
Weighted Automata

— Version of May 15, 2012 —

Benedikt Bollig and Marc Zeitoun

LSV, ENS Cachan, CNRS

E-mail address: {bollig,mz}@lsv.ens-cachan.fr

Abstract. These notes present results from two series of MPRI lectures on weighted automata. The
content presented in 2010–11 is covered by Chapters 1 to 5. Chapters 6 and 7 were presented in 2009–10.
Most of the exercises are either direct applications, or have already been developed during the lectures.

References listed in these notes go in general beyond the scope of the lectures. Many of them are
specialized research papers highlighting particular details. Reading them is of course not mandatory.
General useful references are some chapters of textbooks: [BR11; Sak09; KS85; SS78; DKV09; BK08].

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008. isbn: 026202649X, 9780262026499.

[BR11] J. Berstel and Ch. Reutenauer. Noncommutative rational series with applications. Vol. 137.
Encyclopedia of Mathematics and Its Applications. Preliminary version at http://tagh.de/
tom/wp-content/uploads/berstelreutenauer2008.pdf. Cambridge University Press, 2011.

[DKV09] M. Droste, W. Kuich, and W. Vogler. Handbook of Weighted Automata. Springer, 2009.

[KS85] W. Kuich and A. Salomaa. Semirings, Automata and Languages. Springer, 1985.

[Sak09] J. Sakarovitch. Elements of Automata Theory. New York, NY, USA: Cambridge University
Press, 2009. isbn: 0521844258, 9780521844253.

[SS78] A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer, 1978.

http://mpri.master.univ-paris7.fr/
http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf
http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf

Contents

Chapter 1. Motivation and Preliminaries 1
1. Three examples 1
2. Semirings and Closed Weighted Systems 2
Exercises for Chapter 1 6
Further reading and references 6

Chapter 2. Weighted Automata: Definitions and Problems 7
1. Definitions and Examples 7
2. Decision Problems for Weighted Automata 8
Further reading and references 9

Chapter 3. Probabilistic Automata and Stochastic Languages 11
1. Definitions 11
2. Stochastic Languages 12
3. Threshold emptiness and Isolated cut points 15
4. Decidability of the Equality Problem 19
Exercises for Chapter 3 20
Further reading and references 20

Chapter 4. Weighted Automata and Recognizable Series: General Results 23
1. Rational Series 23
2. Recognizable Series 24
Exercises for Chapter 4 26
Further reading and references 27

Chapter 5. Series over Semirings of Integers 29
1. Semirings Z and Nat 29
2. The Tropical Semiring 30
Exercises for Chapter 5 32
Further reading and references 33

Chapter 6. Word Transducers 35
1. Definition 35
2. Threshold Problems for Word Transducers 35
Exercises for Chapter 6 39
Further reading and references 39

Chapter 7. Weighted Logic 41
1. MSO Logic over Words 41
2. Weighted MSO Logic over Words 42
3. From Logic to Automata 44
4. From Automata to Logic 45
Exercises for Chapter 7 46
Further reading and references 46

List of references 51

iii

CHAPTER 1

Motivation and Preliminaries

1. Three examples

Weighted graphs and automata offer a unifying framework for treating problems or modeling systems with
the same structural properties. Consider the following problems, which all share a common structure:

1. computing the language of/a regular expression for a given NFA,
2. finding shortest paths between all pairs of vertices in a graph,
3. computing the transitive closure of the edge relation of a graph,

We first recall for each of these problems a standard solution. In Section 1.3, we will see that one can
carry the computation in a unified framework in order to answer all of them.

1.1. Semantics of an NFA. Suppose we are given a finite automaton A = (Q,A,∆, q0, F) with
Q = {1, . . . , n} for some n > 1, alphabet A, and transition relation ∆ ⊆ Q× A×Q. Usually, we define
the semantics of A to be its language, denoted by L(A) ⊆ A∗. When we ignore q0 and F , we obtain a
triple B = (Q,A,∆). As a semantics of B, we could think of a mapping

‖B‖ :

{
Q×Q→ 2A

∗

(i, j) 7→ L(Ai,j)

where Ai,j = (Q,A,∆, i, {j}).
To compute ‖B‖, we let, for i, j ∈ {1, . . . , n} and k ∈ {0, . . . , n},

W
(k)
i,j

def
= {w ∈ A∗ | w leads from i to j without using k + 1, . . . , n as intermediate states}.

We have

W
(n)
i,j = ‖B‖(i, j)

W
(k)
i,j =

{a ∈ A | (i, a, j) ∈ ∆} ∪ {ε | i = j} if k = 0,

W
(k−1)
i,j ∪W (k−1)

i,k

(
W

(k−1)
k,k

)∗
W

(k−1)
k,j if k > 1.

This characterization, which is illustrated in Fig. 1.1, suggests an algorithm to infer a regular expression
for a given NFA.

1.2. Finding shortest paths. Consider a (directed) graph G = (V,E, c). Here, V = {1, . . . , n} is
a nonempty finite set of vertices, E ⊆ V ×V is a set of edges, and c : E → N is a cost function. If we are
interested in shortest paths, a semantics of G could be given as

‖G‖ :

{
V × V → N

(i, j) 7→ minimal cost of a path from i to j

For i, j ∈ {1, . . . , n} and k ∈ {0, . . . , n}, let

c
(k)
i,j

def
= minimal cost of a path from i to j without using k + 1, . . . , n

1

i j

k

︸ ︷︷ ︸

W
(k−1)
i,j

︷ ︸︸ ︷

W
(k−1)
k,k

︷

︸
︸

︷

︸

︷
︷

︸W
(k−1)
i,k W

(k−1)
k,j

Fig. 1.1. Computation of the language W (k)
i,j

We then have

c
(n)
i,j = ‖G‖(i, j)

c
(k)
i,j =



0 if i = j and k = 0

c((i, j)) if i 6= j and (i, j) ∈ E and k = 0

∞ if i 6= j and (i, j) 6∈ E and k = 0

min(c
(k−1)
i,j , c

(k−1)
i,k + c

(k−1)
k,j) if k > 1

This characterization suggests an algorithm to determine the minimal cost of a path between two vertices
of a graph.

1.3. Computing transitive closure. Suppose we are interested in (V,E∗), i.e., the reflexive and
transitive closure of G. Then, a semantics of G could be given as

‖G‖ :

{
V × V → {true, false}
(u, v) 7→ “there is a path from u to v”

Let

e
(k)
i,j

def
= “there is a path from i to j that does not use k + 1, . . . , n”

We have

e
(n)
i,j = ‖G‖(i, j)

e
(k)
i,j =


true if (i = j or (i, j) ∈ E) and k = 0

false if i 6= j and (i, j) 6∈ E and k = 0

e
(k−1)
i,j ∨ (e

(k−1)
i,k ∧ e(k−1)k,j) if k > 1

This characterization suggests an algorithm to compute the reflexive transitive closure of a binary rela-
tion.

2. Semirings and Closed Weighted Systems

The semantics that we considered in the previous section rely on a specific interpretation of an edge
(or an edge labeling), a path, and the subsumption of a set of paths. In general, these interpretations
correspond to operations of a (closed) semiring.

Definition 1.1. A monoid is a structure S = (S,⊗,1) where

2

– S is a set,
– ⊗ : S × S → S is a binary operation that is associative, i.e., for all r, s, t ∈ S:

r ⊗ (s⊗ t) = (r ⊗ s)⊗ t,
– 1 ⊗ s = s ⊗ 1 = s for every s ∈ S.

We say that S is commutative if ⊗ is commutative, i.e., s⊗ t = t⊗ s for all s, t ∈ S. �

Definition 1.2. A semiring is a structure S = (S,+, ·,0,1) where

– (S,+,0) is a commutative monoid,
– (S, ·,1) is a monoid,
– · distributes over +, i.e., for all r, s, t ∈ S,

(r + s) · t = (r · t) + (s · t)
t · (r + s) = (t · r) + (t · s)

– 0 is an annihilator wrt. ·, i.e., 0 · s = s · 0 = 0 for every s ∈ S.

We call S commutative if · is commutative.
We call S closed if

– + is idempotent, i.e., s+ s = s for all s ∈ S,
– for every countable sequence (si)i∈N of elements of S, the sum

∑
n∈N sn is well-defined,

– associativity, commutativity, and idempotency apply to infinite sums, and
– for every two countable sequences s0, s1, . . . and t0, t1, . . . of elements of S, we have

(∑
n∈N sn

)
·(∑

n∈N tn
)

=
∑
i,j∈N(si · tj). �

Example 1.3. Prominent semirings are:

– LangA = (2A
∗
,∪, · ,∅, {ε}), the semiring of languages over alphabet A.

– RegA = (Rat(A),∪, · ,∅, {ε}), the semiring of regular languages over A.
– Trop = (N ∪ {∞},min,+,∞, 0), called the tropical semiring.
– Bool = ({false, true},∨,∧, false, true), the boolean algebra.
– Nat = (N,+, · , 0, 1) the semiring of natural numbers.
– Prob = (R>0,+, · , 0, 1), the probabilistic semiring.1

– Given a semiring S = (S,+, ·,0,1) and a finite set Q, the the semiring of (Q × Q)-matrices
with coefficients in S is (SQ×Q,+, ·,0,1). For all p, q ∈ Q, 0p,q = 0, 1p,p = 1, and 1p,q = 0 if
p 6= q. The operations + and · are the usual matrix operations. That is, given s, t ∈ SQ×Q:
(s + t)p,q = sp,q + tp,q and (s · t)p,q =

∑
r∈Q sp,r · tr,q. To shorten the notation in the rest of

these notes, we will write +, ·,0 and 1 instead of +, ·,0,1.

For a closed semiring, we can define a closure operator:

Definition 1.4. Let S = (S,+, ·,0,1) be a closed semiring and s ∈ S. The closure of s is the infinite
sum

s∗
def
= s0 + s1 + s2 + . . .

where s0 = 1. �

Revisiting our initial models, we realize that we actually deal with one and the same semantics. Every
instance, however, is solved by a computation in a specific closed semiring:

Semantics of NFA LangA
Shortest path Trop
Transitive closure Bool

Let us give a general formalization of our problem.

1Note that ([0, 1],max, · , 0, 1) is sometimes considered as the probabilistic semiring as its universe restricts to prob-
abilities. It is, however, not suitable for our purposes, as it neglects addition and, thus, does not allow one to model
non-determinism.

3

Definition 1.5. Let S = (S,+, ·,0,1) be a semiring. A weighted system over S is a pair A = (Q,µ)
where Q is a nonempty finite set of states and µ is the weight function Q×Q→ S. We call A closed if
S is closed. �

Let A = (Q,µ) be a closed weighted system over a (closed) semiring S.

A path of A is a nonempty finite sequence ρ = (q0, . . . , qm) of states. Hereby, m is the length of ρ. We
extend µ to paths as follows:

µ(ρ)
def
=

{
1 if m = 0

µ(q0, q1) · µ(q1, q2) · . . . · µ(qm−1, qm) if m > 1

Furthermore, we extend µ to sets P of paths:

µ(P)
def
=

{
0 if P = ∅∑
ρ∈P µ(ρ) if P 6= ∅

For p, q ∈ Q, we denote by Pp,q the set of paths (q0, . . . , qm) with q0 = p and qm = q. Thus, we are
interested in computing µ(Pp,q) for any p, q ∈ Q. So, we let

‖A‖ :

{
Q×Q→ S

(p, q) 7→ µ(Pp,q)

1 2

3

{b}

{a} {b}

{a}

Fig. 1.2. Weighted system over LangA

1 2

3

5

2 1

2

Fig. 1.3. Weighted system over Trop

Example 1.6. Let A = {a, b} and consider Fig. 1.2, depicting a closed weighted system A = (Q,µ)
over LangA. A labeled edge (p, s, q) ∈ Q × S × Q indicates that µ(p, q) = s 6= 0. Edges (p, s, q) with
µ(p, q) = s = 0 are omitted. The weight function µ and its semantics ‖A‖ are given as follows:

µ 1 2 3

1 {a} {b} {a}
2 ∅ ∅ ∅
3 ∅ {b} ∅

‖A‖ 1 2 3

1 a∗ a∗b a∗a
2 ∅ ∅ ∅
3 ∅ b ∅

Example 1.7. Consider Fig. 1.3, depicting a closed weighted system A = (Q,µ) over Trop (i.e., a
weighted directed graph). We have:

µ 1 2 3

1 2 5 2
2 ∞ ∞ ∞
3 ∞ 1 ∞

‖A‖ 1 2 3

1 0 3 2
2 ∞ 0 ∞
3 ∞ 1 0

Roy-Floyd-Warshall algorithm. The algorithms of sections 1.1, 1.2 and 1.3 can be presented as
a single algorithm, called Roy-Floyd-Warshall algorithm [Cor+09], on an adequate semiring. Only the
semiring differs from one problem to another.

Let A = (Q,µ) be a closed weighted system over a closed semiring S = (S,+, ·,0,1).

To compute ‖A‖, we follow our above scheme and assumeQ = {1, . . . , n}. For i, j ∈ Q and k ∈ {1, . . . , n},
let

P
(k)
i,j contain the paths (i0, . . . , im) ∈ Pi,j with 1 6 i1, . . . , im−1 6 k

P
(0)
i,j contain the paths from Pi,j of the form (i0) or (i0, i1)

4

In particular, P (n)
ij = Pij . We would like to compute ‖A‖(i, j) = µ(Pi,j), for all i, j ∈ Q. In the following,

we use h(k)i,j = µ(P
(k)
i,j) as an abbreviation.

From the definitions, we directly deduce

h
(0)
i,j =

{
µ(i, j) + 1 if i = j

µ(i, j) if i 6= j

For k > 1, we have:

h
(k)
i,j = µ(P

(k)
i,j) =

∑
ρ∈P (k)

i,j

µ(ρ) =
∑

ρ∈P (k−1)
i,j

µ(ρ)

︸ ︷︷ ︸
+

∑
ρ∈P (k)

i,j \P
(k−1)
i,j

µ(ρ)

︸ ︷︷ ︸
= h

(k−1)
i,j U

where

U =
∑

ρ1∈P (k−1)
i,k

ρ2∈P (k)
k,k

ρ3∈P (k−1)
k,j

µ(ρ1) · µ(ρ2) · µ(ρ3) =
∑

ρ1∈P (k−1)
i,k

µ(ρ1)

︸ ︷︷ ︸
·

∑
ρ2∈P (k)

k,k

µ(ρ2)

︸ ︷︷ ︸
·

∑
ρ2∈P (k−1)

k,j

µ(ρ3)

︸ ︷︷ ︸
= h

(k−1)
i,k V = h

(k−1)
k,j

Now we have

V = 1 +
∑
`>1

∑
ρ1,...,ρ`
∈P (k−1)

k,k

µ(ρ1) · . . . · µ(ρ`) = 1 +
∑
`>1

(∑
ρ∈P (k−1)

k,k

µ(ρ)

︸ ︷︷ ︸
)`
h
(k−1)
k,k =

(
h
(k−1)
k,k

)∗

Altogether, we obtain, for k ∈ N:

h
(k)
i,j =


µ(i, j) + 1 if i = j and k = 0

µ(i, j) if i 6= j and k = 0

h
(k−1)
i,j +

(
h
(k−1)
i,k ·

(
h
(k−1)
k,k

)∗ · h(k−1)k,j

)
if k > 1

The procedure is suggested by these equations to compute ‖A‖ is called Roy-Floyd-Warshall algorithm.

The matrix approach. Again, let S = (S,+, ·,0,1) be a closed semiring and A = (Q,µ) be a
closed weighted system over S. To determine ‖A‖, we can work with matrix operations in the semiring
(SQ×Q,+, ·,0,1) of (Q×Q)-matrices with coefficients in S. One can verify that this semiring is closed.
Note that both ‖A‖ and µ can be considered as (Q × Q)-matrices with entries ‖A‖p,q = ‖A‖(p, q) and
µp,q = µ(p, q), respectively.

Theorem 1.8. Let A = (Q,µ) be a closed weighted system. We have that

‖A‖ = µ∗ .

Proof. Exercise. �

Markov chains. A weighted system that is not closed does not always have this natural semantics.
Consider the following classical definition:

Definition 1.9. A discrete-time Markov chain is a weighted system (Q,µ) over Prob such that, for all
p ∈ Q,

∑
q∈Q µ(p, q) ∈ {0, 1}. �

In the case of a discrete-time Markov chain, however, the matrix (µ)n contains the probabilities of going
from p to q in exactly n steps.

5

1 2

3

b

a b

a

Exercises for Chapter 1

Exercise 1.1. Let the NFA A with alphabet A = {a, b} be given as follows:

Using the Floyd-Warshall method, specify a regular expression equivalent to A.

Exercise 1.2. Which of the semirings from Example 1.3 is commutative, which of them is closed?

Exercise 1.3. Apply the matrix approach to the automaton of Fig. 1.2.

Exercise 1.4. Apply the matrix approach to the automaton of Fig. 1.3.

Exercise 1.5. Prove Theorem 1.8.

Further reading and references

[Cor+09] Th. H. Cormen et al. Introduction to Algorithms. 3rd. McGraw-Hill Higher Education, 2009 (cit. on p. 4).

6

CHAPTER 2

Weighted Automata: Definitions and Problems

In this section, S denotes a semiring (S,+, ·,0,1) and A a finite alphabet. A formal power series, or,
for short, a series over A and S is a mapping A∗ → S (we might also write A∗ → S). The set of those
formal power series is denoted by S〈〈A∗〉〉. We are interested in automata whose semantics is a series.

We shall only present basic definitions here. The interested reader can find much more material in [Sak09],
[KS85] or [DKV09], for instance.

1. Definitions and Examples

Definition 2.1. A weighted automaton over the semiring S is a structure A = (Q,A, λ, µ, γ) where

– Q is the nonempty finite set of states,
– A is the input alphabet,
– µ : Q×A×Q→ S is the transition-weight function,
– λ : Q→ S is the initial-weight function, and
– γ : Q→ S is the final-weight function. �

We represent weighted automata as usual automata, indicating the weights on each transition. When
µ(p, a, q) = 0, we do not put any edge between state p and state q. When µ(p, a, q) = k 6= 0, we represent
this transition graphically, using one of the conventions in Fig. 2.1. If in addition µ(b) = `, with the

p q
a, k

p qk.a

(i) (ii)

Fig. 2.1. Two graphical representations of transitions in weighted automata

representation (ii) we would label the edge by k.a+ `.b.

Let A = (Q,A, λ, µ, γ) be a weighted automaton over S. To define the semantics ‖A‖ of A, we extend µ
to paths and, afterwards, to sets of paths. The weight of a word w ∈ A∗ is then the sum of all weights
of paths that are labeled with w.

A path of A is an alternating sequence ρ = (q0, a1, q1, . . . , an, qn), n ∈ N, of states qi ∈ Q and letters
ai ∈ A. We call w = a1 · · · an the label of ρ. The weight of ρ is

µ(ρ)
def
= λ(q0) · µ(q0, a1, q1) · · · · · µ(qn−1, an, qn) · γ(qn) .

For a set P of paths, we let

µ(P)
def
=

 0 if P = ∅∑
ρ∈P

µ(ρ) if P 6= ∅

For w = a1 . . . an ∈ A∗, let Pw denote the set of all paths with label w. Then, we set

‖A‖(w)
def
= µ(Pw).

One can easily verify the following statement.

Proposition 2.2. Let A = (Q,A, λ, µ, γ) be a weighted automaton over S. For each letter a ∈ A, define
the (Q ×Q)-matrix µ(a) ∈ SQ×Q given by µ(a)p,q = µ(p, a, q). Similarly, consider λ as a row-vector in
S1×n, and γ as a column vector in Sn×1. Then

‖A‖(a1 · · · an) = λ · µ(a1) · . . . · µ(an) · γ �

7

In the following, we will demonstrate that weighted automata are a generic model that subsumes many
important automata classes.

