows it to situate a vector (word/letter embedding or hidden state) inside a whole
sequence. Let q = Q ·x. Moreover, for i ∈ {1, . . . , `}, let k(i) = K ·z(i) and v(i) = V ·z(i).
The semantics is then given by

y =
∑̀

i=1

pi · v(i)
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· · ·z(1) z(2) z(3) z(ℓ)

· · ·k(1) k(2) k(3) k(ℓ) v(ℓ)v(1) v(2) v(3) q

x

a1 a2 a3 aℓ

p1 p2 p3 pℓ· · ·

y=

K V QK K KV V V

softmax*

∑
pj · v(j)

︷ ︸︸ ︷

Figure 5.1: Illustration of an attention head H = (Q,K,V)

where (p1, . . . , p`) = Weights(a1, . . . , a`) with

ai =
1
√
nkey
· (q> · k(i)) .

The scaling parameter 1√
nkey

is optional. The function Weights : R+ → R+ is a length-

preserving weight function. Usually, one chooses Weights = softmax∗ : R+ → R+, where
the latter is softmax adapted for sequences, i.e., for a variable number of input arguments,
instead of a fixed number of input values.

For theoretical considerations, one sometimes replaces softmax∗ by other weight functions,
in particular:

– min-argmax∗ : R+ → {0, 1}+, also called leftmost-hard attention, and

– avg-argmax∗ : R+ → R, called average-hard attention.

Here, min-argmax∗(x1, . . . , x`) = (b1, . . . , b`) where bi = 1 iff i = min(argmax(x1, . . . , x`)).
For example, min-argmax∗(3, 7, 4, 7) = (0, 1, 0, 0). Moreover, avg-argmax∗ takes the av-
erage for all maximal elements, i.e., avg-argmax∗(x1, . . . , x`) = (b1, . . . , b`) where

bi =
1

|argmax(x1, . . . , x`)|

for all i ∈ argmax(x1, . . . , x`), and bi = 0 for all other i. For example, avg-argmax∗(3, 7, 4, 7) =
(0, 0.5, 0, 0.5).

The working principle of attention heads is illustrated in Figure 5.1.

In the following, we develop an attention head that will later serve as a building block of
transformers (cf. Examples 5.2 and Examples 5.3).
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Exercise 5.1: Attention Head Computing the Maximum

Define an attention head Hmax = (Q,K,V), using avg-argmax∗ as weight function
and with parameters n = 3 and nkey = nvalue = 1, such that JHmaxK : (R3)+×R3 →
R where, for all z1, . . . , z`, x ∈ R,

JHmaxK((z1, 0, 1)> . . . (z`, 0, 1)>, (x, 0, 1)>) = max{z1, . . . , z`} .

Solution:

Note that dim(Hmax) = (3, 1). The matrices can be chosen as follows:

Q =
(
0 0 1

)
K = V =

(
1 0 0

)

This actually also works with min-argmax∗ instead of avg-argmax∗. An illustration
of Hmax can be found in Figure 5.5.

Several attention heads can be combined to form layers.

Definition 5.2: Multi-Head Attention Layer

A (multi-head) attention layer A = (H(1), . . . ,H(d),W) has d ≥ 1 attention
heads H(i) = (Q(i),K(i),V(i)) and one additional linear transformation in terms
of a matrix W. We require that all attention heads share the same dimensions
n, nkey, nvalue ∈ N+ and that W ∈ Qn×(d ·nvalue).

We let in(A ) = out(A ) = n and dim(A ) = (n, n). We can assign to A three different
semantics:

– The (cross-)attention semantics is given by

JA K :

{
(Rn)+ × (Rn)+ → (Rn)+

(w,x(1) . . .x(`)) 7→ y(1) . . .y(`)

where
y(i) = W · (H(1)(w,x(i)) �� . . . �� H(d)(w,x(i))) .

– The self-attention semantics is defined by

JA Kself :

{
(Rn)+ → (Rn)+

w 7→ JA K(w,w) .

– Finally, the masked self-attention semantics is defined by

JA Kmasked :

{
(Rn)+ → (Rn)+

x(1) . . .x(`) 7→ y(1) . . .y(`)

where (letting wi = x(1) . . .x(i))

y(i) = W · (H(1)(wi,x
(i)) �� . . . �� H(d)(wi,x

(i))) .
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· · ·
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︷ ︸︸ ︷
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Figure 5.2: A multi-head attention layer with masked self-attention semantics

Note that JA Kself and JA Kmasked are length-preserving, and JA K is length-preserving in
the second argument. Masked self-attention is illustrated in Figure 5.2.

