

Security M1 – Examen (2h)

Guillaume Scerri, guillaume.scerri@lmf.cnrs.fr

12 January 2026

All paper documents are allowed. Internet connected devices are not allowed. The number of stars after a question roughly denotes difficulty (and thus number of points).

1 A protocol

Consider the following protocol, where a and b are secrets of agents A and B, keys $\text{pk}(a)$ and $\text{pk}(b)$ are public (i.e. initially known to the attacker), and n is a nonce generated by A:

- $A \rightarrow B: \text{aenc}(n, \text{pk}(b))$
- $B \rightarrow A: \text{aenc}(n, \text{pk}(a))$

The goal of the protocol is for A to ensure that B has correctly received n (a sort of one way key exchange). The naive idea is that A sends a first message containing a secret n . Upon receipt of a message of the form $\text{aenc}(y, \text{pk}(b))$, B obtains n and sends back the last message to A as an acknowledgment.

Question 1 (*). Provide a pi-calculus process $A(n, a, \text{pk}(b))$ modeling A, and $B(b, \text{pk}(a))$ modelling a version of B that is only willing to talk to A, assuming that both A and B know $\text{pk}(a)$ and $\text{pk}(b)$. You may use pattern matching for binding variables.

In the remainder of this exercise, we model messages as terms built over variables \mathcal{X} , and names \mathcal{N} with

- constructors $\text{aenc}/2$, $\langle ., . \rangle/2$, $\text{pk}/1$;
- destructors adec , $\pi_1/1$, $\pi_2/1$;
- rewrite rules $\text{adec}(\text{aenc}(x, \text{pk}(y)), y) \rightarrow x$ and $\pi_i(\langle x_1, x_2 \rangle) \rightarrow x_i$.

Question 2 (*). Assume that B binds its internal representation of n to x_n , provide a trace where $x_n \neq n$.

Question 3 (*). Give a security property formalizing the fact that the adversary cannot guess n if B succeeds. You may modify the process from Question 1 in order to add the relevant events.

Question 4 (*). Give a security property formalizing the fact that if B accepts, A and B agree on the value of n . You may modify the process from Question 1 in order to add the relevant events.

Question 5 (*). Give all symbolic executions of the process $A(n, a, \text{pk}(b)) \parallel B(b, \text{pk}(a))$.

Question 6 (*). Prove that the process $A(n, a, \text{pk}(b)) \parallel B(b, \text{pk}(a))$ ensures secrecy of n . You may use symbolic execution from the previous question.

Consider now the following modification of the protocol where B is willing to answer queries from anyone.

- $A \rightarrow B$: $\text{aenc}(\langle n, \text{pk}(a) \rangle, \text{pk}(b))$
- $B \rightarrow A$: $\text{aenc}(n, \text{pk}(a))$

Question 7 (*). Provide processes $A(n, a, \text{pk}(b))$ and $B(b)$ modelling this new protocol.

Question 8 (**). Prove that the process $A(n, a, \text{pk}(b)) \parallel B(b)$ ensures secrecy of n . You may use symbolic execution to characterise all possible traces of these processes.

Question 9 (***)). Prove that the process $\|^i A(n, a, \text{pk}(b)) \| \|^j B(b)$ ensures secrecy of n_0 .

Hint: You may want to give an invariant on the shape of messages in the knowledge of the adversary that is stable by one action of A of B .

We now assume that the encryption is malleable, i.e., we add to our model the function $\text{mal}/2$ and the rewrite rule $\text{mal}(\text{aenc}(\langle x, y \rangle, z), t) \rightarrow \text{aenc}(\langle x, t \rangle, z)$.

Question 10 (***)). Show that intruder deduction is still decidable in this model.

Question 11 (*). Provide a trace of the process $A(n, a, \text{pk}(b)) \parallel B(b)$ where n is deducible by the adversary.

2 Computational model

Definition 1. A function f is negligible if for any polynomial p , there exists N such that for all $\eta \geq N$ we have $f(\eta) \leq \frac{1}{p(\eta)}$.

In this section, we say that a scheme is secure for a game, is the advantage for the corresponding game is negligible in the security parameter η for any probabilistic polynomial time (in η) adversary.

Definition 2 (IND – CPA security game). The attacker must distinguish between two scenarios (the variations between those two scenarios are parametrized by a boolean b).

- First, compute pair a key (k) from $\mathcal{K}(\eta)$.
- Then, the adversary gets access to an oracle $\mathcal{O}_{\text{IND-CPA}}^b$ and returns a boolean b' . This oracle is defined as such (with r being some fresh randomness at every call)

$$\mathcal{O}_{\text{IND-CPA}}^b(m_0, m_1) = \begin{cases} \{m_b\}_{\text{pk}(k)}^r & \text{if } |m_0| = |m_1| \\ \text{error} & \text{otherwise} \end{cases}$$

The advantage of an adversary \mathcal{A} against the IND – CPA game is

$$\mathbf{Adv}_{\text{IND-CPA}}^\eta(\mathcal{A}) = \left| \frac{\Pr_r[(k) \leftarrow \mathcal{K}(1^\eta) : \mathcal{A}^{\mathcal{O}_{\text{IND-CPA}}^0}(\text{pk}(k)) = 0]}{\Pr_r[(k) \leftarrow \mathcal{K}(1^\eta) : \mathcal{A}^{\mathcal{O}_{\text{IND-CPA}}^1}(\text{pk}(k)) = 0]} \right|$$

Question 12 (*). Define a cryptographic game ensuring formalizing the fact that an adversary interacting with an encryption oracle is unlikely to guess an encrypted random value $\{n\}_{\text{pk}(k)}^r$ (provided to the adversary at the start of the game).

Question 13 ().** Prove that an IND – CPA scheme also satisfies the game defined in Question 12.

Question 14 (*). Prove that if the encryption scheme satisfies IND – CPA then the process $A(n, a, \text{pk}(b))$ ensures secrecy of n (you may use the previous question's result).

Question 15 ().** Does the IND – CPA assumption ensure that n is secret in $A(n, a, \text{pk}(b))\|B(b, \text{pk}(a))$? Why?