1.1. Finite automata. A (non-deterministic) finite automaton is simply a weighted automaton
A = (Q,A, λ, µ, γ) over Bool such that λ−1(true) is a singleton set (containing the unique initial state).
The semantics of A is a mapping ‖A‖ : A∗ → {true, false} where true signals “accepted” and false
“rejected”. Usually, finite automata come with a set of final states F ⊆ Q and a transition relation
∆ ⊆ Q×A×Q, which can be recovered from A by letting F = γ−1(true) and ∆ = µ−1(true).

1.2. Probabilistic automata. A probabilistic automaton is a weighted automatonA = (Q,A, λ, µ, γ)
over Prob = (R>0,+, · , 0, 1) such that

(1) there is a single state p ∈ Q such that λ(p) = 1 and, for all q ∈ Q \ {p}, λ(q) = 0,
(2) for all p ∈ Q, γ(p) ∈ {0, 1}, and
(3) for all p ∈ Q and a ∈ A, we have

∑
q∈Q µ(p, a, q) = 1.

In that model, ‖A‖(w) can be interpreted as the probability of reaching a final state when w is used as
a scheduling policy.

1.3. Generative probabilistic automata. A generative probabilistic automaton is defined like a
probabilistic automaton, apart from condition (3), which is replaced with

(3’) for every p ∈ Q, we have
∑

(a,q)∈A×Q µ(p, a, q) = 1.

In that model, ‖A‖(w) can be considered as the probability of executing w and ending in a final state,
under the precondition that we perform |w| steps.

q0 q1

a, 1
3 b, 1

3

a, 2
3

a, 1
3 b, 1

3

Fig. 2.2. A generative probabilistic automaton

Example 2.3. Fig. 2.2 depicts a generative probabilistic automaton A over {a, b}. We have ‖A‖(a) =
‖A‖(aa) = 1

3 and ‖A‖(aaa) = 5
27 Moreover, ‖A‖(w) = 0 whenever w ends with the letter b. �

1.4. Word transducers. A word transducer over an alphabet B is a weighted automaton over
RegB = (Rat(B),∪, · ,∅, {ε}). That is, transitions are labeled by letters of A, and weights are regular
languages over B, and the semantics associates to a word in A∗ a regular language in B∗.

2. Decision Problems for Weighted Automata

In classical automata theory, one often raises the question if a given automaton exhibits some behavior.
Regarding a weighted automaton A = (Q,A, λ, µ, γ) over a semiring S = (S,+, ·,0,1), this corresponds
to asking if there is some word w ∈ A∗ such that ‖A‖(w) 6= 0.

Let C be a class of weighted automata over S. The emptiness problem for C is given as follows:

Input Weighted automaton A = (Q,A, λ, µ, γ) ∈ C .
Emptiness problem Do we have ‖A‖(w) 6= 0 for some word w ∈ A∗ ?

Under suitable assumptions (e.g., for computable fields) this problem is decidable [Sch61; BR11], as
we shall see for probabilistic automata in Chapter 3. The emptiness problem can be refined when the
semiring comes with an ordering, which, given a formal power series, allows us to classify words according
to a threshold. When we have a (possibly generative) probabilistic automaton, for example, we might
be interested in the set of words that are accepted with a probability greater than some θ ∈ [0, 1]. Or,
given a word transducer, we might want to compute the set of words that generate sets that subsume
a given regular language. In the subsequent chapters, we will see that both questions are undecidable.
Let us give a general formal definition of this problem.

8

Definition 2.4. Let S = (S,+, ·,0,1) be a semiring, A = (Q,A, λ, µ, γ) be a weighted automaton over
S, let ./ ⊆ S × S be a binary relation, and let θ ∈ S. The threshold language of A wrt. ./ and θ is given
as follows:

L./ θ(A)
def
= {w ∈ A∗ | ‖A‖(w) ./ θ}. �

For instance, for probabilistic automata, L= 1
2
(A) represents the language of words accepted with prob-

ability exactly 1
2 , while L> 1

4
(A) is the set of words accepted with probability at least 1

4 .

It is easy to see, for instance in the probabilistic semiring, that threshold languages already capture
regular languages. It is therefore natural, for a semiring S = (S,+, ·,0,1), a relation ./ ⊆ S × S, and a
class C of weighted automata over S, to consider the following problem:

Input Weighted automaton A ∈ C and θ ∈ S .
Threshold regularity for C wrt. ./ Is L./ θ(A) (effectively) regular?

If this is not the case, we may want to decide whether a threshold language is empty or universal.

Input Weighted automaton A ∈ C and θ ∈ S .
Threshold emptiness for C wrt. ./ Do we have L./ θ(A) 6= ∅ ?
Threshold universality for C wrt. ./ Do we have L./ θ(A) = A∗ ?

These questions will be studied in Chapters 3 and 6 for probabilistic automata and word transducers.
Another direction to refine the emptiness problem, once we have a binary relation ./ on S, is to compare
universally or existentially the semantics of two given automata.

Input Weighted automata A,B ∈ C .
(In)equality for C wrt. ./ Do we have ‖A‖(w) ./ ‖B‖(w) for all w ∈ A∗ ?
Existential (in)equality for C wrt. ./ Is there w ∈ A∗ such that ‖A‖(w) ./ ‖B‖(w)?

When the semiring is endowed with a distance, one can define the notion of isolated cut point.

Definition 2.5. Let S be a semiring endowed with a distance d. Let A be a weighted automaton and
let θ ∈ S. We say that θ is an isolated cut point of A if there is δ > 0 such that, for all w ∈ A∗, we have

d(‖A‖(w)− θ) > δ. �

For probabilistic automata, we will show that the threshold regularity problem stated above has a
positive answer if θ is an isolated cut point. In fact, the associated threshold language is always regular
in this case. It is therefore natural to consider the following problem.

Input A weighted automaton A ∈ C and θ ∈ S.
Isolated cut point problem for C wrt. ./ Is θ an isolated cut point for A?

These questions will be studied for some particular semirings in the next chapters.

Further reading and references

[BR11] J. Berstel and Ch. Reutenauer. Noncommutative rational series with applications. Vol. 137. Encyclopedia of
Mathematics and Its Applications. Preliminary version at http://tagh.de/tom/wp-content/uploads/
berstelreutenauer2008.pdf. Cambridge University Press, 2011 (cit. on p. 8).

[Cor+09] Th. H. Cormen et al. Introduction to Algorithms. 3rd. McGraw-Hill Higher Education, 2009.

[DKV09] M. Droste, W. Kuich, and W. Vogler. Handbook of Weighted Automata. Springer, 2009 (cit. on p. 7).

[KS85] W. Kuich and A. Salomaa. Semirings, Automata and Languages. Springer, 1985 (cit. on p. 7).

[Moh02] M. Mohri. “Semiring frameworks and algorithms for shortest-distance problems”. In: Journal of Automata,
Languages, and Combinatorics 7.3 (2002), pp. 321–350. issn: 1430-189X.

[Sak09] J. Sakarovitch. Elements of Automata Theory. New York, NY, USA: Cambridge University Press, 2009.
isbn: 0521844258, 9780521844253 (cit. on p. 7).

[Sch61] M.-P Schützenberger. “On the definition of a family of automata”. In: Information and Control 4 (1961),
pp. 245–270 (cit. on p. 8).

9

http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf
http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf

CHAPTER 3

Probabilistic Automata and Stochastic Languages

In Chapter 2, we have seen the definition of weighted automata, whose semantics is a mapping from A∗

into a semiring. This chapter studies a particular kind of weighted automata: probabilistic automata. For
probabilistic automata, the underlying semiring is Prob = (R>0,+, · , 0, 1). A probabilistic automaton
associates to each word a value in R>0, which can be interpreted as the probability that this word is
accepted by the automaton.

1. Definitions

Remember that Prob denotes the probabilistic semiring (R>0,+, · , 0, 1). We recall the definition given
in Chapter 2 of a probabilistic automaton, which goes back to Rabin [Rab63].

Definition 3.1. A probabilistic automaton is a weighted automaton A = (Q,A, λ, µ, γ) over Prob =
(R>0,+, · , 0, 1) such that

(1) there is a single state p ∈ Q such that λ(p) = 1 and, for all q ∈ Q \ {p}, λ(q) = 0,
(2) for all p ∈ Q, γ(p) ∈ {0, 1}, and
(3) for all p ∈ Q and a ∈ A, we have

∑
q∈Q µ(p, a, q) = 1.

Other common terms for this model are probabilistic finite automaton (PFA) or reactive probabilistic
automata [Seg06]. When we neglect final states and consider the unfolding semantics rather than formal
power series, then they also correspond to the classical model of a Markov decision process (MDP)
[Put94].

The unique state p with λ(p) = 1 can be considered to be the initial state, and those states q with
γ(q) = 1 are the final states.

A matrix of RQ×Q>0 is stochastic if each of its rows sums to 1. Recall that we can view µ as the mapping
from A into RQ×Q>0 defined by µ(a)p,q = µ(p, a, q). Condition (3) states that the matrix µ(a) is stochastic
for every letter a ∈ A. The value µ(p, a, q) can be interpreted as the probability to reach state q from
state p upon reading letter a.

We still denote by µ the monoid homomorphism from A∗ to RQ×Q>0 induced by µ. It is easy to verify
that the product of two stochastic matrices is again a stochastic matrix (that is, the set of stochastic
matrices is actually a submonoid of (Rn×n>0 , .,1n). Consequently, (3) is equivalent to:

(3′) for every p ∈ Q and every word w ∈ A∗, we have
∑
q∈Q µ(p, w, q) = 1.

Recall that the semantics ‖A‖ of A is the mapping ‖A‖ : A∗ → Prob defined by ‖A‖(w) = λ · µ(w) · γ.
The weight ‖A‖(w) of a word w ∈ A∗ can be seen as its probability of acceptance. More precisely,
‖A‖(w) can be interpreted as the probability of reaching a final state when w is used as a scheduling
policy. Observe that ‖A‖(ε) ∈ {0, 1} by condition (1). Also recall that ‖A‖(w) can be computed by
adding the weights of all runs on w, where the weight of a run (p0, a1, p1), . . . , (pk−1, ak, pk) is the product
λ(p0) · µ(p0, a1, p1) · · ·µ(pk−1, ak, pk)γ(pk).

Note that replacing (3) in Definition 3.1 with

(4) for every p ∈ Q and a ∈ A, we have
∑
q∈Q µ(p, a, q) ∈ {0, 1}.

is not more general, as one can always introduce a non-accepting sink state.

Example 3.2. A probabilistic automaton A = (Q,A, λ, µ, γ) with Q = {1, 2} and A = {a, b} is depicted
in Fig. 3.1.

11

1 2

a, 2
3 b, 1

a, 1
3 b, 1

a, 1
3 a, 2

3

Fig. 3.1. A probabilistic automaton

Hereby,

λ =
(
1 0

)
µ(a) =

(
1
3

2
3

1
3

2
3

)
µ(b) =

(
0 1

1 0

)
γ =

(
1

0

)
For n ∈ N, we have

‖A‖(abn) =
(
1 0

)
·

(
1
3

2
3

1
3

2
3

)
·

(
0 1

1 0

)n
·

(
1

0

)
=


1
3 if n is even

2
3 if n is odd

Moreover, the image of ‖A‖ is finite, i.e., ‖A‖(A∗) = {0, 13 ,
2
3 , 1}. �

Example 3.3. For the probabilistic automaton given in Example 3.2, we have

L> 0(A) = {a, b}∗ \ {bn | n is odd} .

This threshold language is regular, which is not always the case as we shall see in the next section.

Lemma 3.4. Given two probabilistic automata A1and A2, one can build automata B1, B2 and B3 such
that

(1) ‖B1‖ = 1− ‖A1‖,
(2) ‖B2‖ = ‖A1‖ · ‖A2‖,

(3) ‖B3‖(w) =

{
0 if w = ε

α‖A1‖(w) + β‖A2‖(w) otherwise.
, where α, β ∈ [0, 1] and α+ β 6 1.

Proof. Exercise. �

2. Stochastic Languages

In this section, we consider the Threshold regularity problem. We will consider threshold languages.
This study can be motivated by problems that we encounter in the context of verification. Suppose that,
for some alphabet A∗, we are given a set Bad ⊆ A∗ of bad behaviors, which our system A should accept
with a very low probability 0.001. Then, we would like to have

Bad ∩ L> 0.001(A) = ∅ .

If we are given a liveness property in terms of a set Good ⊆ A∗, then we would need a statement such as

Good ⊆ L> 0.999(A) .

So let us study the expressiveness of probabilistic automata in terms of threshold languages.

Definition 3.5. We say that a language L ⊆ A∗ is stochastic if there are a probabilistic automaton
A = (Q,A, λ, µ, γ) and θ ∈ [0, 1] such that L = L>θ(A). �

In this section, we will show the following fundamental results:

(1) Every regular language is stochastic.
(2) There is a stochastic language that is not recursively enumerable.
(3) For isolated cut point, the associated threshold language is regular. In other words, the Thresh-

old regularity problem where we know in advance that θ is an isolated cut point is decidable
(and its answer is positive).

Theorem 3.6. For every regular language L, there is a probabilistic automaton A such that L = L> 0(A).

12

Proof. Exercise. �

Theorem 3.7 (Rabin [Rab63]). There is a stochastic language over the alphabet {0,1} that is not
recursively enumerable.

Proof. We first build a probabilistic automaton A such that

(3.1) ∀θ1, θ2 ∈ [0, 1], θ1 6= θ2,=⇒ L>θ1(A) 6= L>θ2(A).

This will show the result, since this shows that there are uncountably many stochastic languages, whereas
there are only finitely many recursively enumerable languages.

Let A = {0,1} (we use boldface to distinguish the letters from the weights) and let w = a1 . . . an ∈ A∗,
with each ai ∈ {0,1}. We define w as the real number 0.an · · · a1 in binary expansion, i.e., ε = 0 and, if
n > 1,

w =
an
21

+
an−1

22
+ · · ·+ a1

2n

The probabilistic automaton A we exhibit computes w, i.e., ‖A‖(w) = w. This actually shows (3.1).
Indeed, A∗, the set of rational of the form an

21 + an−1

22 +· · ·+ a1
2n , is dense in [0, 1]. Therefore, if θ1 < θ2, then

there exist θ, θ′ ∈ A∗ such that θ1 < θ < θ′ < θ2, so that L>θ1(A) ⊇ L>θ(A) % L>θ′(A) ⊇ L>θ2(A).

The probabilistic automaton A = (Q,A, λ, µ, γ) is pictured on Fig. 3.1. Recall that an edge from state p
to state q is labeled µ(p,0, q)0 + µ(p,1, q)1. For instance, the transition from state 2 to itself indicates
that µ(2,0, 2) = 1

2 and µ(2,1, 2) = 1.

1 2

1
2 .1

1
2 .0

1.0+ 1
2 .1

1
2 .0+ 1.1

Fig. 3.2. A probabilistic automaton computing the value w

Formally, A is given by Q = {1, 2}, A = {0,1}, and

λ =
(
1 0

)
µ(0) =

(
1 0

1
2

1
2

)
µ(1) =

(
1
2

1
2

0 1

)
γ =

(
0

1

)

We check that, for all w ∈ A∗,

‖A‖(w) = w .(∗)

We show (∗) by induction on n = |w|. The claim clearly holds for n = 0. Moreover, in the case n = 1,

‖A‖(0) = µ(0)1,2 = 0.0 = 0

and ‖A‖(1) = µ(1)1,2 = 0.1 = 1 .

Now suppose, for w = a1 . . . an with n > 1, that ‖A‖(w) = w holds. Moreover, let

µ(w) =

(
1− p p

1− q q

)

for suitable p, q ∈ [0, 1]. In particular,

p = ‖A‖(w) = w .(+)

13

Let a ∈ {0,1}. We have

‖A‖(a1 . . . ana) = µ(a1 . . . ana)1,2 =

((
1− p p

1− q q

)
· µ(a)

)
1,2

=


p

2
if a = 0

1 + p

2
if a = 1

=
a

2
+
p

2

(+)
= 0.a + 0.0an . . . a1 = 0.aan . . . a1 = a1 . . . ana

This concludes the proof of Theorem 3.7. �

Remark 3.8. The proof of Theorem 3.7 is a pure existence proof. However, one can come up with a
concrete counterexample. Let w0, w1, . . . be any enumeration of A∗. For θ = w0w1 . . . (with a suitable
extension of the encoding to infinite sequences), L>θ(A) is not recursively enumerable (without proof).

In the following, we will show that, in some cases, the threshold language is regular. This is obviously
the case if the threshold is 0:

Theorem 3.9. Let A be a probabilistic automaton. Then, L> 0(A) is regular.

Proof. LetA = (Q,A, λ, µ, γ) be a probabilistic automaton. Consider the NFA B = (Q,A,∆, Q0, F)
given by

– Q0 = {q ∈ Q | λ(q) = 1},
– F = {q ∈ Q | γ(q) = 1}, and
– ∆ = {(p, a, q) ∈ Q×A×Q | µ(p, a, q) > 0}.

We have L(B) = L> 0(A). �

Note that Theorem 3.9 does no longer hold when one considers automata over infinite words [BBG08].

Next, we show that threshold languages are regular if the threshold is a certain isolated cut point.
Intuitively, the formal power series of an automaton does not converge against an isolated cut point. We
use the usual distance d(α, β) = |α− β| on R>0. Let us reformulate the definition of isolated cut point.

Definition 3.10. Let A = (Q,A, λ, µ, γ) be a probabilistic automaton and let θ ∈ [0, 1]. We say that θ
is an isolated cut point of A if there is δ > 0 such that, for all w ∈ A∗, we have

|‖A‖(w)− θ| > δ . �

Theorem 3.11 (Rabin [Rab63]). Let A be a probabilistic automaton and θ ∈ [0, 1] be an isolated cut
point of A. Then, L>θ(A) is regular.

Proof. Let A = (Q,A, λ, µ, γ) be a probabilistic automaton. We assume Q = {1, . . . , n} and
λ(1) = 1 (hence, 1 is the initial state). Let θ be an isolated cut point of A and let δ > 0 such that
|‖A‖(w)− θ| > δ for all w ∈ A∗. We set L = L>θ(A).

Consider the Myhill-Nerode congruence ≡L ⊆ A∗ ×A∗ given as follows: for u, v ∈ A∗,

u ≡L v iff ∀w ∈ A∗ : (uw ∈ L ⇐⇒ vw ∈ L)

It is well-known that ≡L has finite index iff L is regular. So let us show that ≡L has indeed finitely
many equivalence classes.

Let u, v ∈ A∗ and set

ξu = (µ(u)1,1, . . . , µ(u)1,n)

and ξv = (µ(v)1,1, . . . , µ(v)1,n) .

14

These vectors contain the probabilities to go, via u and v, respectively, from the initial state 1 into states
1, . . . , n.

We will show that

(∗) u 6≡L v =⇒ |ξu − ξv| > 4δ

where, for an n-dimensional vector ξ, we let |ξ| =
∑n
i=n |ξi|. Indeed, (∗) implies the theorem: consider

the n-dimensional space [0, 1]n, covered by “cubes” of side length 2δ
n , starting with [0, 2δn]n. If ξu and ξv

are in the same cube, then |ξui − ξvi | 6 2δ
n < 4δ

n for every i, so |ξu − ξv| < 4δ, hence by (∗), u ≡L v.
Thus, “being in the same cube” is a refinement of ≡L. As only finitely many cubes are necessary to cover
[0, 1]n, ≡L has only finitely many equivalence classes.

So let us show (∗). Suppose u 6≡L v. There is w ∈ A∗ such that uw ∈ L and vw 6∈ L (or vice versa,
which is analogous). As θ is an isolated cut point with bound δ, we have

λ · µ(uw) · γ > θ + δ

and λ · µ(vw) · γ 6 θ − δ .