Example 5.1: Attention Layer

We continue Exercise 5.1. Let Hmax be the attention head developed there. We
obtain a (single-head) attention layer Amax when we add the matrix Wmax =
(0, 1, 0)> ∈ Q3×1, which writes the result delivered by Hmax into the second compo-
nent of the three-dimensional zero-vector. For an illustration, consider Figure 5.7.

5.2 The Transformer Architecture

Encoder Layer. An encoder layer is of the form E = (A ,N ). It has two compo-
nents, a multi-head attention layer A (with self-attention semantics) and a feed-forward
neural network N with dim(A ) = dim(N ) = (n, n) for some n ∈ N+.1 Abusing no-
tation, JN K can be extended to a mapping (Rn)+ → (Rn)+ letting JN K(x(1) . . .x(`)) =
N (x(1)) . . .N (x(`)). We can now define JEK : (Rn)+ → (Rn)+ by

JEK(w) = Norm(ŵ + JN K(ŵ))

where ŵ = Norm(w + JA Kself(w)) .

1Typically (but not mandatorily), N is a two-layer neural network with ReLU and id as activation
functions, respectively.
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Figure 5.3: The interplay between an encoder layer (left) and a decoder layer (right)

Here, Norm : (Rn)+ → (Rn)+ is the length-preserving layer norm2 and addition is
position-wise (thus length preserving, too). Accordingly, we define dim(E) = (n, n).

The structure of an encoder layer is illustrated on the left-hand side of Figure 5.3.

Remark 5.1: Normalization and Addition

Optionally, the layer norm(s) may be chosen to be the identity function. Moreover,
addition (also called residual connection) may be omitted. However, both greatly
help in the training process of transformers. Moreover, in some applications one
may consider adopting the masked self-attention semantics. That is, alternative
semantics for encoder layer E can be given as

JEK = JN K ◦ JA Kself
or JEK = JN K ◦ JA Kmasked .

Decoder Layer. A decoder layer is similar to a encoder layer, but as part of its input
comes from an encoder layer, its semantics is described in a different way. A decoder
layer (of dimension n) is of the form D = (A (1),A (2),N ). It features two multi-head
attention layers A (1) and A (2) and, like the encoder layer, a feed-forward neural network

2The layer norm usually includes learnable parameters, which we omit in the definition of E for
simplicity.
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N such that dim(A (1)) = dim(A (2)) = dim(N ) = (n, n). Its semantics is a mapping
JDK : (Rn)+ × (Rn)+ → (Rn)+ defined by

JDK(wenc, w) = Norm(w2 + JN K(w2))

where w2 = Norm(w1 + JA (2)K(wenc, w1))

w1 = Norm(w + JA (1)Kmasked(w)) .

Thus, A (1) is actually a masked multi-head attention layer, and A (2) is a cross multi-
head attention layer. We define dim(E) = (n, n). Note that JDK is length-preserving in
its second argument. The decoder layer is illustrated on the right-hand side of Figure 5.3.

Note that Remark 5.1 applies here as well, i.e., normalization and residual connections
are optional. However, in NLP tasks, applying the masked-self attention semantics in
decoder layers allows one to feed complete input and output sequences during training
while avoiding that the decoder can “look into the future”. In fact, its decisions should
be based solely on what it has read/produced so far.

Transformer. Transformers were initially introduced for machine translation. For that
case, we assume ordered finite alphabets Σ and Γ (of words or tokens). We assume that
Γ contains a start-of-sequence symbol SOS and an end-of-sequence symbol EOS. They
indicate when the translation of the output sentence will start and end, respectively. The
semantics of a transformer T over Σ and Γ will define a (partial and not necessarily
length-preserving) mapping

JT KΣ,Γ : Σ+ → Γ∗ .

We start with a length-preserving encoding of the input sequence, realized by an em-
bedding embΣ : Σ+ → (Qn)+. It is obtained from a word embedding3 WEΣ : Σ → Qn

and a positional encoding PE : N+ → Qn and defined, for w = α1 . . . α` ∈ Σ+ by
embΣ(w) = x(1) . . .x(`) where x(i) = WE(αi) +PE(i). We include the mappings embΣ and
embΓ in the definition of a transformer, as they are in principle learnable.

A transformer consists of a stack of encoder layers and a stack of decoder layers.4

Definition 5.3: Transformer

A (machine-translation) transformer with hidden-state dimension n ∈ N+ over Σ
and Γ is a tuple

T = (embΣ, embΓ, (E (1), . . . , E (κ)), (D(1), . . . ,D(κ)),Nout)

such that

– embΣ : Σ+ → (Qn)+ and embΓ : Γ+ → (Qn)+ are embeddings,

– E (1), . . . , E (κ) are encoder layers with dim(E (i)) = (n, n),

– D(1), . . . ,D(κ) are decoder layers with dim(D(i)) = (n, n),

3The one-hot encoding encΣ is a special case of a word embedding.
4RNNs and LSTMS can also be presented in that way, especially when we consider text generation.

