A brief introduction to provable security

Guillaume Scerri

10 november, 2025

1/29

Table of Contents

@ A brief history of cryptography

2/ 29

A brief history of cryptography

Historically: secret process

r

[
v

/

Problem: once someone knows your process, everything is broken.

See Mary Stuart:

invisible ink, set of abbreviations

abcdefghiklimnopaqrs
ofA#azfhooi gl Fvimin

P

ae
.
oz

Nulles #f.—. — . d Dowbleth &~

and for with that if but where a
L i o4 %4 3

so not when there this in wid hat say me my wyrt
X H oy <z monnm g

e X

send Ife receave bearer I pray you Mte yourname myne
o 7

LT T LlE=R >

3/ 29

Kerckhoff's principle (1)

La Cryptographie Militaire (1883)

Le systéme doit étre matériellement,

sinon mathématiquement, indéchiffrable

The system should be, if not theoretically unbreakable,

unbreakable in practice

— If the security cannot be formally proven,
heuristics should provide some confidence.

4/ 29

Kerckhoffs' Principles (2)

La Cryptographie Militaire (1883)
Il faut qu’il n'exige pas le secret, et qu'il puisse sans inconvénient
tomber entre les mains de I'ennemi

Compromise of the system should not inconvenience the correspondents

— The description of the mechanism should be public

5/ 29

Kerckhoffs’ Principles (3)

La Cryptographie Militaire (1883)

La clef doit pouvoir en étre communiquée et retenue sans le
secours de notes écrites, et étre changée ou modifiée au gré des
correspondants

The key should be rememberable without notes and should be easily

changeable

— The parameters specific to the users (the key) should be short

6/ 29

During the second world war

Cryptography becomes a mathematical process: small key, code
books, does not (in theory) rely on secrecy of process

Decrypted by Alan Turing, with access to machines. Unclear
assumptions for security.

7/ 29

Modern days

RSA, AES, ECDSA, ...

® Public specifications/implementation, standardised, largely
studied

¢ Often standardised (mostly by NIST)

® |argely studied by researchers

Assumptions

In this course we assume cryptography is secure (will see what it
means later).

8 /29

Usual cryptographic primitives (1)

Symmetric encryption:
® ex. AES
® One key, secret, shared by both parties
® Very efficient
e Key distribution?

® Secrecy of ciphertext if key unknown

Asymmetric encryption:
® ex. RSA
® Public/private key pair
® Somewhat inefficient

® Secrecy of ciphertext if private key unknown

9/ 29

Usual cryptographic primitives (2)

Signatures :

® ex. RSA

e Verifying/signing key pair

® Anyone can verify a signature (with verifying key)

® Producing valid signature requires signing key.
Random numbers (nonces) :

® Uniformly drawn bitstring

® Should be “hard” to guess

® Used as challenges, seeds for keys (or key pairs).

10 / 29

Table of Contents

@® Cryptographic protocols

11/ 29

Where do we need security?

optile Q) earr @ i

12 /29

What do we expect from Security?

e Keep the PIN code secret

e Ensure integrity of data

e Ensure that tally is correct

13 /29

A simple example

Let's assume you want to connect to your bank’s website.

What are you expecting in terms of security?

14 /29

A simple example

Let's assume you want to connect to your bank’s website.

What are you expecting in terms of security?
® Know that you are talking to your bank
® Secret communication

Goes beyond what crypto immediately ensures !

14 /29

Against whom ?

® Malicious and powerful attacker

® hence not a simple correctness problem
= need for formal verification !

15 / 29

Formal verification

For P protocol and ¢ security property:

viec P||i':?¢

e What is P?
® What is ¢?
e WhatisC?

16 / 29

An example of protocol

Alice wants to send /N, to Bob.
Cryptographic primitive: asymmetric encryption
key pair pk public encryption key, sk secret decryption key

av{Na}pkb
e

{Na} a
Ppk.

What is P
e Set of agents

® That communicate on a network

17 / 29

Protocol algebra

We need to define a protocol algebra and its semantics. Should
contain:

® input/outputs from the network;

® reasonable computations, tests and branching on received
messages;

® parallel composition of agents;

e (probably) arbitrary replication of an agent.

18 / 29

An example of protocol (ctd.)

Alice wants to send /N, to Bob.
Cryptographic primitive: asymmetric encryption
key pair pk public encryption key, sk secret decryption key

a»{Na}Pkb
Skl N

{Na}Pka

Security properties:
® |\, should be secret

® |f Alice accepts Alice and Bob should agree on N,

19 /29

Language for security properties

Should be able to express (at the very least):
® Secrecy of values;
® Agreement of agents on some values.

We need a simple logic on events that happen in the protocol!

20 / 29

Attacker capabilities: network

21 /29

Attacker capabilities: network ctd.

bank?

Browser

83.206.67.137

hello
hello hello hello
hi
hi
hi hi

What could possibly go wrong?

22 / 29

No security at network layer

® DNS poisoning
® message interception

® wiretapping

Needham-Schroeder (1978)

"We assume that the intruder can interpose a computer in all
communication paths, and thus can alter or copy parts of
messages, replay messages, or emit false material. While this may
seem an extreme view, it is the only safe one when designing
authentication protocols.”

23 /29

Attacker

® Untrusted network: controls the
network

® Able to compute: can modify
messages

Computations

Adversarial computations are the most important parameter of
what we prove, a number of computation models exist, we will
spend a lot of time on this point!

24 / 29

A simple attack

Alice wants to send a N, to Bob.

Security properties:
® /\/, should be secret

® |f Alice accepts Alice and Bob should agree on N,

25 / 29

A simple attack

Alice wants to send a N, to Bob.

Security properties:
® /\/, should be secret

® |f Alice accepts Alice and Bob should agree on N,

25 / 29

A simple attack

Alice wants to send a N, to Bob.

Security properties:
® /\/, should be secret

® |f Alice accepts Alice and Bob should agree on N,

25 / 29

Computations matter!

With an ElI Gamal encryption (with some hypotheses on the
implementation of (-,-)) we have

C
{aa Na}Pkb X g = {Ca Na}Pkb

{a7N3}pkb
—

{Na}pka

Is it an attack?
It depends, we need to be careful about our model of adversarial
computations and its adequation with primitives!

26 / 29

What we do not consider in this course

® Side channel attacks
= we only care about the input/output semantics of
computation not possible side effects

e System aspects (viruses, bad OS, ...)
agents are either dishonest or behave perfectly honestly

27 / 29

Table of Contents

©® Quick preview of the course

28 / 29

Outline

@ Definition of a generic process algebra

® Model concurrency aspects.
® | eave adversarial computations as a parameter.
® Give a small language for security properties.
® Symbolic model of cryptography
® Definition of a term algebra based computation semantics.

® Decidability of security for bounded protocols.
® Modelling unbounded protocols and proof strategies

(hopefully).
© Computational model of cryptography.
® Definition of a poly-time Turing Machine computation

semantics.
® Modelling computational security of primitives .
® A brief introduction to game based proofs.

29 / 29

	A brief history of cryptography
	Cryptographic protocols
	Quick preview of the course