Therefore,

(λ · µ(uw) · γ)− (λ · µ(vw) · γ) > 2δ ⇐⇒ λ · (µ(uw)− µ(vw)) · γ > 2δ

⇐⇒ λ · (µ(u) · µ(w)− µ(v) · µ(w)) · γ > 2δ

⇐⇒ λ · (µ(u)− µ(v)) · µ(w) · γ > 2δ

⇐⇒
∑n
i=1(ξui − ξvi) · (µ(w) · γ)i > 2δ

Let

P =
∑
{ξui − ξvi | i ∈ {1, . . . , n}andξui − ξvi > 0}

and N =
∑
{|ξui − ξvi | | i ∈ {1, . . . , n}andξui − ξvi < 0} .

With this, P > 2δ. As
∑n
i=1 ξ

u
i =

∑n
i=1 ξ

v
i = 1, it holds P = N. Therefore,∑n

i=1 |ξui − ξvi | = 2P > 4δ .

We conclude |ξu − ξv| > 4δ. �

3. Threshold emptiness and Isolated cut points

We first show that the Threshold emptiness problem is undecidable, first for equality as ./, and θ = 1
2 .

The proof can then be adapted for other threshold values. This result is due to Paz [Paz71]. We present
here another proof, which can be found e.g. in [BC08; Gim10]. See also [MHC03] for an alternative, but
more technical proof.

Theorem 3.12 (Paz [Paz71]). The following problem is undecidable:

Input: A probabilistic automaton A .
Problem: Do we have L= 1

2
(A) 6= ∅ ?

Proof. The proof is a reduction from the following undecidable variant of the Post’s correspondence
problem (PCP):

Input: Alphabet A and morphisms fi : A∗ → {0, 1}∗ (i = 1, 2) such that fi(A) ⊆ 1{0, 1}∗.
Problem: Is there w ∈ A+ such that f1(w) = f2(w) ?

The idea is that, under the condition fi(A) ⊆ 1{0, 1}∗, we have f1(w) = f2(w) if and only if f1(w) =

f2(w). Just as we can compute w with a probabilistic automaton, we can as well compute fi(w) for
i = 1, 2. Combining the automata computing fi(w), one can build, using Lemma 3.4, an automaton
computing 0 on the empty word and 1

2 (f1(w) + 1− f2(w)) on w 6= ε. This function yields 1
2 exactly on

the words w ∈ A+ such that f1(w) = f2(w), i.e., f1(w) = f2(w).

15

The original PCP does not have the restriction fi(A) ⊆ 1{0, 1}∗ on morphisms. It is however easy
to enforce this starting from two arbitrary morphisms g1, g2: it suffices to replace gi by fi = f ◦ gi
where f : {0, 1}∗ → {0, 1}∗ is the morphism defined by f(0) = 10 and f(1) = 11. Then clearly
fi(A) ⊆ 1{0, 1}∗, and f1(w) = f2(w) if and only if g1(w) = g2(w), which shows that the variant of PCP
remains undecidable.

Let now an instance of the modified PCP be given by an alphabet A and morphisms f1, f2 : A∗ → {0, 1}∗.
Consider the mappings ϕ1, ϕ2 : A∗ → Prob defined by ϕi(w) = fi(w), and define the probabilistic
automaton A as follows. For i = 1, 2, first let Ai = (Q,A, λ, µi, γi) be the probabilistic automaton given
by Q = {1, 2},

λ =
(
1 0

)
γ1 =

(
0

1

)
γ2 =

(
1

0

)
and, for i ∈ {1, 2} and a ∈ A,

µi(a) =

 1− ϕi(a) ϕi(a)

1− ϕi(a)− 1

2|fi(a)|
ϕi(a) +

1

2|fi(a)|


One can readily verify that, for all w ∈ A∗,

‖A1‖(w) = ϕ1(w)

and ‖A2‖(w) = 1− ϕ2(w) .

We combine A1 and A2 towards a probabilistic automaton A such that ‖A‖(ε) = 0 and, for all w ∈ A+,

‖A‖(w) =
1

2
‖A1‖(w) +

1

2
‖A2‖(w)

=
1

2
ϕ1(w) +

1

2
(1− ϕ2(w))

=
1

2
+

1

2
(ϕ1(w)− ϕ2(w))

Then, for all w ∈ A∗, ‖A‖(w) = 1
2 iff w ∈ A+ and ϕ1(w) = ϕ2(w) iff w ∈ A+ and f1(w) = f2(w) . Note

that the last step requires the fact that f1(w) and f2(w) both start with 1. This concludes the proof. �

This result can then be used to show undecidability of the threshold emptiness problem when ./ is >
or >.

Theorem 3.13 (Madani et al. [MHC03]). The following problem is undecidable:

Input: Probabilistic automaton A and θ ∈ [0, 1] .
Problem: Do we have L>θ(A) 6= ∅ ?

An elegant proof of Theorem 3.13, even for fixed thresholds, uses Theorem 3.12 [Gim10].

Corollary 3.14 (of Thm. 3.12). Let 0 < θ < 1. The following problems are undecidable:

Input: Probabilistic automaton A .
Problem 1: Do we have L> 1

4
(A) 6= ∅ ?

Problem 2: Do we have L> 1
8
(A) > ∅ ?

Proof. For Problem 1, using Lemma 3.4, we build B such that ‖B‖ = ‖A‖(1 − ‖A‖). Now,
‖B‖(w) = ‖A‖(w)(1 − ‖A‖(w)) > 1/4 if and only if ‖A‖(w) = 1/2, since 1/4 is the maximum of the
function from [0, 1] to R>0 given by t 7→ t(1− t), reached only for t = 1/2.

We reduce Problem 1 to Problem 2. Note first that the weights occurring in the construction of
A in the proof of Theorem 3.12 are sums of powers of 2. Adding new states, one can easily check
that an automaton having only weights 0, 1/2 and 1 can be used instead. Then, the automaton B
built from A can be chosen with weights only in {0, 1/4, 1/2, 1}. Hence, ‖B‖(w) > 1/4 if and only if
‖B‖(w) > 1/4− 1/4|w|. Using Lemma 3.4, one builds a probabilistic automaton C such that ‖C‖(ε) = 0

16

and ‖C‖(aw) = 1
2 (B(w) + 1/4|w|), so that there exists u such that ‖C‖(u) > 1/8 if and only if u = aw

and ‖C‖(aw) > 1/8, that is ‖B‖(w) + 1/4|w| > 1/4, i.e., if and only if ‖B‖(w) > 1/4. �

One can slightly extend Corollary 3.14.

Corollary 3.15. Let θ ∈ Q, 0 < θ < 1. Then, the Threshold emptiness problem for probabilistic
automata is undecidable for θ wrt. to all relations ./ ∈ {<,=, >}.

We have shown previously that the threshold language at an isolated cut point is regular. Unfortunately,
the Isolated cut point problem is undecidable:

Theorem 3.16 (Bertoni et al. [BMT09]). The following problem is undecidable:

Input: A probabilistic automaton A and θ ∈ [0, 1] .
Problem: Is θ an isolated cut point of A ?

Proof. We show that the problem is already undecidable for fixed θ = 1
2 . For u, v ∈ {0, 1}∗, let

u ∧ v denote the longest common suffix of u and v.

The proof is by reduction from the following undecidable variant of the PCP, see [BC08] for a proof and
application to probabilistic automata:

Input: Alphabet A and morphisms fi : A∗ → {0, 1}∗ (i = 1, 2) such that fi(A) ⊆ 1{0, 1}∗.
Problem: Is {f1(w) ∧ f2(w) | w ∈ A∗} finite ?

So let f1, f2 constitute an instance of that problem. As in the proof of Theorem 3.7, we define ε = 0
and, for w = a1 . . . an ∈ {0, 1}+,

w =
an
21

+
an−1

22
+ . . .+

a1
2n

.

Moreover, we set, for i = 1, 2 and w ∈ A∗, φi(w) = fi(w).

Claim 3.17. The following statements are equivalent:

(1) There is δ > 0 such that, for all w ∈ A+, |φ1(w)− φ2(w)| > δ.
(2) The set {f1(w) ∧ f2(w) | w ∈ A∗} is finite.

Proof of Claim 3.17.

(1) =⇒ (2): Assume that (2) does not hold. Pick any n ∈ N. There is w ∈ A∗ such that |f1(w)∧f2(w)| >
n. The latter implies that |φ1(w)− φ2(w)| < 1

2n
. We conclude that (1) does not hold.

(1) ⇐= (2): Assume that (1) does not hold.

Case 1: Suppose there is w ∈ A+ such that |φ1(w) − φ2(w)| = 0. Then, f1(w) = f2(w). Thus,
{f1(wi) ∧ f2(wi) | i = 1, 2, . . .} is infinite, and so is {f1(u) ∧ f2(u) | u ∈ A∗}.
Case 2: Suppose that Case 1 does not apply. Then, for all n ∈ N, there is w ∈ A+ such that 0 <

|φ1(w)−φ2(w)| < 1

2n
. The latter implies |f1(w)∧f2(w)| > n. We conclude that {f1(w)∧f2(w) | w ∈ A∗}

is infinite. �

Consider the probabilistic automaton A from the proof of Theorem 3.12. Recall that ‖A‖(ε) = 0 and,
for all w ∈ A+,

‖A‖(w) =
1

2
+

1

2
(φ1(w)− φ2(w))

The following statements are equivalent due to Claim 3.17:

(1) There is δ > 0 such that, for all w ∈ A∗, | ‖A‖(w)− 1
2 | > δ.

(2) There is δ > 0 such that, for all w ∈ A+, |φ1(w)− φ2(w)| > δ.
(3) The set {f1(w) ∧ f2(w) | w ∈ A∗} is finite.

Thus, 1
2 is an isolated cut point of A iff {f1(w) ∧ f2(w) | w ∈ A∗} is finite. Since this problem is

undecidable [BC08], we have shown Theorem 3.16. �

17

As before, one can extend Theorem 3.16 to other values than 1/2.

Corollary 3.18. Let θ ∩ Q, 0 < θ < 1. It is undecidable, given a probabilistic automaton A, whether θ
is an isolated cut point of A.

Bertoni et al. [BMT09] leave open the value 1 problem, which is to decide whether 1 is an isolated cut
point. We now show that the Isolated cut point problem is undecidable, even for θ = 1.

Theorem 3.19. The value 1 problem is undecidable for probabilistic automata. That is, given an au-
tomaton A, it is undecidable whether 1 is an isolated cut point of A.

Proof. The following proof comes from [Gim10]. It uses a different technique as the one of [BMT09]:
it consists in a reduction of the emptiness problem for stochastic languages to the value 1 problem. The
first technical step is to construct an automaton Cα, whose weights depend on some α ∈ [0, 1], such that

(3.2) α >
1

2
⇐⇒ Cα has value 1.

The key idea is then to replace α with an arbitrary probabilistic automaton A, i.e. to build from A a
probabilistic automaton CA such that

(3.3) L> 1
2
(A) 6= ∅⇐⇒ CA has value 1.

This provides the desired reduction from the emptiness problem.

To build Cα, first consider the probabilistic automaton Aα = ({1, 2, 3}, {a, b}, (1, 0, 0), µα, (0, 0, 1)) whose
matrices µα(a) and µα(b) are given below, and which is pictured in Fig. 3.3.

2 1 3
1.b

1.a+ 1.b1.a
α.a

(1− α).a

b

Fig. 3.3. Probabilistic automaton Aα

µ(a) =

α 1− α 0
0 1 0
0 0 1

 and µ(b) =

0 0 1
1 0 0
0 0 1

, so that µ(anb) =

1− αn 0 αn

1 0 0
0 0 1

.

Observe that Aα(wak) = Aα(w) for all w ∈ {a, b}∗ and k > 0, and that Aα(ε) = 0. Therefore, if we are
interested in words whose value is arbitrarily close to 1, it suffices to consider words with at least one
b and no suffix in a+, that is, of the form w = an1ban2b · · · ankb. By the above, applying anb from the
distribution (0, β, 1− β) yields the distribution (0, (1− αn)β, 1− (1− αn)β). Therefore,

‖Aα‖(w) = 1−
k∏
i=1

(1− αni).

Exchanging initial and final states, and replacing α by 1 − α, we obtain a probabilistic automaton Bα
such that

‖Bα‖(w) =

k∏
i=1

(1− (1− α)ni).

Combining Aα and Bα as in Lemma 3.4, we obtain a probabilistic automaton Cα such that

(3.4) ‖Cα‖(w) =
1

2

[
1−

k∏
i=1

(1− αni) +

k∏
i=1

(1− (1− α)ni)
]
.

If α 6 1
2 , then α 6 1− α so

∏k
i=1(1− αni) >

∏k
i=1(1− (1− α)ni), hence ‖Cα‖(w) 6 1

2 .

18

Conversely, assume that α > 1
2 . Let us show that one can choose w, that is, the integers k and ni

(i = 1, . . . , k), so that ‖Cα‖(w) is arbitrarily close to 1. If α = 1 this is clear, so assume α 6= 1. Since
ln(1− β) 6 −β when 0 6 β < 1, we get ln

∏k
i=1(1− αni) 6

∑k
i=1−αni , that is:

(3.5)
k∏
i=1

(1− αni) 6 exp
(
−

k∑
i=1

αni
)
.

Moreover, a straighforward induction on k shows that

(3.6)
k∏
i=1

(1− (1− α)ni) > 1−
k∑
i=1

(1− α)ni .

Let ε > 0. We first choose ni = K +
⌊
logα(1/i)

⌋
for some integer K to be determined later. Then

αni > αK+logα(1/i)+1 = αK+1/i, and since
∑

1/i diverges to ∞, so does
∑
αni . Therefore, there exists

k such that
∑k
i=1 α

ni > ln(1/ε), hence by (3.5), we obtain

(3.7)
k∏
i=1

(1− αni) 6 ε.

On the other hand, since α > 1/2, there exists some r > 1 such that 1 − α = αr (namely r =

ln(1 − α)/ lnα), and therefore (1 − α)ni = αrni 6 αr(K−1)/ir. Hence
∑k
i=1(1 − α)ni < Mαr(K−1)

where M =
∑∞
i=1 1/ir (this series converges since r > 1). Now, for K > 1 + 1

r logα(ε/M), we have
Mαr(K−1) < ε so that by (3.6)

(3.8)
k∏
i=1

(1− (1− α)ni) > 1− ε

Combining (3.4), (3.7) and (3.8), we obtain ‖Cα‖(w) > 1− ε, which proves (3.2) as required.

We now explain the construction for (3.3). The idea is to replace the probabilistic a transitions labeled
α and 1 − α by sub-automata A and its complement. Let A be a probabilistic automaton on alphabet
A, with a, b /∈ A. We transform Aα as follows (same transformation on Bα and Cα). We delete the
a-transitions from Aα, and add the following transitions:

– a weight 1 transition from state 1 of Aα labeled a, going in the initial state of A,
– from final states of A we go back in state 1 of Aα upon reading a a (weight 1),
– from non final states of A we go in state 2 of Aα upon reading a a (weight 1),
– we add 1-weighted self-loops around state 3 of Aα labeled by A ∪ {a, b}.

Denote by CA the resulting automaton. Then, one can check that (3.3) holds. For instance, if there exists
y such that α = ‖A‖(y) > 1/2, then we consider the word u = (aya)n1b · · · (aya)nkb, and we observe
that ‖CA‖(u) = ‖Cα‖(an1b · · · ankb), so by (3.2) CA has value 1. If on the contrary ‖A‖ 6 1/2, it is easy
to check that ‖CA‖ 6 1/2, as in the case of Cα. This proves (3.3) and concludes the proof. �

4. Decidability of the Equality Problem

The equality problem is the (In)Equality problem when ./ is the equality. We have already seen that
the Threshold emptiness problem is undecidable (does there exists w accepted with probability at least
1/2? exactly 1/2?), and it follows that the Existential (In)Equality problem is also undecidable.
We will show the following result:

Theorem 3.20 (Schützenberger [Sch61], Tzeng[Tze92]). Given two probabilistic automata with rational
coefficients Ai = (Qi, A, λi, µi, γi), one can decide in time O(|A|(|Q1|+ |Q2|)4) whether ‖A1‖ = ‖A2‖.

Proof. The decidability follows from a more general result from Schützenberger [Sch61], who proved
that on a field (be it commutative or skew), one can decide whether a given recognizable series is null. This
result in turn relies on a notion of rank, which can be thought as the minimal number of states necessary
to implement the series, and which is computable in cubic time wrt. the automaton representation. Only
for the null series, the rank is zero, and deciding Equality between A and B is reduced to checking if
‖A‖−‖B‖ is null. The result has been rediscovered by Tzeng [Tze92] which presents a simple procedure.

19

First, the question reduces to ‖A‖ = 0, for the weighted automaton A = (Q,A, λ, µ, γ) on (Q,+, ·, 0, 1)
given by Q = Q1]Q2,

λ = (λ1, λ2), µ(a) =

(
µ1(a) 0

0 µ2(a)

)
, and γ =

(
γ1
−γ2

)
.

Note that A is not a probabilistic automaton: γ may have negative coefficients, so we work on Q rather
than on Q>0.

So let A = (Q,A, λ, µ, γ) be such a weighted automaton on the field Q. Let n = |Q|. Then ‖A‖ = 0 if
and only if λµ(w)γ = 0 for all w ∈ A∗. Since the set of line vectors V = {η ∈ Qn | ηγ = 0} is subspace
of the vector space Qn over Q, it suffices to show that one can compute a basis B of the vector space on
Q generated by {λµ(w) | w ∈ A∗}: indeed, ‖A‖ = 0 if and only if B ⊆ V .

To compute such a basis B, we compute {λµ(w) | w ∈ A∗} for w in increasing hierarchical ordering 4.
Assume λµ(w) is a linear combination of vectors of the basis computed so far, say λµ(w) =

∑
αi.λµ(wi)

(αi ∈ Q) for words wi ≺ w. Then for all u ∈ A∗, the vector λµ(wu) =
∑
αi.λµ(wiu) is also a linear

combination of vectors obtained for smaller words wiu ≺ wu. Therefore, one can safely ignore the
contribution to B of all words of wA∗.

This justifies the algorithm computing B, where we mark a word w if λµ(w) is a linear combination of
vectors currently in B:

– Start with B = ∅, and all words of A∗ initially unmarked.
– While W = {w ∈ A∗ | no prefix of w is marked} is nonempty

◦ Pick w = min4W .
◦ If w is a linear combination of vectors of B, then mark w. Otherwise, add w to B.

– Return B.

Since we work in a vector space of dimension n, the algorithm can add at most n vectors to the basis, so it
terminates. The O(|A|n4) complexity comes from the fact that testing if a vector is a linear combination
of vectors in B can be done in O(n3), see [Cor+09, Chap. 31]. �

Exercises for Chapter 3

Exercise 3.1. Prove Lemma 3.4.

Exercise 3.2. Consider the probabilistic automaton A from Example 3.2. Determine the (finite) class
L = {L>θ(A) | θ ∈ [0, 1]}.

Exercise 3.3. Prove Theorem 3.6. (Hint: probabilistic automata with one positive entry in every row
of a transition matrix are deterministic finite automata.)

Exercise 3.4. Let A be a probabilistic automaton and θ ∈ [0, 1] be an isolated cut point of A. Recall
that L>θ(A) is regular (Theorem 3.11). Determine an upper bound on the number of states of a finite
automaton recognizing L>θ(A).

Exercise 3.5. Prove Corollaries 3.15 and 3.18.

Exercise 3.6. Is the value 0 problem decidable?

