
A brief introduction to provable security

Guillaume Scerri

10 november, 2025

1 / 29



Table of Contents

1 A brief history of cryptography

2 Cryptographic protocols

3 Quick preview of the course

2 / 29



A brief history of cryptography
Historically: secret process

invisible ink, set of abbreviations

Problem: once someone knows your process, everything is broken.
See Mary Stuart:

3 / 29



Kerckhoff’s principle (1)

La Cryptographie Militaire (1883)
Le système doit être matériellement,
sinon mathématiquement, indéchiffrable
The system should be, if not theoretically unbreakable,
unbreakable in practice

−→ If the security cannot be formally proven,
heuristics should provide some confidence.

4 / 29



Kerckhoffs’ Principles (2)

La Cryptographie Militaire (1883)
Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi
Compromise of the system should not inconvenience the correspondents

−→ The description of the mechanism should be public

5 / 29



Kerckhoffs’ Principles (3)

La Cryptographie Militaire (1883)
La clef doit pouvoir en être communiquée et retenue sans le
secours de notes écrites, et être changée ou modifiée au gré des
correspondants
The key should be rememberable without notes and should be easily
changeable

−→ The parameters specific to the users (the key) should be short

6 / 29



During the second world war

Cryptography becomes a mathematical process: small key, code
books, does not (in theory) rely on secrecy of process

Decrypted by Alan Turing, with access to machines. Unclear
assumptions for security.

7 / 29



Modern days

RSA, AES, ECDSA, . . .
• Public specifications/implementation, standardised, largely

studied
• Often standardised (mostly by NIST)
• Largely studied by researchers

Assumptions
In this course we assume cryptography is secure (will see what it
means later).

8 / 29



Usual cryptographic primitives (1)

Symmetric encryption:
• ex. AES
• One key, secret, shared by both parties
• Very efficient
• Key distribution?
• Secrecy of ciphertext if key unknown

Asymmetric encryption:
• ex. RSA
• Public/private key pair
• Somewhat inefficient
• Secrecy of ciphertext if private key unknown

9 / 29



Usual cryptographic primitives (2)

Signatures :
• ex. RSA
• Verifying/signing key pair
• Anyone can verify a signature (with verifying key)
• Producing valid signature requires signing key.

Random numbers (nonces) :
• Uniformly drawn bitstring
• Should be “hard” to guess
• Used as challenges, seeds for keys (or key pairs).

10 / 29



Table of Contents

1 A brief history of cryptography

2 Cryptographic protocols

3 Quick preview of the course

11 / 29



Where do we need security?

12 / 29



What do we expect from Security?

• Keep the PIN code secret

• Ensure integrity of data

• Ensure that tally is correct

13 / 29



A simple example

Let’s assume you want to connect to your bank’s website.

What are you expecting in terms of security?

• Know that you are talking to your bank
• Secret communication
• . . .

Goes beyond what crypto immediately ensures !

14 / 29



A simple example

Let’s assume you want to connect to your bank’s website.

What are you expecting in terms of security?
• Know that you are talking to your bank
• Secret communication
• . . .

Goes beyond what crypto immediately ensures !

14 / 29



Against whom ?

• Malicious and powerful attacker

• hence not a simple correctness problem
⇒ need for formal verification !

15 / 29



Formal verification

For P protocol and φ security property:

∀ ∈ C P‖ �? φ

• What is P?
• What is φ?
• What is C?

16 / 29



An example of protocol

Alice wants to send Na to Bob.
Cryptographic primitive: asymmetric encryption

key pair pk public encryption key, sk secret decryption key

a,{Na}pkb−−−−−→
{Na}pka←−−−−

What is P
• Set of agents
• That communicate on a network

17 / 29



Protocol algebra

We need to define a protocol algebra and its semantics. Should
contain:
• input/outputs from the network;
• reasonable computations, tests and branching on received

messages;
• parallel composition of agents;
• (probably) arbitrary replication of an agent.

18 / 29



An example of protocol (ctd.)

Alice wants to send Na to Bob.
Cryptographic primitive: asymmetric encryption

key pair pk public encryption key, sk secret decryption key

a,{Na}pkb−−−−−→
{Na}pka←−−−−

Security properties:
• Na should be secret
• If Alice accepts Alice and Bob should agree on Na

19 / 29



Language for security properties

Should be able to express (at the very least):
• Secrecy of values;
• Agreement of agents on some values.

We need a simple logic on events that happen in the protocol!

20 / 29



Attacker capabilities: network

Type url in address bar and this happens:

21 / 29



Attacker capabilities: network ctd.

Browser

DNS

Bank

bank?

hello

83.206.67.137

hello
hi

hello

hi

hello

hi
hi

What could possibly go wrong?

22 / 29



No security at network layer

• DNS poisoning
• message interception
• wiretapping

Needham-Schroeder (1978)
“We assume that the intruder can interpose a computer in all
communication paths, and thus can alter or copy parts of
messages, replay messages, or emit false material. While this may
seem an extreme view, it is the only safe one when designing
authentication protocols.”

23 / 29



Attacker

• Untrusted network: controls the
network
• Able to compute: can modify

messages

Computations
Adversarial computations are the most important parameter of
what we prove, a number of computation models exist, we will
spend a lot of time on this point!

24 / 29



A simple attack

Alice wants to send a Na to Bob.

a,{Na}pkb−−−−−→
{Na}pka←−−−−

Security properties:
• Na should be secret
• If Alice accepts Alice and Bob should agree on Na

25 / 29



A simple attack

Alice wants to send a Na to Bob.

a,{Na}pkb−−−−−−→
{Na}pka←−−−−−

c,{Na}pkb−−−−−−→
{Na}pkc←−−−−−

Security properties:
• Na should be secret
• If Alice accepts Alice and Bob should agree on Na

25 / 29



A simple attack

Alice wants to send a Na to Bob.

{a,Na}pkb−−−−−→
{Na}pka←−−−−

Security properties:
• Na should be secret
• If Alice accepts Alice and Bob should agree on Na

25 / 29



Computations matter!
With an El Gamal encryption (with some hypotheses on the
implementation of 〈·, ·〉) we have

{a, Na}pkb ×
c
a = {c, Na}pkb

{a,Na}pkb−−−−−−→
{Na}pka←−−−−−

{c,Na}pkb−−−−−−→
{Na}pkc←−−−−−

Is it an attack?
It depends, we need to be careful about our model of adversarial
computations and its adequation with primitives!

26 / 29



What we do not consider in this course

• Side channel attacks
⇒ we only care about the input/output semantics of
computation not possible side effects
• System aspects (viruses, bad OS, . . . )

agents are either dishonest or behave perfectly honestly

27 / 29



Table of Contents

1 A brief history of cryptography

2 Cryptographic protocols

3 Quick preview of the course

28 / 29



Outline

1 Definition of a generic process algebra
• Model concurrency aspects.
• Leave adversarial computations as a parameter.
• Give a small language for security properties.

2 Symbolic model of cryptography
• Definition of a term algebra based computation semantics.
• Decidability of security for bounded protocols.
• Modelling unbounded protocols and proof strategies

(hopefully).
3 Computational model of cryptography.

• Definition of a poly-time Turing Machine computation
semantics.

• Modelling computational security of primitives .
• A brief introduction to game based proofs.

29 / 29


	A brief history of cryptography
	Cryptographic protocols
	Quick preview of the course