We will present transformers in their full form, but then focus on encoders and their capability as
language recognizers.
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Figure 5.4: The interplay between encoder layers (left) and decoder layers (right)

– Nout is a feed-forward neural network with a softmax activation function in its
last layer and dim(Nout) = (n, |Γ|).

Before defining JT KΣ,Γ, we define an intermediate semantics JT KnextΣ,Γ : Σ+ × Γ+ → Γ,
which, for a given input sequence win ∈ Σ+ and an output sequence wout ∈ Γ+ generated
so far, provides the next output letter JT KnextΣ,Γ (win, wout) ∈ Γ to be appended to wout. To
determine JT KnextΣ,Γ (win, wout), we compute

w
(κ)
in = JE (κ)K(w(κ−1)

in ) w
(κ)
out = JD(κ)K(w(κ)

in , w
(κ−1)
out )

...
...

w
(2)
in = JE (2)K(w(1)

in ) w
(2)
out = JD(2)K(w(κ)

in , w
(1)
out)

w
(1)
in = JE (1)K(w(0)

in ) w
(1)
out = JD(1)K(w(κ)

in , w
(0)
out)

w
(0)
in = embΣ(win) w

(0)
out = embΓ(wout)

This interplay between encoder and decoder layers is illustrated in Figures 5.3 and 5.4.

With this, JT KnextΣ,Γ (win, wout) is the min(argmax(Nout(x)))-th letter from Γ where x is the

last vector in w
(κ)
out. Now, SOS is a dummy symbol that allows the decoder to produce a

first output. Thus, JT KnextΣ,Γ (win, SOS) generates the first letter after “reading” the input
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string win. Continuing this scheme, we let

β1 = JT KnextΣ,Γ (win, SOS)

β2 = JT KnextΣ,Γ (win, SOS β1)

β3 = JT KnextΣ,Γ (win, SOS β1β2)

...

Consider the smallest index ` ≥ 1 such that β`+1 = EOS. If ` does not exist, JT KΣ,Γ(win)
is undefined. Otherwise, JT KΣ,Γ(win) = β1 . . . β`.

5.3 Encoder-Only Transformers

Based on the general transformer architecture, we now extract simple architectures, solely
based on encoder layers, that define simpler functions or serve as language recognizer.

Henceforth, all encoder layers E = (A ,N ) may or may not use masked self-attention.
Also recall that residual connections and the normalization are optional in every layer.

Definition 5.4: Encoder-Only Transformer

An encoder-only transformer is a tuple

T = (Nin, E (1), . . . , E (κ),Nout)

where, for some m,n, o ∈ N+,

– Nin and Nout are feed-forward neural networks with dim(Nin) = (m,n) and
dim(Nout) = (n, o), and

– E (1), . . . , E (κ) are encoder layers with dim(E (i)) = (n, n).

Similarly to RNNs, we let in(T ) = m, out(T ) = o, dim(T ) = (m, o), and state(T ) = n.
Analogously, we can now define a length-preserving mapping JT K : (Rm)+ → (Ro)+ as
the function composition

JT K = JNoutK ◦ JE (κ)K ◦ . . . ◦ JE (1)K ◦ JNinK

where, again, JNinK and JNoutK are straightforwardly extended to sequences. We also
define ⟪T ⟫ : (Rm)+ → Ro such that ⟪T ⟫(w) returns the last vector in the sequence
JT K(w).

Just as for RNNs, we can view an encoder-only transformer as a sequence classifier.
Suppose dim(T ) = (m, 1). Then, for ./ ∈ {≥, >,=} and θ ∈ R, we can define the
language

L./ θ(T ) = {w ∈ (Rm)+ | ⟪T ⟫(w) ./ θ} .
Again, we can adjust this definition to cope with languages over a finite alphabet Σ
coming with a one-hot encoding encΣ. If m = |Σ| and dim(T ) = (m, 1), then we let

L./ θΣ (T ) = {w ∈ Σ+ | ⟪T ⟫(encΣ(w)) ./ θ} .
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Figure 5.5: Transformer implementing argmax∗

Example 5.2: Encoder-Only Transformer For argmax∗

We continue Example 5.1. Consider the length-preserving mapping
argmax∗ : R+ → {0, 1}+ over arbitrarily long sequences of real numbers.
We will define an encoder-only transformer T with dim(T ) = (1, 1) and
state(T ) = 3 such that JT K = argmax∗. It is illustrated in Figure 5.5.