Exercise 3.7. Show that the two following problems are undecidable:

– Input: A nondeterministic finite automaton.
– Problem 1: Does there exist a word having more accepting runs than rejecting runs?
– Problem 2: Does there exist a word whose ratio accepting runs/rejecting runs is arbitrarily
close to 1?

Exercise 3.8. Is the Inequality problem decidable for probabilistic automata when ./ = >?

Further reading and references

[BBG08] Ch. Baier, N. Bertrand, and M. Größer. “On Decision Problems for Probabilistic Büchi Automata”. In:
Proc. of FoSSaCS’08. Vol. 4962. Lect. Notes Comp. Sci. Springer, 2008, pp. 287–301 (cit. on p. 14).

[BC08] V.D. Blondel and V. Canterini. “Undecidable problems for probabilistic automata of fixed dimension”. In:
Theory of Computing systems 36.3 (2008), pp. 231–245 (cit. on pp. 15, 17).

20

[BMT09] A. Bertoni, G. Mauri, and M. Torelli. “Some Recursively Unsolvable Problems Relating to Isolated Cutpoints
in Probabilistic Automata.” In: Proc. of ICALP’77. Vol. 52. Lect. Notes Comp. Sci. Springer, Sept. 19,
2009, pp. 87–94. isbn: 3-540-08342-1. url: http://dblp.uni-trier.de/db/conf/icalp/icalp77.
html#BertoniMT77 (cit. on pp. 17–18).

[Cor+09] Th. H. Cormen et al. Introduction to Algorithms. 3rd. McGraw-Hill Higher Education, 2009 (cit. on p. 20).

[Gim10] Y. Gimbert H.and Oualhadj. “Probabilistic Automata on Finite Words: Decidable and Undecidable Prob-
lems”. In: Proc. of ICALP’10. Vol. 6199. Lect. Notes Comp. Sci. Springer, 2010, pp. 527–538. url:
http://hal.archives-ouvertes.fr/hal-00456538/en/ (cit. on pp. 15–16, 18).

[MHC03] O. Madani, S. Hanks, and A. Condon. “On the undecidability of probabilistic planning and related sto-
chastic optimization problems”. In: Artificial Intelligence 147.1-2 (2003), pp. 5–34 (cit. on pp. 15–16).

[Paz71] A. Paz. Introduction to probabilistic automata. Academic Press, 1971 (cit. on p. 15).

[Put94] M. L. Puterman. Markov Decision Processes. New York, NY: John Wiley & Sons, Inc., 1994 (cit. on
p. 11).

[Rab63] M. O. Rabin. “Probabilistic automata”. In: Information and Control 6 (3 1963), pp. 230–245 (cit. on
pp. 11, 13–14).

[Sch61] M.-P Schützenberger. “On the definition of a family of automata”. In: Information and Control 4 (1961),
pp. 245–270 (cit. on p. 19).

[Seg06] R. Segala. “Probability and Nondeterminism in Operational Models of Concurrency”. In: Proceedings of
CONCUR’06. Vol. 4137. Lect. Notes Comp. Sci. Springer, 2006, pp. 64–78 (cit. on p. 11).

[Tze92] W.G. Tzeng. “A polynomial-time algorithm for the equivalence of probabilistic automata”. In: SIAM J.
Comput. 21 (1992), pp. 216–227 (cit. on p. 19).

21

http://dblp.uni-trier.de/db/conf/icalp/icalp77.html#BertoniMT77
http://dblp.uni-trier.de/db/conf/icalp/icalp77.html#BertoniMT77
http://hal.archives-ouvertes.fr/hal-00456538/en/

CHAPTER 4

Weighted Automata and Recognizable Series: General Results

The aim of this chapter is to present the Kleene-Schützenberger’s theorem for formal power series. It
states that recognizable series (i.e., series which are the semantics of a weighted automaton) are exactly
the rational series (series built from letters and scalars using finitely many times basic operations, like
sum, product or star). As in the Boolean case, the proof is effective. We just give an outline here. For
additional details, the reader is referred to [BR11] (which we follow here, adopting the same notation),
or to [Sak09; DKV09].

1. Rational Series

Recall that a (formal power) series over a semiring S = (S,+, ·,0,1) is a mapping from A∗ into S. The
set of formal power series over S is denoted S〈〈A∗〉〉. For f ∈ S〈〈A∗〉〉 and w ∈ A∗, we frequently write
〈f, w〉 instead of f(w). We call 〈f, w〉 the coefficient of f on w.

We first define rational series. The rational operations are the sum, the product and the star. The sum
is just defined pointwise: for f, g ∈ S〈〈A∗〉〉,

〈f + g, w〉 = 〈f, w〉+ 〈g, w〉.

The product is the Cauchy product , defined by

〈fg, w〉 =
∑
w=uv

〈f, u〉〈g, v〉.

Note that the sum is finite since there is a finite number of factorizations of a word w, in the free monoid.

We also consider left and right multiplication by scalars: if s ∈ S and f ∈ S〈〈A∗〉〉, then s.f (resp. f.s) is
the series defined by 〈s.f, w〉 = s.〈f, w〉 (resp. 〈f.s, w〉 = 〈f, w〉.s).
To define the star operation, we need to be able to sum infinitely many series, with the intention to
define f∗ as

∑
n>0 f

n. For this, we endow S〈〈A∗〉〉 with a topology. The distance d(f, g) of two series f, g
is defined by {

d(f, g) = 2−r(f,g), where 2−∞ = 0, and
r(f, g) = inf{|w| | w ∈ A∗ and 〈f, w〉 6= 〈g, w〉} ∈ N ∪ {∞}.

That is, two series are close if they cannot be distinguished by small words. It is easy to see that d is a
distance on S〈〈A∗〉〉 (actually, an ultrametric distance).

Definition 4.1 (Support, polynomial). The support of a formal power series f is

Supp(f) =
{
w ∈ A∗ | 〈f, w〉 6= 0

}
.

A polynomial is a series having finite support. The set of polynomials is denoted S〈A∗〉. �

Let f ∈ S〈〈A∗〉〉 and let Pn =
∑
|w|6n

〈f, w〉.w. Clearly, Pn is a polynomial which coincides with f on all

words of length n or less. Therefore, the sequence (Pn)n converges to f , which shows that S〈A∗〉 is dense
in S〈〈A∗〉〉.
We say that a family (fk)k∈K is summable if there is a series f such that, for every ε > 0, there exists
a finite set of indices I ⊆ K such that, whenever J ⊇ I, we have d(

∑
j∈J fj , f) < ε. The series f is

then obviously unique, and we write f =
∑
k∈K fk. A family (fk)k∈K is locally finite if for each w ∈ A∗,

there is only a finite number of indices k such that 〈fk, w〉 6= 0. In this case, the family is also clearly
summable, and 〈f, w〉 is actually the finite sum of all non-null values 〈fk, w〉.

23

An example of a locally finite family is the following. Denote by w the series which maps w to 1 and all
other words to 0. Let (fw)w∈A∗ be a sequence of elements of S. Then the family fw.w is locally finite
(since all the series fv.v for v 6= w have a zero value on w). Let f =

∑
w∈A∗ fw.w. Then 〈f, w〉 = fw. In

other words, f =
∑
w∈A∗〈f, w〉.w.

There is another important example of a summable family. A series f is said proper if 〈f, ε〉 = 0. In this
case, by definition of the Cauchy product, 〈fn, w〉 = 0 if |w| < n, and therefore (fn)n∈N is locally finite,
hence summable. For a proper series f , one denotes by f∗ the following series:

f∗ =
∑
n>0

fn.

where 1 denotes the series mapping ε ∈ A∗ to 1 ∈ S and nonempty words to 0 (i.e., 1 = ε with the
above notation, that is, 1 is the neutral element for the multiplication of S〈〈A∗〉〉). We check that

(4.1) f∗ = ff∗ + 1 = f∗f + 1.

We then define the set of rational series SRat〈〈A∗〉〉 as the smaller subset of S〈〈A∗〉〉 containing polynomials,
and closed under addition, Cauchy product, left and right scalar multiplication, and star (applied to
proper series only).

2. Recognizable Series

Recognizable series are simply series realized by a weighted automaton. That is, a series is recognizable
if there exist n > 0 and a representation (λ, µ, γ), with λ ∈ S1×n, µ ∈ Sn×n and γ ∈ Sn×1 such that
for all word w ∈ A∗, we have f(w) = λµ(w)γ. The set of all recognizable series over alphabet A and
semiring S is denoted by SRec〈〈A∗〉〉.
The main result of this chapter is that recognizable and rational series coincide. A first step in this
direction is to show stability of SRec〈〈A∗〉〉 by rational operations. A first observation is the following.

Lemma 4.2. SRec〈〈A∗〉〉 is stable under taking linear combinations (i.e., under the operations f 7→ s.f ,
f 7→ f.s, (f, g) 7→ f + g).

Proof. Exercise. �

We shall now state a result analogous to the fact that, in the Boolean semiring, a recognizable language
only has a finite number of residuals. We first need to define residuals. For f ∈ S〈〈A∗〉〉 and w ∈ A∗, we
let w−1f be the formal power series defined by

∀v ∈ A∗ 〈w−1f, v〉 = 〈f, wv〉.
It is easy to see that a recognizable series has in general an infinite number of residuals.

Lemma 4.3. Let f ∈ S〈〈A∗〉〉 and w ∈ A∗. We have:

1. If f ∈ S〈A∗〉, then w−1f ∈ S〈A∗〉
2. If f ∈ SRec〈〈A∗〉〉, then w−1f ∈ SRec〈〈A∗〉〉.

Proof. Exercise. �

We need the notion of left S-module, analogous to that of vector spaces when S is a field. We say that
M is a left S-module if it is endowed with an internal law + making it a commutative monoid (neutral
element denoted by 0), and if we have a left action from S ×M into M , denoted (s, w) 7→ sw, satisfying

s(m1 +m2) = sm1 + sm2 1m = m

(s1 + s2)m = s1m+ s2m 0m = 0

s1(s2m) = (s1s2)m s0 = 0

for all s, s1, s2 ∈ S and m,m1,m2 ∈M . A submodule of M is a subset of M containing 0 and stable by
addition and left action. For instance, S〈〈A∗〉〉 is a left S-module (with the addition of series as addition,
and the left scalar product as left action), and S〈A∗〉 is a submodule of S〈〈A∗〉〉.
A submodule M of S〈〈A∗〉〉 is finitely generated if there exist series f1, . . . , fn such that M = {α1f1 +
· · · + αnfn | αi ∈ S}. It is called stable if, whenever f belongs to M , then so do all its residuals w−1f .

24

For instance, the set S〈A∗〉 of polynomials is stable (by Lemma 4.3), but clearly not finitely generated.
The same holds for SRec〈〈A∗〉〉 by Lemma 4.3.

The characterization of recognizable series is then the following:

Proposition 4.4. A series f ∈ S〈〈A∗〉〉 is recognizable if and only if it belongs to some stable finitely
generated submodule of S〈〈A∗〉〉.

Proof sketch. If f is recognizable, say with a representation (λ, µ, γ), then f =
∑n
i=1 λifi where

fi = (µγ)i. The submodule
{∑n

i=1 sifi | si ∈ S
}
is obviously finitely generated and contains f . It just

remains to check that it is stable (left as an exercise).

Conversely, if f =
∑n
i=1 λifi where

{∑n
i=1 sifi | si ∈ S

}
is stable, then by definition of stability, there

are coefficients µa,i,j such that for every a ∈ A, we have a−1fi =
∑n
j=1 µa,i,jfj . Set µ(a)i,j = µa,i,j and

γi = 〈fi, ε〉, and check that (λ, µ, γ) is indeed a representation of f .

See [BR11] for details. �

The Hadamard product of two formal power series f and g is the pointwise multiplication of series, that
is, the series f � g defined by f � g(w) = f(w)g(w) for all w ∈ A∗.

Corollary 4.5. If S is commutative and if f and g are recognizable, then so is f � g.

Proof. Exercise. �

We now prove that SRat〈〈A∗〉〉 ⊆ SRat〈〈A∗〉〉.

Lemma 4.6. For all f, g ∈ S〈〈A∗〉〉 and a ∈ A, we have

a−1(fg) = 〈f, ε〉(a−1g) + (a−1f)g.

Moreover, if f is proper, then
a−1(f∗) = (a−1f)f∗.

Proof. We have for w ∈ A∗

〈a−1(fg), w〉 = 〈fg, aw〉 =
∑

uv=aw

〈f, u〉.〈g, v〉 = 〈f, ε〉〈a−1g, w〉+ 〈a−1f, w〉〈g, w〉

(last equality by isolating the first term of the sum.)

For the other equality, we use f∗ = ff∗ + 1. We have a−1f∗ = a−1(ff∗) + a−11 = a−1f.f∗, using the
first statement, and since 〈f, ε〉 = 0 by hypothesis. �

Corollary 4.7. We have SRat〈〈A∗〉〉 ⊆ SRec〈〈A∗〉〉.

Proof. Clearly, the series 1 and a, for a ∈ A, are recognizable. Therefore, by Lemma 4.2, S〈A∗〉 ⊆
SRec〈〈A∗〉〉. It remains to show that SRec〈〈A∗〉〉 is closed under rational operations. The cases of addition
and scalar multiplication are given by Lemma 4.2. Assume that f, g are recognizable. We show that so
are fg and f∗ using the characterization of Proposition 4.4 and Lemma 4.6.

Let M =
{∑n

i=1 sifi | si ∈ S
}
and N =

{∑m
i=1 tigi | ti ∈ S

}
be stable submodules of S〈〈A∗〉〉 containing

f and g, respectively. Then, Mg+N is generated by {f1g, . . . , fng, g1, . . . , gn}, so it is finitely generated.
It obviously contains fg. It remains to show that it is stable. We have a−1(fig) = a−1fi.g+〈fi, ε〉.a−1g ∈
Mg + N by stability of M and N . By linearity of h 7→ a−1h we conclude that Mg + N is stable, as
required.

Similarly, one shows that, if f is proper, we check that Mf∗+S is a finitely generated stable submodule
containing f∗. �

We now show that SRec〈〈A∗〉〉 ⊆ SRat〈〈A∗〉〉. We consider elements of S〈〈A∗〉〉n×n, that is, matrices whose
elements are series over S. We say that such a matrix is proper if so are all its coefficients. In this case
one can consider µ̄∗ =

∑
k>0 µ̄

k.

Lemma 4.8. Let µ̄ be a proper matrix of S〈〈A∗〉〉n×n. The coefficients of µ̄∗ are in the rational closure
of the coefficients of µ̄. In particular, if µ̄ has rational series as coefficients, so has µ̄∗.

25

Proof sketch. By induction on the dimension n of µ̄. For n > 1, one uses a block decomposition
of µ̄ and µ̄∗ in 4 blocks, and the identity µ∗ = 1 + µµ∗ yields relations between the blocks of µ̄ and
those of µ̄∗. These relations are linear, i.e., of the form φ = αφ + β for α proper. A simple topological
argument shows that this equation in φ has a unique solution α∗β. This makes it possible to solve the
linear relations obtained considering the blocks of µ̄∗ as unknowns, and to show that they are in the
rational closure of the blocks of µ̄. �

Proposition 4.9. We have SRec〈〈A∗〉〉 ⊆ SRat〈〈A∗〉〉.

Proof. Let f ∈ SRec〈〈A∗〉〉 and let (λ, µ, γ), be a representation of f .

Let µ̄ =
∑
a∈A µ(a).a ∈ Sn×n〈〈A∗〉〉, The series µ̄maps A∗\A on the zero element of Sn×n. In particular it

is proper. Applying the definition of the star operation, we obtain µ̄∗ =
∑
w∈A∗ µw.w. Viewing matrices

of Sn×n〈〈A∗〉〉 as elements of S〈〈A∗〉〉n×n, we have µ̄∗i,j =
∑
w∈A∗(µw)i,j .w, and therefore, f =

∑
λiµ
∗
i,jγj .

Moreover, µ̄∗i,j is rational by Lemma 4.8, hence so is f . �

From Corollary 4.7 and Proposition 4.9, one deduces the Kleene-Schützenberger’s theorem.

Theorem 4.10. A formal power series is recognizable if and only if it is rational.

Given a language L ⊆ A, its characteristic series, denoted L, is defined by

〈L,w〉 =

{
1 if w ∈ L
0 otherwise.

As an application of Theorem 4.10, let us show the following useful statement.

Proposition 4.11. The characteristic series of a regular language is effectively recognizable.

Proof. Since L ⊆ A∗ is regular, there is a finite monoid M and a morphism ϕ : A∗ → M such
that L = ϕ−1(P) for P = ϕ(L) (by Kleene’s theorem). Consider the right representation of M , that

is, the mapping ρ : M → SM×M defined by ρ(m)s.t =

{
1 if sm = t

0 otherwise.
It is easy to check that ρ is a

morphism:
(
ρ(m1)ρ(m2)

)
s,t

=
∑
r∈M ρ(m1)s,rρ(m2)r,t, and ρ(m1)s,rρ(m2)r,t = 1 only if sm1 = r and

rm2 = t, which gives
(
ρ(m1)ρ(m2)

)
s,t

= 1 if t = sm1m2 and 0 otherwise.

Therefore, µ : A∗ → SM×M defined by µ(w) = ρ(ϕ(w)) is a morphism. Let λ ∈ SM be the row vector
defined by λm = 1 if m = 1 and λm = 0 otherwise, and let γ ∈ SM be the column vector defined by
γm = 1 if m ∈ P and γm = 0 otherwise. Then (λ, µ, γ) is a representation of L. �

Exercises for Chapter 4

Exercise 4.1. Show that S〈〈A∗〉〉 is the topological completion of S〈A∗〉.

Exercise 4.2. Prove Lemma 4.3.

Exercise 4.3. Let S be a ring.

1. Show that a series f ∈ S〈〈A∗〉〉 is invertible iff. 〈f, ε〉 is invertible in S. What is then its inverse?
2. On the semiring Nat with A = {a}, compute 〈f, an〉, n > 0, for the series f = (a+ aa)∗.
3. Show that if |A| = 1 and S is a commutative, rational series are exactly the series expansion of

fractions P/Q, where P,Q ∈ S〈〈{a}∗〉〉 are polynomials in one variable, and Q(0) is invertible.
4. What are the polynomials corresponding to the series f of question 2 (considering f ∈ Z〈〈{a}∗〉〉)?

Exercise 4.4. Prove Corollary 4.5. Is it still true when S is not commutative?

Exercise 4.5. For n ∈ N, we still write n the element 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

of S.

1. Show that the series f defined by 〈f, w〉 = |w|a is rational (where |w|a denotes the number of
a’s in the word w) by providing a rational expression.

2. Let A =
∑
a∈A a. Show that the series A∗ is the constant series mapping every word to 1.

26

Exercise 4.6. Give a matrix representation of the series 〈f, w〉 = |w|a defined in Exercise 4.5.

Exercise 4.7. 1. We know from Chapter 3 that the formal power series {0, 1}∗ → R>0 which associates
to the word w the value w (defined page 13) is recognizable on R>0. Reprove this result using
Proposition 4.4.

2. Show that the series in Nat〈〈{0, 1}∗〉〉 which maps ε to 0 and w ∈ {0, 1}+ to the integer whose binary
representation is w is recognizable.

Exercise 4.8. Show that for S commutative, every mapping ϕ : A→ S〈〈B∗〉〉 such that ϕ(a) is a proper
rational series uniquely extends to a continuous semiring morphism ϕ : S〈〈A∗〉〉 → S〈〈B∗〉〉 inducing the
identity on S. Show that the image of a rational series by this morphism is rational.

Further reading and references

[BR11] J. Berstel and Ch. Reutenauer. Noncommutative rational series with applications. Vol. 137. Encyclopedia of
Mathematics and Its Applications. Preliminary version at http://tagh.de/tom/wp-content/uploads/
berstelreutenauer2008.pdf. Cambridge University Press, 2011 (cit. on pp. 23, 25).

[DKV09] M. Droste, W. Kuich, and W. Vogler. Handbook of Weighted Automata. Springer, 2009 (cit. on p. 23).

[KS85] W. Kuich and A. Salomaa. Semirings, Automata and Languages. Springer, 1985.

[Sak09] J. Sakarovitch. Elements of Automata Theory. New York, NY, USA: Cambridge University Press, 2009.
isbn: 0521844258, 9780521844253 (cit. on p. 23).

[SS78] A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer, 1978.

27

http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf
http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf

CHAPTER 5

Series over Semirings of Integers

In this chapter, we review some decidability and undecidability results for series over the following
semirings:

– Nat = (N,+, · , 0, 1) the semiring of natural numbers,
– Z = (Z,+, · , 0, 1), the semiring of integers,
– Trop = (N ∪ {∞},min,+,∞, 0), called the tropical semiring,
– TropZ = (Z ∪ {∞},min,+,∞, 0).

In particular, we look at the (In)equality problems.

1. Semirings Z and Nat

We begin by a decidability result, which actually has already been proved.

Theorem 5.1. The Equality problem over Nat and Z is decidable. That is, it is decidable whether
two rational formal power series are equal.

The proof is the same as for probabilistic automata (Theorem 3.20), embedding Nat or Z into the field Q.

For other problems over Z, the situation is often undecidability. The first easy observation is that over
the semiring Z, one can encode usual polynomials (i.e., in commutative variables) with coefficients in Z.

Lemma 5.2. Let P ∈ Z[X1, . . . , Xn] be a polynomial over Z. Then there exists a recognizable series f
over Z and over A = {a1, . . . , an} such that f(w) = P (|w|a1 , . . . , |w|an).

Proof. Exercise. �

Due to Lemma 5.2, it is natural to encode Hilbert’s 10th problem, which we recall:

Input A polynomial P ∈ Z[X1, . . . , Xn].
Problem Does there exist positive integers k1, . . . , kn such that P (k1, . . . , kn) = 0?

This problem is undecidable [Mat93; DMR76]. Using Lemma 5.2, one can reduce Hilbert’s 10th prob-
lem reduces to several problems for rational formal power series in Z, listed in Theorem 5.3. See for
instance [SS78; KS85] (or go to Exercise 5.1!). Note that the PCP is also adapted and provides simple
proofs, too (see Exercise 5.1). The advantage in reducing from the PCP is not to depend on the very
difficult result of [Mat93; DMR76].

Theorem 5.3. Assume that |A| > 2. Given a rational series f ∈ ZRat〈〈A∗〉〉, it is undecidable whether f

(a) has a zero coefficient,
(b) has infinitely many zero coefficients,
(c) has a positive coefficient,
(d) has infinitely many positive coefficients,
(e) is one-to-one,
(f) has only a finite number of nonnegative values.

Proof. Exercise. Hint: by reduction from Hilbert’s 10th problem, or from the Post correspondence
problem, which is also well-suited. Note that if the alphabet is fixed (not part of the input), then one
cannot directly apply Lemma 5.2, which uses an unbounded alphabet. However, given P ∈ Z[X1, . . . , Xn],
one can use instead of P (|w|a1 , . . . , |w|an) the series mapping the word an1b · · · ankb to P (n1, . . . , nk),
and words outside of a∗b · · · a∗b to some constant k ∈ Z. This series is indeed recognizable over Z. �

29

On the other hand, it is decidable whether a rational series has infinitely many nonzero coefficients.

Theorem 5.4. Given a series f ∈ ZRat〈〈A∗〉〉, it is decidable whether f ∈ Z〈A∗〉.

Proof. Exercise. Hint: first prove the result for |A| = 1 using Exercise 4.3. �

2. The Tropical Semiring

Weighted automata over Trop = (N ∪ {∞},min,+,∞, 0) have a nice interpretation: weights can be
viewed as costs that we have to pay on a path, when traveling along the transitions of the automaton.
Thanks to the min operation, the semantics on a word w computes the cheapest cost for w.

An easy application of this semiring in the theory of formal languages is the finite power property: given
a regular language L, is there some integer n > 0 such that L∗ = Ln? This question easily reduces to
the so-called limitedness problem, which asks whether a rational series over Trop is bounded. It turns
out that this problem is decidable (Pspace-complete, see [LP04]). The tropical semiring has actually
been considered by I. Simon to solve the star-height problem [Sim94]. The simplest solution to this
nontrivial problem requires additional algebraic tools. Many extensions have also been considered, see
for instance [Kir05].

However, in contrast to the limitedness problem, several variants of the (In)equality or Existential
(In)equality problems are undecidable [Kro94]. We consider for technical reasons the semiring TropZ,
and we show the following results. The reduction presented in [Kro94] is from Hilbert’s 10th problem.
We present a proof reducing the Halting problem of 2-counter machines to these problems, first in
TropZ, then in Trop. This proof is due to Th. Colcombet (unpublished).

Theorem 5.5. Let A be an alphabet with at least two letters. Then the (In)equality problems, as
well as the Existential (In)equality problems are all undecidable for rational formal power series in
TropRat〈〈A∗〉〉 or TropRat

Z 〈〈A∗〉〉.

Proof. The proof is in two steps.

(i) We reduce the Halting problem of 2-counter machines to the Inequality problem over TropZ.
(ii) We reduce the Inequality problem over TropZ to all other problems.

When working in Trop or TropZ, we use min and + with their usual meaning, and we write ⊕ and ⊗,
respectively, to emphasize the semiring operations. That is, ⊕ stands for min and ⊗ stands for +. Recall
that the Hadamard product � is the pointwise multiplication of series, that is, f � g = f + g. We freely
use Kleene-Schützenberger’s theorem (Theorem 4.10) and the fact that rational power series are stable
under taking Hadamard product (Corollary 4.5), since we work over commutative semirings.

Let us first explain (ii). In the Inequality problem, we consider the relation ./ = 6. All choices
in {<,6, >,>} are in fact equivalent wrt. decidability on Trop or TropZ. To see this, note that for
f ∈ TropRec〈〈A∗〉〉, the support

Supp(f) = {w ∈ A∗ | 〈f, w〉 =∞}
is effectively recognizable, since the function from Trop to Bool mapping ∞ to 0 and all other values
to 1 is a morphism (so, starting from a weighted automaton for f over Trop, an automaton recognizing
Supp(f) is obtained by replacing ∞ weights by 0, and other weights by 1). Then we have, for instance,
f < g if and only if Supp(f) = ∅ and f + 1 6 g, that is, f � 1 6 g, where 1 is the constant (rational)
series on Trop or TropZ. We deduce that the Inequality problem for < is decidable if and only if so is
the Inequality problem for 6.

For L ⊆ A∗ and f ∈ Trop(Z)〈〈A∗〉〉, let fL(w) = 0 if w ∈ L and fL(w) = f(w) if w /∈ L. We have
fL = min(L, f) = L⊕ f , so by Proposition 4.11, if L is regular and f recognizable, so is fL.

For power series f, g over TropZ or Trop, we then have:

– f 6 g if and only if min(f, g) = f , that is, f⊕g = f . This shows that Inequality 6 Equality.
– f 6 g if and only if Supp(f) ⊆ Supp(g), and it not the case that for some w, 〈gL, w〉 <
〈fL, w〉 with L = Supp(g). In case Supp(f) ⊆ Supp(g), note that neither fL nor gL take ∞
values. Therefore, 〈gL, w〉 < 〈fL, w〉 is equivalent to 〈gL � 1, w〉 6 〈fL, w〉. This shows that
Inequality 6 Existential Inequality.

30

– 〈f, w〉 6 〈g, w〉 holds for some w if and only if 〈f ⊕ g, w〉 = 〈f, w〉 holds for some w. This shows
that Existential Inequality 6 Existential Equality, and therefore Inequality 6
Existential Equality by the above.

To conclude the proof of (ii), it remains to prove that Inequality(TropZ) 6 Inequality(Trop) —
with an obvious notation. So let f, g ∈ TropZ〈〈A∗〉〉 be given by their representations (λ, µ, γ) and
(η, ν, δ), that one can assume to be of the same dimension n (adding unnecessary states to the smallest
representation). We uniformly lift all entries of both matrices, in order to obtain series with nonnegative
entries: let k be the smallest value appearing in these representations, and consider the series fk, gk
having as representations

(
(λi + |k|)i, (µi,j + |k|)i,j , (γj + |k|)j

)
and

(
(ηi + |k|)i, (νi,j + |k|)i,j , (δj + |k|)j

)
.

By construction, fk and gk are rational series over Trop (all of their entries are in N). Moreover, we
compute 〈fk, w〉 = 〈f, w〉 + k(|w| + 2) and similarly 〈gk, w〉 = 〈g, w〉 + k(|w| + 2), whence f 6 g if and
only if fk 6 gk. This shows that Inequality(TropZ) 6 Inequality(Trop).

It remains to prove (i). We consider a 2-counter Minsky machine, consisting in a finite automaton
(Q, q0, qf ,∆) where Q is a finite set of states, q0, qf ∈ Q (q0 6= qf), and ∆ ⊆ Q×Guards×Actions×Q is
a finite set of transitions that handle two counters c1 and c2, each storing a natural integer. Intuitively,
the machine has two kinds of instructions, increment and test for decrement, pictured in Fig. 5.1:

p q
[true], {ci++}

p

q1

q2

[¬(ci = 0)], {ci−−}

[ci = 0], {}

(a)
Increment

p : {ci++}; goto q.
(b)

Test for decrement

p : if ci = 0 goto q2 else ({ci−−}; goto q1).

Fig. 5.1. Transitions of a Minsky machine

Transitions are of the form (p, [guard], {action}, q), where guard is a condition on counters that has to be
fulfilled for the transition to be enabled, and action possibly modifies the counter values. A configuration
of such a machine is a tuple (q, n1, n2) ∈ Q× N× N. Possible guards are

– [true]: transition is always enabled,
– [ci = 0]: transition is enabled only if the value ni of ci in the current configuration is 0, and
– [¬(ci = 0)]: transition is enabled only if the value ni of ci in the current configuration is not 0.

Actions are either

– {ci++}: increment ci, always guarded by [true],
– {ci−−}: decrement ci, always guarded by [¬(ci = 0)], or
– {} no change in the counter values, always guarded by [c1 = 0] or [c2 = 0].

A computation of a 2-counter Minsky machine (Q, q0, qf ,∆) is a sequence of configurations C0, C1, . . . , Cn
with C0 = (q0, 0, 0), and such that the semantics of transitions in ∆ is respected:

(1) Cj = (p, n1, n2) and Cj+1 = (q, n1 + 1, n2) and (p, [true], {c1++}, q) ∈ ∆. Idem for c2.
(2) Cj = (p, n1 + 1, n2), Cj+1 = (q, n1, n2) and (p, [¬(c1 = 0)], {c1−−}, q) ∈ ∆. Idem for c2.
(3) Cj = (p, n1, n2), Cj+1 = (q, n1, n2) and for some i = 1, 2, ni = 0 and (p, [ci = 0], {}, q) ∈ ∆.

The following Halting problem for 2-counters Minsky machines is undecidable [Min67]:

Input A 2-counter Minsky machineM = (Q, q0, qf ,∆).
Problem Is there a computation ofM ending in {qf} × N× N?

For (i), we build from a 2-counter Minsky machineM a weighted automaton AM over TropZ such that

M has no computation reaching {qf} × N× N⇐⇒ −1 > ‖A‖M.
The semantics of AM will be nonpositive. More precisely, it shall assign zero to words encoding compu-
tations ofM that reach {qf} × N×, and negative values for all other words, which we call incorrect.

31

We encode computations of M as follows. Let a, b ∈ ∆. For a configuration C = (q,k, `), let C̃ =
akb` ∈ a∗b∗. A computation C0, C1, . . . , Cn taking transitions δ1, δ2, . . . , δn−1 is encoded by the word
C̃0δ0C̃1δ1 · · · δn−1C̃n ∈ (∆ ∪ {a, b})∗. AM shall assign 0 to the words encoding a computation ending in
qf , and negative values to incorrect words. A word is incorrect if one of the following conditions holds:

Wrong shape: It is not in a∗b∗(∆a∗b∗)∗,
Not starting in (q0, 0, 0): Its first letter is not in

⋃
g,a,q(q0, [g], {a}, q),

Not ending in qf : It does not have a suffix in
⋃
g,a,q(qf , [g], {a}, q)a∗b∗,

Wrong consecutive transitions: It contains a factor in
⋃
q1 6=p2(p1, [g1], {a1}, q1)a∗b∗(p2, [g2], {a2}, q2),

Illegal zero test: It contains a factor in
⋃
p,q

[
a+b∗(p, [c1 = 0], {}, q) ∪ a∗b+(p, [c2 = 0], {}, q)

]
,

Wrong increment on c1: It contains a factor in
⋃
` 6=k+1

⋃
p,q ∆akb∗(p, [true], {c1++}, q)a`b∗∆.

Wrong decrement on c1: It contains a factor in
⋃
6̀=k−1

⋃
p,q ∆akb∗(p, [true], {c1−−}, q)a`b∗∆.

Wrong increment or decrement on c2: Similar to the corresponding property on c1.

The first 5 conditions are described by a regular language L. By Proposition 4.11, the characteristic
function L is effectively recognizable: there is a computable recognizable series f such that f(w) = 0 =∞
if w /∈ L and f(w) = 1 = 0 if w ∈ L. Therefore, g = min(0, f − 1) = 0 ⊕ (f � (−1)) is also effectively
recognizable and

g(w) =

{
−1 if w ∈ L, and,
0 if w /∈ L.

It remains to treat the last conditions: wrong increment or decrement on c1 or c2. Let us explain how
to handle a wrong increment on c1, i.e., the encoding contains a factor ∆akb∗(p, [true], {c1++}, q)a`b∗∆
with ` 6= k + 1. Therefore, either ` > k + 1 or ` < k + 1. Let us treat only the case ` > k + 1. To assign
a negative value to such words, we design a weighted automaton which

– scan the word with weight 0, until nondeterministically guessing the beginning of a factor
∆akb∗(p, [true], {c1++}, q)a`b∗∆ to be checked.

– then count
◦ weight 0 for the first letter of this factor in ∆,
◦ weight 1 for each a and 0 for each b in the block akb∗,
◦ weight 1 for the intermediate transition, checking that it is if the form (p, [true], {c1++}, q),
◦ weight −1 for each a and 0 for each b in the block a`b∗,

– finally scan the rest of the word with weight 0.

Therefore on a run, the computed weight is k + 1 − `, which is negative if and only if k + 1 < `. Call
f1,+,> the corresponding recognizable series. Since the semantics of a weighted automaton on a word w
is the minimum of the weights of all runs on w, we have f1,+,>(w) < 0 if and only if w has a factor of the
form ∆akb∗(p, [true], {c1++}, q)a`b∗∆ with ` > k + 1. If w has no wrong increment, then f1,+,>(w) = 0.

Similarly, one builds f1,+,< which computes a negative value if and only if there is a factor of the form
∆akb∗(p, [true], {c1++}, q)a`b∗∆ with ` < k + 1. Therefore, f1,+ = min(f1,+,<, f1,+,>) = f1,+,< ⊕ f1,+,>
computes a negative value if and only if w contains some wrong increment on c1, and 0 otherwise. Simi-
larly we build f2,+ for checking a wrong increment on c2, and f1,−, f2,− for checking wrong decrements.
Then, h = min(g, f1,−, f2,−, f1,+, f2,+) is such that h(w) < 0 if and only if w is incorrect, and h(w) = 0
otherwise, that is, if w is a correct encoding of a computation ofM ending in {qf} × N× N.

This shows (i) and concludes the proof. �

Exercises for Chapter 5

Exercise 5.1. Show theorem 5.3

1. by a reduction from Hilbert’s 10th problem,
2. by a reduction from PCP.

Exercise 5.2. Prove Theorem 5.4.

Exercise 5.3. Show that the function mapping (akb)` to k`, and words not in (a∗b)∗ to 0 is recognizable
on Trop.

32

Further reading and references

[DMR76] M. Davis, Y. V. Matijasevič, and J. Robinson. “Hilbert’s Tenth Problem. Diophantine equations: positive
aspects of a negative solution”. In: Mathematical Developments Arising from Hilbert Problems. Vol. 28.
Proc. of Symposia in Pure Mathematics. Providence, Rhode Island: American Mathematical Society, 1976,
pp. 323–378 (cit. on p. 29).

[Kir05] Daniel Kirsten. “Distance desert automata and the star height problem”. In: RAIRO Inform. Théor. Appl.
39.3 (2005), pp. 455–509. issn: 0988-3754 (cit. on p. 30).

[Kro94] D. Krob. “The equality problem for rational series with multiplicities in the tropical semiring is undecidable”.
In: Int. J. of Algebra and Comput. 4.3 (1994), pp. 405–425 (cit. on p. 30).

[KS85] W. Kuich and A. Salomaa. Semirings, Automata and Languages. Springer, 1985 (cit. on p. 29).

[LP04] Hing Leung and Viktor Podolskiy. “The limitedness problem on distance automata: Hashiguchi’s method
revisited”. In: Theor. Comp. Sci. 310.1-3 (2004), pp. 147–158 (cit. on p. 30).

[Mat93] Y. V. Matijasevič. Hilbert’s Tenth Problem. Cambridge, Massachusetts: MIT Press, 1993. isbn: 0-262-
13295-8 (cit. on p. 29).

[Min67] Marvin L. Minsky. Computation: finite and infinite machines. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1967. isbn: 0-13-165563-9 (cit. on p. 31).

[Sim94] Imre Simon. “On Semigroups of Matrices over the Tropical Semiring”. In: ITA 28.3-4 (1994), pp. 277–294
(cit. on p. 30).

[SS78] A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer, 1978 (cit. on
p. 29).

33

CHAPTER 6

Word Transducers

1. Definition

Word transducers have manifold applications in computer science, e.g., in regular model checking [Abd+04],
speech recognition, natural language processing [Moh97], etc. A general reference for word transducers
is [Ber79].

Definition 6.1. Let B be an alphabet. A word transducer over B is a weighted automaton A =
(Q,A, λ, µ, γ) over RegB = (Rat(B),∪, · ,∅, {ε}). �

Thus, ‖A‖ assigns to a word w ∈ A∗ a language ‖A‖(w) ⊆ B∗. Usually, ‖A‖ is represented by the binary
relation

R(A)
def
= {(u, v) ∈ A∗ ×B∗ | v ∈ ‖A‖(u)} .

From that point of view, word transducers describe precisely the rational relations (cf. [Cho04; Cho09]).

Example 6.2. Let A = {a, b}. A word transducer A = (Q,A, λ, µ, γ) over A is depicted in Fig. 6.1,
where λ(q0) = γ(q0) = A∗ ∈ RA. For all u ∈ A∗, ‖A‖(u) is the set of words v ∈ A∗ such that u is an
infix of v.

q0a, {a} b, {b}

A∗

A∗

Fig. 6.1. A word transducer

2. Threshold Problems for Word Transducers

Word transducers can be used to model systems that communicate with an environment. Suppose a
system can execute actions from an alphabet A that are triggered by input streams from B∗ where B is
a set of signals (cf. Fig. 6.2). This can be modeled by a word transducer A over B with input alphabet
A. For a sequence w ∈ A∗ of actions, ‖A‖(w) contains the sequences that trigger the behavior w. Often,
the input stream cannot be predicted in advance but only isolated by a, say, regular set E ⊆ B∗. Thus,
it can be useful to know the set of words w ∈ A∗ such that E ∩ ‖A‖(w) 6= ∅. This corresponds to the
set L∩ 6=∅ E(A) where ∩6=∅ is the set of pairs (M1,M2) with nonempty intersection.