In a preprocessing step, we apply Nin such that Nin(x) = (x, 0, 1)>. Next, we
use self-attention in Amax. Thus, H outputs, at every position, the maximum
number occurring in the sequence. Thanks to the residual connection, the ouput is
added to the input vectors. It remains to identify the positions where the first two
components are identical (those are the positions originally carrying the maximum
number). This is taken care of by the neural network N (1), which outputs 0 iff the
first two components are equal. More precisely, for x = (x1, x2, x3)>,

JN (1)K(x) =

{
(0, 0, 1)> if x1 = x2

(1, 0, 1)> if x1 6= x2
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Hereby, we leave the third component unchanged, as this will be useful in the
subsequent example. The neural network N (1) makes use of heaviside as (local)
activation function, defined by

heaviside(x) =

{
0 if x ≤ 0

1 if x > 0 .

However, we could also use a combination of ReLU and σ, adjusting the interpre-
tation of the output accordingly. Finally, Nout inverts the first component. The
specification of Nin, N (1), and Nout is left to the reader as an exercise.
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Figure 5.6: Transformer recognizing sorted sequences (lower part)

Example 5.3: Encoder-Only Transformer Recognizing Sorted Sequences

Again, we will build on Example 5.1. Our goal now is to model a function
f : R+ → {0, 1} that returns 1 if the input sequence is sorted, and 0 otherwise. We
will define an encoder-only transformer T with dim(T ) = (1, 1) and state(T ) = 3
such that, for all w ∈ R+, the last element in the sequence JT K(w) is f(w). In
other words, L= 1(T ) = L≥ 0.5(T ) is the set of sorted sequences over R. The
transformer T = (Nin, E (1), E (2),Nout) is illustrated in Figures 5.6 and Figures 5.7.
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We use the very same components as in Example 5.2. However, we now adopt
the masked self-attention semantics. In that case, every position i in the sequence
can only “see” the previous positions (including i). Thus, at the last position,
we use Hmax in the second encoder layer to detect whether some violation of the
order has occurred. Note that the neural network N (2) will just invert the first
two components so that we can apply Nout as in the previous case.

Note that the encoder layer E (2) could also use the non-masked self-attention se-
mantics, as we are only interested in the output at the very last position.

Example 5.4: Well-Formed Bracket Strings

The last example, which is due to [8], is concerned with the language L over the
finite alphabet Σ = {〈 , 〉} given by the following grammar:

A ::= 〈A 〉 | AA | ε

Thus, L is the set of well-formed bracket strings. Figure 5.8 sketches an encoder-
only transformer T with two encoder layers such that L= 0(T ) = L. Here, we
assume encΣ( 〈 ) = (1, 0)> and encΣ( 〉 ) = (0, 1)>.
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The idea is that the first component of a global state checks whether, in every prefix,
there are at least as many opening as closing brackets. The second component
checks whether, in the entire word, there are as many closing as opening brackets.
A violation of the former property would result in some value 1 in the first compo-
nent after the first encoder layer. If not violated, the original string is valid if the
second component is zero, too. Zeroness in both cases is checked the the second
encoder layer.
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Figure 5.8: Transformer recognizing well-formed bracket strings

A series of recent papers established a rather complete picture of the language classes
defined by transformer architectures, both in terms of logic and circuit complexity. Ex-
amples include [4, 5, 8, 35, 49]. To the best of our knowledge, only few works address the
verification of transformers. Exceptions are [32, 47], which study robustness verification.
General positive decidability results for transformers have yet to be explored. Due to

64



CHAPTER 5. ATTENTION AND TRANSFORMERS

Turing completeness of the general architecture [40], the challenge relies in identifying
architectures that allow for deciding interesiting properties. This represents a crucial area
for future research, particularly in the context of verification. A related question is what
a useful specification could be, for example in the spirit of NNL.
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[5] Pablo Barceló, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir V.
Podolskii. Logical languages accepted by transformer encoders with hard attention.
CoRR, abs/2310.03817, 2023.

[6] Bernd Becker, Christian Dax, Jochen Eisinger, and Felix Klaedtke. LIRA: Han-
dling Constraints of Linear Arithmetics over the Integers and the Reals. In Werner
Damm and Holger Hermanns, editors, Computer Aided Verification, 19th Interna-
tional Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume
4590 of Lecture Notes in Computer Science, pages 307–310. Springer, 2007.

[7] Alberto Bertoni. The solution of problems relative to probabilistic automata in the
frame of the formal languages theory. In Dirk Siefkes, editor, GI - 4. Jahrestagung,
Berlin, 9.-12. Oktober 1974, volume 26 of Lecture Notes in Computer Science, pages
107–112. Springer, 1974.

[8] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations
of transformers to recognize formal languages. In Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20,
2020, pages 7096–7116. Association for Computational Linguistics, 2020.
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