Suppose we are given a set Bad ⊆ A∗ of bad behaviors that our system must avoid. Then, we would like
to have

Bad ∩ L∩ 6=∅ E(A) = ∅ .

If, on the other hand, we are given a set Good ⊆ A∗ of behaviors that the system should exhibit, then
we need a statement such as

Good ⊆ L⊆E(A) .

The first problem, where A, E, and Bad act as the input, is the model checking problem wrt. safety
properties. The second one, where in the input Bad is replaced with Good , is the model checking
problem wrt. liveness properties. These considerations motivate us to study the threshold emptiness and
universality problems for word transducers.

35

stream from B∗ =⇒ A =⇒ behavior from A∗

Fig. 6.2. A system communicating with its environment

The following result follows from a standard automaton construction.

Theorem 6.3. Let B be an alphabet and let A be a word transducer over B. For every regular language
E ⊆ B∗, the threshold language L∩ 6=∅ E(A) is effectively regular.

Proof. SupposeA = (Q,A, λ, µ, γ) and let E be represented by the finite automaton B = (P,B,∆, p0, F).
We construct the finite automaton B′ = (P ′, A,∆′, P ′0, F

′) (here, P ′0 ⊆ P ′ is a set of initial states) with
L(B′) = L∩ 6=∅ E(A) as follows:

– P ′ = Q× P
– P ′0 = {(q, p) ∈ P ′ | p ∈ δ(p0, λ(q))}
– F ′ = {(q, p) ∈ Q× P | δ(p, γ(q)) ∩ F 6= ∅}
– ((q, p), a, (q′, p′)) ∈ ∆′ if p′ ∈ δ(p, µ(q, a, q′))

Hereby, for p ∈ P and a regular set L ⊆ B∗, δ(p, L) denotes the (computable) set of states of B that are
reachable from p by reading some word from L. �

Corollary 6.4. For word transducers, both the threshold emptiness problem and the threshold universality problem
wrt. ∩6=∅ are decidable.

We also conclude that, for word transducers over B, the model checking problem wrt. safety properties
is decidable.

Unfortunately, both the threshold emptiness and the threshold universality problem become undecidable
when we consider the binary relation ⊆. We will first show the result for the universality problem.

Theorem 6.5. Let B be an alphabet with at least two letters. Then, the threshold universality problem
for word transducers over B wrt. ⊆ is undecidable.

We will actually show undecidability of a concrete instance of that problem:

Theorem 6.6. Let B be an alphabet with at least two letters. The following problem is undecidable:

Input: Word transducer A = (Q,A, λ, µ, γ) over B .
Problem: Do we have ‖A‖(w) = B∗ for every w ∈ A∗ ?

Proof. The proof is by reduction from Post’s correspondence problem (PCP), which is given as
follow:

Input: Alphabet A and morphisms f, g : A∗ → {0, 1}∗ .
Problem: Is there w ∈ A+ such that f(w) = g(w) ?

Let an instance of the PCP be given by A and f, g. Suppose B = {0, 1}. Our reduction is based on two
binary relations Rf , Rg ⊆ A+ ×B∗:

Rf = {(w, f(w)) | w ∈ A+}
Rg = {(w, g(w)) | w ∈ A+}

We can construct a word transducer A = (Q,A, λ, µ, γ) over B such that

R(A) = Rf ∪ Rg
where, for a relation R ⊆ A∗ ×B∗, we let R = (A∗ ×B∗) \R. We have

‖A‖(w) = B∗ for every w ∈ A∗

iff R(A) = A∗ ×B∗

iff there is no w ∈ A+ such that f(w) = g(w)

The construction of A is left as an exercise (Exercise 6.1). This concludes the proof of Theorem 6.6. �

36

From that result, we deduce that, for word transducers over B, the model checking problem wrt. liveness
properties is undecidable.

Theorem 6.7. Let B be an alphabet with at least two letters. Then, the threshold emptiness problem for
word transducers over B wrt. ⊆ is undecidable.

Again, we will show undecidability of a more specific problem:

Theorem 6.8. Let B be an alphabet with at least two letters. The following problem is undecidable:

Input: Word transducer A = (Q,A, λ, µ, γ) over B .
Problem: Do we have ‖A‖(w) = B∗ for some w ∈ A∗ ?

Proof. Again, the proof is by reduction from the PCP. It is inspired by a result from a timed
setting [Aks+08].

q0

q1

q1

q1

q3

0 1

0 1

0

f(w)

a1

a2

a1

b

1

0

1

1

1

0

1

0
?

q0

q2

q2

q2

q3

1

1

a1

a2

a1

b

g(w)

1

0

1

1

1

0

1

1

Fig. 6.3. The trees generated by w = a1a2a1b

From a PCP instance A, f, g, we will construct a word transducer A over B = {0, 1} such that L⊆B∗(A) =
{u.b | u ∈ A+ and f(u) = g(u)}. The idea of our construction is illustrated in Fig. 6.3. Consider the
PCP instance given by A = {a1, a2} and

f(a1) = 101 f(a2) = 1
g(a1) = 1 g(a2) = 01110

with the obvious solution u = a1a2a1. Our transducer will be split into two parts. One part is concerned
with f (cf. the left hand side of the figure). Intuitively, it reads a sequence u.b with u ∈ A+ and generates
a tree whose nodes correspond to words over B. A node (or, the path to reach the node from the root)
will be accepted unless it corresponds to f(u). In the latter case, the transducer remains in a state q1.
When reading b in q1, our transducer will produce 0, and will accept. However, the sequence u.b is in
L⊆B∗(A) only if a path labeled f(u).1 is accepted, too. Such a path can be provided by the second part
of the automaton, simulating g (cf. the right hand side of the figure). The missing path needs to follow

37

f(u) and produce the letter 1 on that node where the f -part had produced 0. For this, f(u) and g(u)
have to coincide, which implies that the PCP instance has a solution.

Let an instance of the PCP be given by the alphabet A = {a1, . . . , ak} with k > 1 and two corresponding
morphisms f and g. We will construct a word transducer A = (Q,A, λ, µ, γ) over B = {0, 1}, with
A = {a1, . . . , ak, b}, such that

L⊆B∗(A) = {u.b | u ∈ A+ and f(u) = g(u)} .

The automaton A is given by Fig. 6.4. Hereby, for i ∈ {1, . . . , k}, we let

Fi = {f(ai)} Fi = {v ∈ B∗ | f(ai) 6∈ Pref (v)}
Gi = {g(ai)}

where Pref (v) = {v1 ∈ B∗ | v = v1.v2 for some v2 ∈ B∗} is the set of prefixes of v.

q1

q0

q2

q3

p1

ai,Fi ai,Fi ai,Gi

b, 0.B∗ ∪ {ε}

b, 1.B∗

b, {ε}

A, {ε}
ai,Fi

ai,Fi

ai,Gi

{ε}

{ε}

Fig. 6.4. Encoding of PCP in terms of a word transducer

For a state q ∈ Q, let in the following Aq refer to the word transducer (Q,A, λ, µ, γ′) where, for p ∈ Q,

γ′(p) =

{
{ε} if p = q

∅ if p 6= q

Claim 6.9. For every u ∈ A+, the following hold:

(1) ‖Aq1‖(u) = {f(u)}
(2) ‖Aq2‖(u) = {g(u)}
(3) ‖Ap1‖(u) = {v ∈ B∗ | f(u) 6∈ Pref (v)}

We can now show that L⊆B∗(A) = {u.b | u ∈ A+ and f(u) = g(u)}.
Let u ∈ A+ with f(u) = g(u) and let v ∈ B∗. To prove that v ∈ ‖A‖(u.b), we distinguish three cases:

(1) If v = f(u) or v ∈ f(u).0.B∗, then v ∈ ‖A‖(u.b) by Claim 6.9 (1).
(2) If v ∈ f(u).1.B∗, then v ∈ ‖A‖(u.b) by Claim 6.9 (2).
(3) If v 6∈ f(u).B∗, then v ∈ ‖A‖(u.b) by Claim 6.9 (3).

Thus, we have v ∈ ‖A‖(u.b).
Conversely, let u ∈ A+ and suppose ‖A‖(u.b) = B∗. We have f(u) ∈ ‖Aq1‖(u) and f(u) 6∈ ‖Ap1‖(u)
(Claims 6.9 (1) and (3)). As f(u).1 ∈ ‖A‖(u.b), we must have f(u) ∈ ‖Aq2‖(u). By Claim 6.9 (2), we
deduce f(u) = g(u). �

38

Exercises for Chapter 6

Exercise 6.1. Construct the word transducer A over B = {0, 1} from the proof of Theorem 6.6. Recall
that A should satisfy R(A) = Rf ∪ Rg. Note that Rf (similarly for Rg) is the union of the following
relations:

R0 = {(u, v) ∈ A∗ ×B∗ | u = ε}
R1 = {(u, v) ∈ A+ ×B∗ | |v| < |f(u)|}
R2 = {(u, v) ∈ A+ ×B∗ | |v| > |f(u)|}
R3 = {(u, v) ∈ A+ ×B∗ | |v| = |f(u)| and v 6= f(u)}

The respective word transducers can then be combined towards A.

Exercise 6.2. Show Theorem 6.6 by means of a variant of the proof of Theorem 6.8.

Exercise 6.3. Show Claim 6.9 (3).

Further reading and references

[Abd+04] P. Aziz Abdulla et al. “A Survey of Regular Model Checking.” In: Proc. of CONCUR’04. Vol. 3170. Lect.
Notes Comp. Sci. Springer, 2004, pp. 35–48 (cit. on p. 35).

[Aks+08] S. Akshay et al. “Distributed Timed Automata with Independently Evolving Clocks”. In: Proc. of CON-
CUR’08. Vol. 5201. Lect. Notes Comp. Sci. Springer, 2008, pp. 82–97. doi: 10.1007/978-3-540-85361-
9_10 (cit. on p. 37).

[Ber79] J. Berstel. Transductions and context-free languages. Teubner Stuttgart, 1979 (cit. on p. 35).

[Cho04] Ch. Choffrut. “Rational Relations as Rational Series”. In: Theory Is Forever, Essays Dedicated to Arto
Salomaa on the Occasion of His 70th Birthday. Vol. 3113. Lect. Notes Comp. Sci. Springer, 2004, pp. 29–
34 (cit. on p. 35).

[Cho09] Ch. Choffrut. A short introductory course to rational relations. 2009 (cit. on p. 35).

[Moh97] M. Mohri. “Finite-state transducers in language and speech processing”. In: Computational Linguistics
23.2 (1997), pp. 269–311 (cit. on p. 35).

39

http://dx.doi.org/10.1007/978-3-540-85361-9_10
http://dx.doi.org/10.1007/978-3-540-85361-9_10

CHAPTER 7

Weighted Logic

In this section, we present a logical characterization of weighted automata in terms of a monadic second-
order logic [DG07; DG09]. This characterization extends one of the fundamental theorems in computer
science, which goes back to Büchi and Elgot: the precise correspondence between finite automata and
monadic second-order formulas [Büc60; Elg61]. A detailed exposition of weighted logics and their con-
nection with weighted automata can be found in [DG07; DG09].

1. MSO Logic over Words

We fix infinite supplies Var = {x, y, x1, x2, . . .} of first-order and VAR = {X,Y,X1, X2, . . .} of second-
order variables.

Let us recall monadic second-order logic in the traditional boolean setting. Fix an alphabet A.

Definition 7.1. The set of monadic second-order formulas (MSO formulas) over A is given by the
grammar

φ ::= Pa(x) | x 6 y | x ∈ X | φ1 ∨ φ2 | ¬φ | ∃x.φ | ∃X.φ
where a ∈ A, x, y ∈ Var , and X ∈ VAR. The set of all those formulas is denoted by MSO(A). �

Furthermore, we may usual abbreviations such as φ1 ∧ φ2, x = y, succ(x, y), φ1 → φ2, φ1 ↔ φ2, ∀x.φ,
and ∀x.φ.
For φ ∈ MSO(A), let Free(φ) denote the set of variables that are free in φ. If Free(φ) = ∅, then φ is
called a sentence.

For a finite set V ⊆ Var ∪VAR and a word w = a1 . . . an ∈ A∗, a (V, w)-assignment is a function σ that
maps a first-order variable in V to an element of {1, . . . , n} and a second-order variable in V to a subset
of {1, . . . , n}. For x ∈ Var , i ∈ {1, . . . , n}, and I ⊆ {1, . . . , n}, σ[x → i] will denote the (V ∪ {x}, w)-
assignment that maps x to i and, otherwise, coincides with σ. The (V ∪ {X}, w)-assignment σ[X → I]
is defined accordingly.

A word w = a1 . . . an ∈ A∗ can be considered as the mathematical structure

w
def
= ({1, . . . , n},6, (Ra)a∈A)

where, for a ∈ A, Ra = {i ∈ {1, . . . , n} | ai = a}.
For a formula φ ∈ MSO(A), a finite set V ⊆ Var ∪ VAR with Free(φ) ⊆ V, a word w ∈ A∗, and a
(V, w)-assignment σ, the satisfaction relation (w, σ) |= φ is defined as usual, by induction on the basis
of the structure w.

Example 7.2. Let A = {a, b, c}. Here are some formulas from MSO(A):

– φ1 = ∀x.(Pa(x)→ ∃y.(x 6 y ∧ Pb(y)))

“every a is eventually followed by a b”

– φ2 = ∃x.∀y.(x 6 y → ¬Pa(y))

“from some time on, there are only b’s or c’s”

– φ3 = ∃X.∃x.∃y.(¬∃z.(z < x ∨ y < z)

∧ x ∈ X ∧ y ∈ X
∧ ∀z.(z ∈ X ↔ ∀z′.(succ(z, z′)→ ¬(z′ ∈ X))))

“the word has odd length”

41

In the following, it will be convenient to encode a pair (w, σ) where σ is a (V, w)-assignment as a word over
the extended alphabet AV

def
= A× {0, 1}V (setting A∅ = A). We write a word (a1, σ1) . . . (an, σn) ∈ A∗V

as (w, σ) where w = a1 . . . an ∈ A∗ and σ = σ1 . . . σn ∈ {0, 1}V . We call (w, σ) valid if, for each first-order
variable x ∈ V, the x-row of σ contains exactly one 1. If (w, σ) is valid, then σ can be considered as the
(V, w)-assignment that maps a first-order variable x ∈ V to the unique position carrying 1 in the x-row
and a second-order variable X ∈ V to the set of positions carrying 1 in the X-row.

Example 7.3. Let A = {a, b, c} and V = {x, y,X}. Consider the pair (w, σ) ∈ A∗V given as follows:

w
{

a b a c

σ


x 1 0 0 0
y 0 0 0 1

X 1 0 1 1

Then, (w, σ) is valid, i.e., σ can be considered as a (V, w)-assignment.

Let φ ∈ MSO(A) and V be a finite set of variables such that Free(φ) ⊆ V. It is easy to see that
NV

def
= {(w, σ) ∈ A∗V | (w, σ) is valid} is recognizable in terms of a finite automaton. Moreover, the set

LV(φ)
def
= {(w, σ) ∈ NV | (w, σ) |= φ} ⊆ A∗V of valid pairs satisfying φ form a recognizable language. Let

L(φ) abbreviate LFree(φ)(φ).

Theorem 7.4 (Büchi and Elgot [Büc60; Elg61]). Let L ⊆ A∗. The following statements are equivalent:

(1) There is a finite automaton A such that L(A) = L.
(2) There is a sentence φ ∈ MSO(A) such that L(φ) = L.

2. Weighted MSO Logic over Words

For the rest of this section, we fix a commutative semiring S = (S,+, ·,0,1) and an alphabet A.

Definition 7.5. The set of weighted monadic second-order formulas (or, simply, wMSO formulas) over
S and A is given by the grammar

φ ::= s | Pa(x) | ¬(Pa(x)) | x 6 y | ¬(x 6 y) |

x ∈ X | ¬(x ∈ X) | φ1 ∨ φ2 | φ1 ∧ φ2 |

∃x.φ | ∃X.φ | ∀x.φ | ∀X.φ

where s ∈ S, a ∈ A, x, y ∈ Var , and X ∈ VAR. The set of those formulas is denoted by wMSO(S, A). �

Negated formulas and formulas of the form s, Pa(x), x 6 y, and x ∈ X as well as are called atomic.

Definition 7.6. Let φ ∈ wMSO(S, A) and V be a finite set of first-order and second-order variables
such that Free(φ) ⊆ V. The semantics of φ wrt. V is a formal power series JφKV ∈ S〈〈A∗V〉〉, which is given
as follows: If (w, σ) is not valid, we set JφKV(w, s) = 0. Otherwise, JφKV(w, σ), where w = a1 . . . an, is
determined inductively as shown in Table 1. �

We will simply write JφK for JφKFree(φ).

Let us consider some examples.

Example 7.7. Recall that Bool = ({false, true},∨,∧, false, true) is the boolean algebra. The logic
wMSO(Bool, A) actually reduces to MSO(A).

Example 7.8. Let A = {a, b, c} and consider the semiring of natural numbers Nat = (N,+, · , 0, 1). Let
φ = ∃x.Pa(x) ∈ wMSO(Nat, A). For all w ∈ A∗, we have JφK(w) = |w|a, i.e., φ “counts” the number of
occurrences of a in w.

Example 7.9. Consider the alphabet A = {a1, . . . , ak} and the reliability semiring ([0, 1],max, · , 0, 1).
Assume that every letter ai comes with a reliability pi ∈ [0, 1]. Let φ = ∀x.

∨k
i=1(Pai(x) ∧ pj). Then,

JφK(w) can be interpreted as the reliability of the word w ∈ A∗.

42

JsKV(w, σ) = s

JPa(x)KV(w, σ) =

{
1 if aσ(x) = a
0 otherwise

Jx 6 yKV(w, σ) =

{
1 if σ(x) 6 σ(y)
0 otherwise

Jx ∈ XKV(w, σ) =

{
1 if σ(x) ∈ σ(X)
0 otherwise

J¬φKV(w, σ) =

{
1 if JφKV(w, σ) = 0
0 if JφKV(w, σ) = 1

Jφ1 ∨ φ2KV(w, σ) = Jφ1KV(w, σ) + Jφ2KV(w, σ)

Jφ1 ∧ φ2KV(w, σ) = Jφ1KV(w, σ) · Jφ2KV(w, σ)

J∃x.φKV(w, σ) =
∑

i∈{1,...,n}

JφKV∪{x}(w, σ[x→ i])

J∀x.φKV(w, σ) =
∏

i∈{1,...,n}

JφKV∪{X}(w, σ[x→ i])

J∃X.φKV(w, σ) =
∑

I⊆{1,...,n}

JφKV∪{x}(w, σ[X → I])

J∀X.φKV(w, σ) =
∏

I⊆{1,...,n}

JφKV∪{X}(w, σ[X → I])

Table 1. The semantics of wMSO(S, A)-formulas

Example 7.10. Consider the sentences φ1 = ∀x.2 and φ2 = ∀y.∀x.2 from wMSO(Nat, A). For all
w ∈ A∗, we have Jφ1K(w) = 2|w| and Jφ2K(w) = (2|w|)|w| = 2|w|

2

. While Jφ1K is recognizable (i.e., there
is a weighted automaton whose semantics is Jφ1K), Jφ2K is not: Suppose there is a weighted automaton
A = (Q,A, λ, µ, γ) over Nat such that ‖A‖ = Jφ2K. Let m = max{λ(p), γ(p), µ(p, a, q) | p, q ∈ Q and
a ∈ A}. Then, for all w ∈ A∗, ‖A‖(w) 6 |Q||w|+1 ·m|w|+2, which is a contradiction to ‖A‖(w) = 2|w|

2

.
Now let φ3 = ∀X.2 ∈ MSO(Nat, A). Then, for all w ∈ A∗, Jφ3K(w) = 22

|w|
. Thus, Jφ3K is not recognizable

either.

The last examples show that we need to restrict universal quantification in formulas to obtain a logical
characterization of weighted automata. So let us introduce the notion of a restricted formula:

Definition 7.11. A formula φ ∈ wMSO(S, A) is called restricted if

– it does not contain universal set quantification, and
– for every subformula of φ of the form ∀x.ψ, the series JψK is a recognizable step function.

The set of restricted MSO formulas is denoted by wRMSO(S, A). �

Here, a series f ∈ S〈〈A∗V〉〉 (for a finite set V) is a recognizable step function if there are k ∈ N, s1, . . . , sk ∈
S, and regular languages L1, . . . , Lk ⊆ A∗V such that

f =

k∑
j=1

sj · 1Lj

where 1Li is the characteristic function of Li.

Let f ∈ S〈〈A∗〉〉. We say that f is recognizable if there is a weighted automaton A = (Q,A, λ, µ, γ) over
S such that ‖A‖ = f . For a formula class C ⊆ MSO(S, A), we say that f is C-definable if there exists a
sentence φ ∈ C such that JφK = f .

43

The rest of this section will be devoted to the proof of the following theorem, which is a proper general-
ization of Theorem 7.4 to weighted automata and logic.

Theorem 7.12 (Droste & Gastin [DG07; DG09]). Let f ∈ S〈〈A∗〉〉. The following statements are equiv-
alent:

(1) f is wRMSO(S, A)-definable.
(2) f is recognizable.

3. From Logic to Automata

For proving the direction (1) =⇒ (2) of Theorem 7.12, we proceed inductively. Two lemmas will provide
us with the required translations.

Lemma 7.13. Let φ, ψ ∈ wMSO(S, A).

(a) If φ is atomic, then JφK is recognizable.
(b) If JφK and JψK are recognizable, then so are Jφ ∨ ψK and Jφ ∧ ψK.
(c) If JφK is recognizable, then J∃x.φK and J∃X.φK are recognizable.

The most difficult case, however, arises when we are facing universal quantification.

Lemma 7.14. Let φ ∈ wMSO(S, A) such that JφK is a recognizable step function. Then, J∀x.φK is
recognizable.

Proof. Let φ ∈ wMSO(S, A) such that JφK is a recognizable step function. Let W = Free(φ) and
V = Free(∀x.φ) = W \ {x}. There are k ∈ N, s1, . . . , sk ∈ S, and regular languages L1, . . . , Lk ⊆ A∗W
such that, for all (w, σ) ∈ A∗W , we have JφK(w, σ) =

∑k
j=1 sj · 1Lj . Without loss of generality, we assume

that the sets Lj form a partition of A∗W .

Case 1: Suppose x ∈ W. Consider the alphabet Ã = A×{1, . . . , k}. A word from (ÃV)∗ will be written
as the triple (w, ν, σ) where (w, σ) is its projection onto AV and ν ∈ {1, . . . , k}|w|. In the obvious manner,
we can consider ν to be a mapping ν : {1, . . . , |w|} → {1, . . . , k}. Let L̃ be the set of words (w, ν, σ) over
ÃV such that, for all i ∈ {1, . . . , |w|} and j ∈ {1, . . . , k},

ν(i) = j implies (w, σ[x→ i]) ∈ Lj .

We will show that

(*) L̃ is regular.

Thus, there is a deterministic finite automaton Ã over ÃV such that L(Ã) = L̃. In turn, Ã can be
transformed into a weighted automaton A with input alphabet ÃV as follows:

– A transition of the form (p, (a, j, τ), q) is replaced with a transition (p, (a, j, τ), q) of weight sj
(i.e., µ(p, (a, j, τ), q) = sj). All other transitions have weight 0.

– The initial state of Ã gets the initial weight 1, the other states get the initial weight 0.
– Each final state of Ã gets the final weight 1, the other states get the final weight 0.

Then, for all (w, ν, σ) ∈ (ÃV)∗, we have

‖A‖(w, ν, σ) =


∏k
j=1 s

|ν−1(j)|
j if (w, ν, τ) ∈ L̃

0 if (w, ν, τ) 6∈ L̃

Note that, for each (w, σ) ∈ A∗V , there is a unique extension ν such that (w, ν, σ) ∈ L̃. If A′ is the
canonical projection of A onto the alphabet AV , we therefore have ‖A′‖(w, σ) =

∏k
j=1 s

|ν−1(j)|
j . As

J∀x.φK(w, σ) =

|w|∏
i=1

JφK(w, σ[x→ i]) =

k∏
j=1

s
|ν−1(j)|
j ,

we are done.

44

Let us show (*). Actually, it is sufficient, to construct, for every j ∈ {1, . . . , k}, a finite automaton Ãj
over ÃV recognizing the set L̃j of words (w, ν, σ) over ÃV such that, for all i ∈ {1, . . . , |w|},

ν(i) = j implies (w, σ[x→ i]) ∈ Lj .

The reason is that L̃ =
⋂
j∈{1,...,k} L̃j .

So let us fix j ∈ {1, . . . , k} and let Aj = (Q,AW , δ, q0, F) be a deterministic finite automaton such that
L(Aj) = Lj . We specify Ãj = (Q̃, ÃV , δ̃, q̃0, F̃) with L(Ãj) = L̃j as follows:

– Q̃ = Q× 2Q

– q̃0 = (q0,∅)

– F̃ = Q× 2F

– δ̃((p, P), (a, `, τ)) = (δ(p, (a, τ [x→ 0])), P ′)

where

P ′ =

{
{δ(q, (a, τ [x→ 0])) | q ∈ P} if ` 6= j

{δ(q, (a, τ [x→ 0])) | q ∈ P} ∪ {δ(p, (a, τ [x→ 1]))} if ` = j

Case 2: Suppose x 6∈ W, which implies W = V. Consider the formula φ′ = φ ∧ (x 6 x). Then, Jφ′K
is recognizable due to Lemma 7.13(a) and (b). Moreover, it is a recognizable step function. Clearly,
Jφ′KV∪{x} = JφKV∪{x} and J∀x.φ′KV = J∀x.φKV , which is recognizable due to Case 1. �

From Lemmas 7.13 and 7.14, we can indeed deduce the direction (1) =⇒ (2) of Theorem 7.12. If S is
a computable field, then that direction is effective and one can decide if a formula is rstricted. Thus,
decidable decision problems for weighted automata such as emptiness and equivalence can be extended
to wRMSO-formulas [DG07; DG09].

4. From Automata to Logic

Let us prove the direction (2) =⇒ (1) of Theorem 7.12.

Let φ ∈ MSO(A) be an unweighted MSO formula without set quantifier. We define formulas φ+, φ− ∈
wMSO(S, A) such that Jφ+K = 1L(φ) and Jφ−K = 1L(¬φ) inductively as follows: We assume that, in φ,
negation is pushed inwards so that it is applied to (positive) atomic formulas only (i.e., our syntax makes
use of universal quantification and conjunction). If φ is atomic, then we set φ+ = φ and φ− = ¬φ (where
¬¬ψ is reduced to ψ). Moreover,

(φ ∨ ψ)+ = φ+ ∨ (φ− ∧ ψ+)

(φ ∨ ψ)− = φ− ∧ ψ−

(φ ∧ ψ)− = φ− ∨ (φ+ ∧ ψ−)

(φ ∧ ψ)+ = φ+ ∧ ψ+

(∃x.φ)+ = ∃x.(φ+(x) ∧ ∀y.((x 6 y) ∨ (¬(x 6 y) ∧ φ−(y))))

(∃x.φ)− = ∀x.φ−

(∀x.φ)− = ∃x.(φ−(x) ∧ ∀y.((x 6 y) ∨ (¬(x 6 y) ∧ φ+(y))))

(∀x.φ)+ = ∀x.φ+

Now let A = (Q,A, λ, µ, γ) be a weighted automaton over S. We show that there is a sentence φ ∈
wRMSO(S, A) such that JφK = ‖A‖.
In the following, t and t′ will range over Q × A × Q. Let X be the collection (Xt)t of second-order
variables. The construction of a wMSO sentence from a weighted automaton follows the standard
procedure of transforming a finite automaton into an MSO sentence: an interpretation of second-order
variables reflects an assignment of positions in a word to transitions. We first provide some building
blocks of the desired wRMSO formula.

45

The formula
partition(X) := ∀x.

∨
t

((x ∈ Xt) ∧
∧
t′ 6=t

¬(x ∈ Xt′))

claims that X actually represents a run, i.e., an assignment of vertices to transitions. Now let

ψ(X)
def
= partition(X) ∧

∧
p,a,q

∀x.((x ∈ Xp,a,q)→ Pa(x))+

∧ ∀x.∀y.
(
succ(x, y)→

∨
p,q,r∈Q
a,b∈A

(x ∈ Xp,a,q) ∧ (y ∈ Xq,b,r)
)+

where
succ(x, y)

def
= (x 6 y) ∧ ¬(y 6 x) ∧ ∀z.(z 6 x ∨ y 6 z)

and the implications are considered to be unweighted (i.e., boolean) formula. vWe set

φ(X)
def
= ψ(X) ∧

∧
p,a,q

∀x.((x ∈ Xp,a,q)→ µ(p, a, q))

∧ ∃y.
(
min(y) ∧

∨
p,a,q

(y ∈ Xp,a,q) ∧ λ(p)
)

∧ ∃z.
(
max(z) ∧

∨
p,a,q

(z ∈ Xp,a,q) ∧ γ(q)
)

where (x ∈ X)→ s
def
= ¬(x ∈ X) ∨ ((x ∈ X) ∧ s), min(y)

def
= ∀x.y 6 x, and max(z)

def
= ∀x.x 6 z. For

ξ
def
= ∃X.φ(X)

ζ
def
= (λ · γ) ∧ ∀x.0

we have
‖A‖ = Jζ ∨ ξK .

As ζ ∨ ξ ∈ wRMSO(S, A), this concludes the proof of (2) =⇒ (1) in Theorem 7.12.

Exercises for Chapter 7

Exercise 7.1. Let A = {a, b}. Determine semirings Si and sentences φi ∈ wMSO(Si, A), i = 1, 2, such
that, for all w = a1 . . . an ∈ A∗,

– Jφ1K(w) = |{i ∈ {1, . . . , n− 1} | aiai+1 = ab}|.
– Jφ2K(w) = {u ∈ A∗ | u is an infix of w}.

Hint: Note that S2 is not commutative. For the universal quantification, the product over the positions
{1, . . . , n} of w should follow the natural ordering 1 6 . . . 6 n.

Exercise 7.2. Let A = {a, b}. Determine a sentence φ ∈ wRMSO(Nat, A) such that JφK is not definable
by a sentence without existential set quantification.

Further reading and references

[Abd+04] P. Aziz Abdulla et al. “A Survey of Regular Model Checking.” In: Proc. of CONCUR’04. Vol. 3170. Lect.
Notes Comp. Sci. Springer, 2004, pp. 35–48.

[AD94] R. Alur and D. L. Dill. “A Theory of Timed Automata.” In: Theor. Comp. Sci. 126.2 (1994), pp. 183–235.

[AHK03] S. Andova, H. Hermanns, and J. P. Katoen. “Discrete-time rewards model-checked”. In: Proc. of FOR-
MATS’03. Vol. 2791. Lect. Notes Comp. Sci. Springer, 2003, pp. 88–104.

[Aks+08] S. Akshay et al. “Distributed Timed Automata with Independently Evolving Clocks”. In: Proc. of CON-
CUR’08. Vol. 5201. Lect. Notes Comp. Sci. Springer, 2008, pp. 82–97. doi: 10.1007/978-3-540-85361-
9_10.

[Alf+05] L. de Alfaro et al. “Model checking discounted temporal properties”. In: Theor. Comp. Sci. 345.1 (2005),
pp. 139–170.

[Alf98] L. de Alfaro. Formal Verification of Probabilistic Systems. Tech. rep. PhD thesis. Stanford University,
1998.

46

http://dx.doi.org/10.1007/978-3-540-85361-9_10
http://dx.doi.org/10.1007/978-3-540-85361-9_10

[BBG08] Ch. Baier, N. Bertrand, and M. Größer. “On Decision Problems for Probabilistic Büchi Automata”. In:
Proc. of FoSSaCS’08. Vol. 4962. Lect. Notes Comp. Sci. Springer, 2008, pp. 287–301.

[BC08] V.D. Blondel and V. Canterini. “Undecidable problems for probabilistic automata of fixed dimension”. In:
Theory of Computing systems 36.3 (2008), pp. 231–245.

[Ber79] J. Berstel. Transductions and context-free languages. Teubner Stuttgart, 1979.

[BG05] C. Baier and M. Größer. “Recognizing ω-regular Languages with Probabilistic Automata”. In: Proc. of
LICS’05. IEEE Computer Society Press, 2005, pp. 137–146.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008. isbn: 026202649X, 9780262026499.

[BK09] P. Buchholz and P. Kemper. “Model Checking for a Class of Weighted Automata”. In: Discrete Event
Dynamic Systems (2009). to appear. doi: 10.1007/s10626-008-0057-0.

[BL04] B. Bollig and M. Leucker. “Verifying Qualitative Properties of Probabilistic Programs”. In: Validation of
Stochastic Systems. Vol. 2925. Lect. Notes Comp. Sci. Springer, 2004, pp. 124–146.

[BMT09] A. Bertoni, G. Mauri, and M. Torelli. “Some Recursively Unsolvable Problems Relating to Isolated Cutpoints
in Probabilistic Automata.” In: Proc. of ICALP’77. Vol. 52. Lect. Notes Comp. Sci. Springer, Sept. 19,
2009, pp. 87–94. isbn: 3-540-08342-1. url: http://dblp.uni-trier.de/db/conf/icalp/icalp77.
html#BertoniMT77.

[Bou+08] P. Bouyer et al. “Infinite Runs in Weighted Timed Automata with Energy Constraints”. In: Proceedings
of FORMATS’08. Vol. 5215. Lect. Notes Comp. Sci. Springer, 2008, pp. 33–47.

[BR11] J. Berstel and Ch. Reutenauer. Noncommutative rational series with applications. Vol. 137. Encyclopedia of
Mathematics and Its Applications. Preliminary version at http://tagh.de/tom/wp-content/uploads/
berstelreutenauer2008.pdf. Cambridge University Press, 2011.

[BR88] J. Berstel and Ch. Reutenauer. Rational series and their languages. Springer, 1988.

[Büc60] J. R. Büchi. “Weak second-order arithmetic and finite automata”. In: Z. Math. Logik Grundlagen Math. 6
(1960), pp. 66–92 (cit. on pp. 41–42).

[Büc62] J. R. Büchi. “On a decision method in restricted second order arithmetic”. In: Proc. of the International
Congress on Logic, Methodology and Philosophy. Standford University Press, 1962, pp. 1–11.

[CDH08] K. Chatterjee, L. Doyen, and T. A. Henzinger. “Quantitative Languages”. In: Proc. of CSL’08. Vol. 5213.
Lect. Notes Comp. Sci. Springer, 2008, pp. 385–400.

[CE81] E. M. Clarke and E. A. Emerson. “Design and Synthesis of Synchronization Skeletons using Branching
Time Temporal Logic”. In: Proc. of the Workshop on Logics of Programs. Vol. 131. Lect. Notes Comp.
Sci. Springer, 1981, pp. 52–71.

[CG04] F. Ciesinski and M. Größer. “On Probabilistic Computation Tree Logic”. In: Validation of Stochastic
Systems. Vol. 2925. Lect. Notes Comp. Sci. Springer, 2004, pp. 147–188.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. Cambridge, Massachusetts: The MIT Press,
1999.

[Cho04] Ch. Choffrut. “Rational Relations as Rational Series”. In: Theory Is Forever, Essays Dedicated to Arto
Salomaa on the Occasion of His 70th Birthday. Vol. 3113. Lect. Notes Comp. Sci. Springer, 2004, pp. 29–
34.

[Cho09] Ch. Choffrut. A short introductory course to rational relations. 2009.

[CK93] K. Culik and J. Kari. “Image compression using weighted finite automata”. In: Computer and Graphics
17.3 (1993), pp. 305–313.

[Cor+09] Th. H. Cormen et al. Introduction to Algorithms. 3rd. McGraw-Hill Higher Education, 2009.

[CY95] C. Courcoubetis and M. Yannakakis. “The Complexity of Probabilistic Verification”. In: Journal of the
ACM 42.4 (1995), pp. 857–907.

[DG07] M. Droste and P. Gastin. “Weighted automata and weighted logics”. In: Theor. Comp. Sci. 380.1-2 (2007).
Special issue of ICALP’05., pp. 69–86 (cit. on pp. 41, 44–45).

[DG09] M. Droste and P. Gastin. “Weighted automata and weighted logics”. In: Handbook of Weighted Automata.
Ed. by W. Kuich, H. Vogler, and M. Droste. EATCS Monographs in Theoretical Computer Science.
Springer, 2009 (cit. on pp. 41, 44–45).

[DKV09] M. Droste, W. Kuich, and W. Vogler. Handbook of Weighted Automata. Springer, 2009.

[DMR76] M. Davis, Y. V. Matijasevič, and J. Robinson. “Hilbert’s Tenth Problem. Diophantine equations: positive
aspects of a negative solution”. In: Mathematical Developments Arising from Hilbert Problems. Vol. 28.

47

http://dx.doi.org/10.1007/s10626-008-0057-0
http://dblp.uni-trier.de/db/conf/icalp/icalp77.html#BertoniMT77
http://dblp.uni-trier.de/db/conf/icalp/icalp77.html#BertoniMT77
http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf
http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf

Proc. of Symposia in Pure Mathematics. Providence, Rhode Island: American Mathematical Society, 1976,
pp. 323–378.

[DR07] M. Droste and G. Rahonis. “Weighted Automata and Weighted Logics with Discounting”. In: Proc. of
CIAA’07. Vol. 4783. Lect. Notes Comp. Sci. Springer, 2007, pp. 73–84.

[DV06] M. Droste and H. Vogler. “Weighted tree automata and weighted logics”. In: Theor. Comp. Sci. 366.3
(2006), pp. 228–247.

[Eis01] J. Eisner. “Expectation Semirings: Flexible EM for Learning Finite-State Transducers”. In: Proc. of the
ESSLLI workshop on finite-state methods in NLP. 2001.

[Elg61] C. C. Elgot. “Decision problems of finite automata design and related arithmetics”. In: Trans. Amer. Math.
Soc. 98 (1961), pp. 21–52 (cit. on pp. 41–42).

[FGK09] D. Fischer, E. Grädel, and L. Kaiser. “Model Checking Games for the Quantitative µ-Calculus”. In: Theory
of Computing Systems (2009). Special Issue of STACS’08.

[Gim10] Y. Gimbert H.and Oualhadj. “Probabilistic Automata on Finite Words: Decidable and Undecidable Prob-
lems”. In: Proc. of ICALP’10. Vol. 6199. Lect. Notes Comp. Sci. Springer, 2010, pp. 527–538. url:
http://hal.archives-ouvertes.fr/hal-00456538/en/.

[Gr06] M. Größer et al. “On reduction criteria for probabilistic reward models”. In: Proc. of FSTTCS’06. Vol. 4337.
Lect. Notes Comp. Sci. Springer, 2006, pp. 309–320.

[GSS95] R. J. van Glabbeek, S. A. Smolka, and B. Steffen. “Reactive, Generative and Stratified Models of Proba-
bilistic Processes”. In: Information and Computation 121.1 (1995), pp. 59–80.

[HJ94] H. Hansson and B. Jonsson. “A Logic for Reasoning about Time and Reliability”. In: Formal Aspects of
Computing 6.5 (1994), pp. 512–535.

[Kar+04] J. Karhumäki et al., eds. Theory Is Forever, Essays Dedicated to Arto Salomaa on the Occasion of His
70th Birthday. Vol. 3113. Lect. Notes Comp. Sci. Springer, 2004. isbn: 3-540-22393-2.

[Kir05] Daniel Kirsten. “Distance desert automata and the star height problem”. In: RAIRO Inform. Théor. Appl.
39.3 (2005), pp. 455–509. issn: 0988-3754.

[Kno90] K. Knopp. Theory and Application of Infinite Series. Republication of the second English edition, 1951.
New York: Dover Publications, 1990.

[Koz83] D. Kozen. “Results on the Propositional µ-calculus”. In: Theor. Comp. Sci. 27 (1983), pp. 333–354.

[Kro94] D. Krob. “The equality problem for rational series with multiplicities in the tropical semiring is undecidable”.
In: Int. J. of Algebra and Comput. 4.3 (1994), pp. 405–425.

[KS60] J. G. Kemeny and J. L. Snell. Finite Markov Chains. New York: Van Nostrand Reinhold, 1960.

[KS85] W. Kuich and A. Salomaa. Semirings, Automata and Languages. Springer, 1985.

[LP04] Hing Leung and Viktor Podolskiy. “The limitedness problem on distance automata: Hashiguchi’s method
revisited”. In: Theor. Comp. Sci. 310.1-3 (2004), pp. 147–158.

[Mat93] Y. V. Matijasevič. Hilbert’s Tenth Problem. Cambridge, Massachusetts: MIT Press, 1993. isbn: 0-262-
13295-8.

[Mei09] I. Meinecke. “A weighted µ-calculus on words”. In: Proceedings of DLT’09. Vol. 5583. Lect. Notes Comp.
Sci. Springer, 2009.

[MHC03] O. Madani, S. Hanks, and A. Condon. “On the undecidability of probabilistic planning and related sto-
chastic optimization problems”. In: Artificial Intelligence 147.1-2 (2003), pp. 5–34.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1967. isbn: 0-13-165563-9.

[Moh02] M. Mohri. “Semiring frameworks and algorithms for shortest-distance problems”. In: Journal of Automata,
Languages, and Combinatorics 7.3 (2002), pp. 321–350. issn: 1430-189X.

[Moh97] M. Mohri. “Finite-state transducers in language and speech processing”. In: Computational Linguistics
23.2 (1997), pp. 269–311.

[Paz71] A. Paz. Introduction to probabilistic automata. Academic Press, 1971.

[Pnu77] A. Pnueli. “The temporal logic of programs”. In: Proc. of FOCS’77. IEEE Computer Society Press, 1977,
pp. 46–57.

[Put94] M. L. Puterman. Markov Decision Processes. New York, NY: John Wiley & Sons, Inc., 1994.

[PZ93] A. Pnueli and L. D. Zuck. “Probabilistic Verification”. In: Information and Computation 103.1 (1993),
pp. 1–29.

48

http://hal.archives-ouvertes.fr/hal-00456538/en/

[Rab63] M. O. Rabin. “Probabilistic automata”. In: Information and Control 6 (3 1963), pp. 230–245.

[Sak09] J. Sakarovitch. Elements of Automata Theory. New York, NY, USA: Cambridge University Press, 2009.
isbn: 0521844258, 9780521844253.

[Sch61] M.-P Schützenberger. “On the definition of a family of automata”. In: Information and Control 4 (1961),
pp. 245–270.

[Seg06] R. Segala. “Probability and Nondeterminism in Operational Models of Concurrency”. In: Proceedings of
CONCUR’06. Vol. 4137. Lect. Notes Comp. Sci. Springer, 2006, pp. 64–78.

[Sim94] Imre Simon. “On Semigroups of Matrices over the Tropical Semiring”. In: ITA 28.3-4 (1994), pp. 277–294.

[SS78] A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer, 1978.

[Tho97] W. Thomas. “Languages, Automata and Logic”. In: Handbook of Formal Languages. Ed. by A. Salomaa
and G. Rozenberg. Vol. 3, Beyond Words. Springer, 1997, pp. 389–455.

[Tze92] W.G. Tzeng. “A polynomial-time algorithm for the equivalence of probabilistic automata”. In: SIAM J.
Comput. 21 (1992), pp. 216–227.

[Var85] M. Y. Vardi. “Automatic Verification of Probabilistic Concurrent Finite-State Programs”. In: Proc. of
FOCS’85. IEEE, 1985, pp. 327–338.

[Var99] M. Y. Vardi. “Probabilistic Linear-Time Model Checking: An Overview of the Automata-Theoretic Ap-
proach”. In: Formal Methods for Real-Time and Probabilistic Systems, 5th International AMAST Work-
shop, ARTS’99. Vol. 1601. Lect. Notes Comp. Sci. Springer, 1999, pp. 265–276.

49

List of references

[Abd+04] P. Aziz Abdulla et al. “A Survey of Regular Model Checking.” In: Proc. of CONCUR’04. Vol. 3170. Lect.
Notes Comp. Sci. Springer, 2004, pp. 35–48.

[AD94] R. Alur and D. L. Dill. “A Theory of Timed Automata.” In: Theor. Comp. Sci. 126.2 (1994), pp. 183–235.

[AHK03] S. Andova, H. Hermanns, and J. P. Katoen. “Discrete-time rewards model-checked”. In: Proc. of FOR-
MATS’03. Vol. 2791. Lect. Notes Comp. Sci. Springer, 2003, pp. 88–104.

[Aks+08] S. Akshay et al. “Distributed Timed Automata with Independently Evolving Clocks”. In: Proc. of CON-
CUR’08. Vol. 5201. Lect. Notes Comp. Sci. Springer, 2008, pp. 82–97. doi: 10.1007/978-3-540-85361-
9_10.

[Alf+05] L. de Alfaro et al. “Model checking discounted temporal properties”. In: Theor. Comp. Sci. 345.1 (2005),
pp. 139–170.

[Alf98] L. de Alfaro. Formal Verification of Probabilistic Systems. Tech. rep. PhD thesis. Stanford University,
1998.

[BBG08] Ch. Baier, N. Bertrand, and M. Größer. “On Decision Problems for Probabilistic Büchi Automata”. In:
Proc. of FoSSaCS’08. Vol. 4962. Lect. Notes Comp. Sci. Springer, 2008, pp. 287–301.

[BC08] V.D. Blondel and V. Canterini. “Undecidable problems for probabilistic automata of fixed dimension”. In:
Theory of Computing systems 36.3 (2008), pp. 231–245.

[Ber79] J. Berstel. Transductions and context-free languages. Teubner Stuttgart, 1979.

[BG05] C. Baier and M. Größer. “Recognizing ω-regular Languages with Probabilistic Automata”. In: Proc. of
LICS’05. IEEE Computer Society Press, 2005, pp. 137–146.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008. isbn: 026202649X, 9780262026499.

[BK09] P. Buchholz and P. Kemper. “Model Checking for a Class of Weighted Automata”. In: Discrete Event
Dynamic Systems (2009). to appear. doi: 10.1007/s10626-008-0057-0.

[BL04] B. Bollig and M. Leucker. “Verifying Qualitative Properties of Probabilistic Programs”. In: Validation of
Stochastic Systems. Vol. 2925. Lect. Notes Comp. Sci. Springer, 2004, pp. 124–146.

[BMT09] A. Bertoni, G. Mauri, and M. Torelli. “Some Recursively Unsolvable Problems Relating to Isolated Cutpoints
in Probabilistic Automata.” In: Proc. of ICALP’77. Vol. 52. Lect. Notes Comp. Sci. Springer, Sept. 19,
2009, pp. 87–94. isbn: 3-540-08342-1. url: http://dblp.uni-trier.de/db/conf/icalp/icalp77.
html#BertoniMT77.

[Bou+08] P. Bouyer et al. “Infinite Runs in Weighted Timed Automata with Energy Constraints”. In: Proceedings
of FORMATS’08. Vol. 5215. Lect. Notes Comp. Sci. Springer, 2008, pp. 33–47.

[BR11] J. Berstel and Ch. Reutenauer. Noncommutative rational series with applications. Vol. 137. Encyclopedia of
Mathematics and Its Applications. Preliminary version at http://tagh.de/tom/wp-content/uploads/
berstelreutenauer2008.pdf. Cambridge University Press, 2011.

[BR88] J. Berstel and Ch. Reutenauer. Rational series and their languages. Springer, 1988.

[Büc60] J. R. Büchi. “Weak second-order arithmetic and finite automata”. In: Z. Math. Logik Grundlagen Math. 6
(1960), pp. 66–92 (cit. on pp. 41–42).

[Büc62] J. R. Büchi. “On a decision method in restricted second order arithmetic”. In: Proc. of the International
Congress on Logic, Methodology and Philosophy. Standford University Press, 1962, pp. 1–11.

[CDH08] K. Chatterjee, L. Doyen, and T. A. Henzinger. “Quantitative Languages”. In: Proc. of CSL’08. Vol. 5213.
Lect. Notes Comp. Sci. Springer, 2008, pp. 385–400.

[CE81] E. M. Clarke and E. A. Emerson. “Design and Synthesis of Synchronization Skeletons using Branching
Time Temporal Logic”. In: Proc. of the Workshop on Logics of Programs. Vol. 131. Lect. Notes Comp.
Sci. Springer, 1981, pp. 52–71.

51

http://dx.doi.org/10.1007/978-3-540-85361-9_10
http://dx.doi.org/10.1007/978-3-540-85361-9_10
http://dx.doi.org/10.1007/s10626-008-0057-0
http://dblp.uni-trier.de/db/conf/icalp/icalp77.html#BertoniMT77
http://dblp.uni-trier.de/db/conf/icalp/icalp77.html#BertoniMT77
http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf
http://tagh.de/tom/wp-content/uploads/berstelreutenauer2008.pdf

[CG04] F. Ciesinski and M. Größer. “On Probabilistic Computation Tree Logic”. In: Validation of Stochastic
Systems. Vol. 2925. Lect. Notes Comp. Sci. Springer, 2004, pp. 147–188.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. Cambridge, Massachusetts: The MIT Press,
1999.

[Cho04] Ch. Choffrut. “Rational Relations as Rational Series”. In: Theory Is Forever, Essays Dedicated to Arto
Salomaa on the Occasion of His 70th Birthday. Vol. 3113. Lect. Notes Comp. Sci. Springer, 2004, pp. 29–
34.

[Cho09] Ch. Choffrut. A short introductory course to rational relations. 2009.

[CK93] K. Culik and J. Kari. “Image compression using weighted finite automata”. In: Computer and Graphics
17.3 (1993), pp. 305–313.

[Cor+09] Th. H. Cormen et al. Introduction to Algorithms. 3rd. McGraw-Hill Higher Education, 2009.

[CY95] C. Courcoubetis and M. Yannakakis. “The Complexity of Probabilistic Verification”. In: Journal of the
ACM 42.4 (1995), pp. 857–907.

[DG07] M. Droste and P. Gastin. “Weighted automata and weighted logics”. In: Theor. Comp. Sci. 380.1-2 (2007).
Special issue of ICALP’05., pp. 69–86 (cit. on pp. 41, 44–45).

[DG09] M. Droste and P. Gastin. “Weighted automata and weighted logics”. In: Handbook of Weighted Automata.
Ed. by W. Kuich, H. Vogler, and M. Droste. EATCS Monographs in Theoretical Computer Science.
Springer, 2009 (cit. on pp. 41, 44–45).

[DKV09] M. Droste, W. Kuich, and W. Vogler. Handbook of Weighted Automata. Springer, 2009.

[DMR76] M. Davis, Y. V. Matijasevič, and J. Robinson. “Hilbert’s Tenth Problem. Diophantine equations: positive
aspects of a negative solution”. In: Mathematical Developments Arising from Hilbert Problems. Vol. 28.
Proc. of Symposia in Pure Mathematics. Providence, Rhode Island: American Mathematical Society, 1976,
pp. 323–378.

[DR07] M. Droste and G. Rahonis. “Weighted Automata and Weighted Logics with Discounting”. In: Proc. of
CIAA’07. Vol. 4783. Lect. Notes Comp. Sci. Springer, 2007, pp. 73–84.

[DV06] M. Droste and H. Vogler. “Weighted tree automata and weighted logics”. In: Theor. Comp. Sci. 366.3
(2006), pp. 228–247.

[Eis01] J. Eisner. “Expectation Semirings: Flexible EM for Learning Finite-State Transducers”. In: Proc. of the
ESSLLI workshop on finite-state methods in NLP. 2001.

[Elg61] C. C. Elgot. “Decision problems of finite automata design and related arithmetics”. In: Trans. Amer. Math.
Soc. 98 (1961), pp. 21–52 (cit. on pp. 41–42).

[FGK09] D. Fischer, E. Grädel, and L. Kaiser. “Model Checking Games for the Quantitative µ-Calculus”. In: Theory
of Computing Systems (2009). Special Issue of STACS’08.

[Gim10] Y. Gimbert H.and Oualhadj. “Probabilistic Automata on Finite Words: Decidable and Undecidable Prob-
lems”. In: Proc. of ICALP’10. Vol. 6199. Lect. Notes Comp. Sci. Springer, 2010, pp. 527–538. url:
http://hal.archives-ouvertes.fr/hal-00456538/en/.

[Gr06] M. Größer et al. “On reduction criteria for probabilistic reward models”. In: Proc. of FSTTCS’06. Vol. 4337.
Lect. Notes Comp. Sci. Springer, 2006, pp. 309–320.

[GSS95] R. J. van Glabbeek, S. A. Smolka, and B. Steffen. “Reactive, Generative and Stratified Models of Proba-
bilistic Processes”. In: Information and Computation 121.1 (1995), pp. 59–80.

[HJ94] H. Hansson and B. Jonsson. “A Logic for Reasoning about Time and Reliability”. In: Formal Aspects of
Computing 6.5 (1994), pp. 512–535.

[Kar+04] J. Karhumäki et al., eds. Theory Is Forever, Essays Dedicated to Arto Salomaa on the Occasion of His
70th Birthday. Vol. 3113. Lect. Notes Comp. Sci. Springer, 2004. isbn: 3-540-22393-2.

[Kir05] Daniel Kirsten. “Distance desert automata and the star height problem”. In: RAIRO Inform. Théor. Appl.
39.3 (2005), pp. 455–509. issn: 0988-3754.

[Kno90] K. Knopp. Theory and Application of Infinite Series. Republication of the second English edition, 1951.
New York: Dover Publications, 1990.

[Koz83] D. Kozen. “Results on the Propositional µ-calculus”. In: Theor. Comp. Sci. 27 (1983), pp. 333–354.

[Kro94] D. Krob. “The equality problem for rational series with multiplicities in the tropical semiring is undecidable”.
In: Int. J. of Algebra and Comput. 4.3 (1994), pp. 405–425.

[KS60] J. G. Kemeny and J. L. Snell. Finite Markov Chains. New York: Van Nostrand Reinhold, 1960.

52

http://hal.archives-ouvertes.fr/hal-00456538/en/

[KS85] W. Kuich and A. Salomaa. Semirings, Automata and Languages. Springer, 1985.

[LP04] Hing Leung and Viktor Podolskiy. “The limitedness problem on distance automata: Hashiguchi’s method
revisited”. In: Theor. Comp. Sci. 310.1-3 (2004), pp. 147–158.

[Mat93] Y. V. Matijasevič. Hilbert’s Tenth Problem. Cambridge, Massachusetts: MIT Press, 1993. isbn: 0-262-
13295-8.

[Mei09] I. Meinecke. “A weighted µ-calculus on words”. In: Proceedings of DLT’09. Vol. 5583. Lect. Notes Comp.
Sci. Springer, 2009.

[MHC03] O. Madani, S. Hanks, and A. Condon. “On the undecidability of probabilistic planning and related sto-
chastic optimization problems”. In: Artificial Intelligence 147.1-2 (2003), pp. 5–34.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1967. isbn: 0-13-165563-9.

[Moh02] M. Mohri. “Semiring frameworks and algorithms for shortest-distance problems”. In: Journal of Automata,
Languages, and Combinatorics 7.3 (2002), pp. 321–350. issn: 1430-189X.

[Moh97] M. Mohri. “Finite-state transducers in language and speech processing”. In: Computational Linguistics
23.2 (1997), pp. 269–311.

[Paz71] A. Paz. Introduction to probabilistic automata. Academic Press, 1971.

[Pnu77] A. Pnueli. “The temporal logic of programs”. In: Proc. of FOCS’77. IEEE Computer Society Press, 1977,
pp. 46–57.

[Put94] M. L. Puterman. Markov Decision Processes. New York, NY: John Wiley & Sons, Inc., 1994.

[PZ93] A. Pnueli and L. D. Zuck. “Probabilistic Verification”. In: Information and Computation 103.1 (1993),
pp. 1–29.

[Rab63] M. O. Rabin. “Probabilistic automata”. In: Information and Control 6 (3 1963), pp. 230–245.

[Sak09] J. Sakarovitch. Elements of Automata Theory. New York, NY, USA: Cambridge University Press, 2009.
isbn: 0521844258, 9780521844253.

[Sch61] M.-P Schützenberger. “On the definition of a family of automata”. In: Information and Control 4 (1961),
pp. 245–270.

[Seg06] R. Segala. “Probability and Nondeterminism in Operational Models of Concurrency”. In: Proceedings of
CONCUR’06. Vol. 4137. Lect. Notes Comp. Sci. Springer, 2006, pp. 64–78.

[Sim94] Imre Simon. “On Semigroups of Matrices over the Tropical Semiring”. In: ITA 28.3-4 (1994), pp. 277–294.

[SS78] A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer, 1978.

[Tho97] W. Thomas. “Languages, Automata and Logic”. In: Handbook of Formal Languages. Ed. by A. Salomaa
and G. Rozenberg. Vol. 3, Beyond Words. Springer, 1997, pp. 389–455.

[Tze92] W.G. Tzeng. “A polynomial-time algorithm for the equivalence of probabilistic automata”. In: SIAM J.
Comput. 21 (1992), pp. 216–227.

[Var85] M. Y. Vardi. “Automatic Verification of Probabilistic Concurrent Finite-State Programs”. In: Proc. of
FOCS’85. IEEE, 1985, pp. 327–338.

[Var99] M. Y. Vardi. “Probabilistic Linear-Time Model Checking: An Overview of the Automata-Theoretic Ap-
proach”. In: Formal Methods for Real-Time and Probabilistic Systems, 5th International AMAST Work-
shop, ARTS’99. Vol. 1601. Lect. Notes Comp. Sci. Springer, 1999, pp. 265–276.

53

	Chapter 1. Motivation and Preliminaries
	1. Three examples
	2. Semirings and Closed Weighted Systems
	Exercises for Chapter 1
	Further reading and references

	Chapter 2. Weighted Automata: Definitions and Problems
	1. Definitions and Examples
	2. Decision Problems for Weighted Automata
	Further reading and references

	Chapter 3. Probabilistic Automata and Stochastic Languages
	1. Definitions
	2. Stochastic Languages
	3. Threshold emptiness and Isolated cut points
	4. Decidability of the Equality Problem
	Exercises for Chapter 3
	Further reading and references

	Chapter 4. Weighted Automata and Recognizable Series: General Results
	1. Rational Series
	2. Recognizable Series
	Exercises for Chapter 4
	Further reading and references

	Chapter 5. Series over Semirings of Integers
	1. Semirings Z and Nat
	2. The Tropical Semiring
	Exercises for Chapter 5
	Further reading and references

	Chapter 6. Word Transducers
	1. Definition
	2. Threshold Problems for Word Transducers
	Exercises for Chapter 6
	Further reading and references

	Chapter 7. Weighted Logic
	1. MSO Logic over Words
	2. Weighted MSO Logic over Words
	3. From Logic to Automata
	4. From Automata to Logic
	Exercises for Chapter 7
	Further reading and references

	List of references

