Langages Formels

TD 1

Guillaume Scerri guillaume.scerri@lmf.cnrs.fr

23 janvier 2025

Exercise 1: Construction d'automates

On note $\Sigma = \{0, 1\}$.

- 1. Donner un automate qui reconnaît les langages :
 - (a) $L_1 = \{u \in \Sigma^* : \text{ toute occurrence de 1 est suivie de deux occurrences de 0}\}$
 - (b) $L_2 = \{u \in \Sigma^* : u \text{ ne contient pas deux occurences successives de } 0\}$
 - (c) $L_3 = \{u \in \Sigma^* : \text{ le nombre d'occurences de 1 est pair}\}$
- 2. Donner un automate qui reconnaît le langage des multiples de 3 en base 2 où la représentation des entiers est "big-endian" (i.e. les bits sont rangés du plus fort au plus faible).

Exercise 2: Opérations et problèmes : questions de cours

- 1. Étant donné un langage reconnaissable, montrer que son complémentaire est encore reconnaissable.
- 2. Étant donnés deux langages reconnaissables montrer que leur union, intersection et différence sont encore des langages reconnaissables.
- 3. Étant donné un langage reconnaissable L, montrer que l'ensemble des suffixes des mots de L est encore reconnaissable.
- 4. L'appartenance du mot vide ε à un langage reconnaissable est-elle décidable?
- 5. La vacuité d'un langage reconnaissable est-elle décidable?
- 6. L'universalité d'un langage reconnaissable est-elle décidable?

Exercise 3: Lemme d'Arden

Let A, B be two languages.

1. Prove that the language $L = A^*B$ is the smallest solution to the equation :

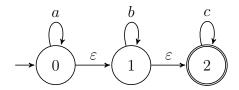
$$X = (A \cdot X) \cup B$$

2. Prove that if $\varepsilon \notin A$, then it is the only solution.

Exercise 4: ε -transitions

Un automate fini avec ε -transitions sur un alphabet Σ est un 5-uplet $\langle Q, I, F, \delta \rangle$ où $I, F \subseteq Q$ et $\delta \subseteq Q \times \Sigma \cup \{\varepsilon\} \times Q$. Une ε -transition (une transition étiquetée par ε) peut être empruntée sans consommer de lettres du mot d'entrée. Les notions de chemin et d'acceptation sont étendues de manière naturelle.

1. On se place sur l'alphabet $\Sigma = \{a, b, c\}$. Quel est le langage reconnu par l'automate A_0 ?



Un automate A_0 avec ε -transitions

Soit $\mathcal{A} = \langle Q, I, F, \delta \rangle$ un automate avec ε -transitions. Pour tout état $q \in Q$, on note Cl(q) la clôture par ε -transitions de l'état q:

$$q' \in Cl(q) \iff \text{il existe } n \in \mathbb{N} \text{ tel que } q \stackrel{\varepsilon}{\longrightarrow}_{\delta}^{n} q'$$

- 2. Quelles sont les clôtures des états de A_0 ?
- 3. Pour tout $\mathcal{A} = \langle Q, I, F, \delta \rangle$ un automate avec ε -transitions, construire un automate sans ε -transitions $\hat{\mathcal{A}}$ qui reconnait le même langage avec le même nombre d'états que \mathcal{A} .
- 4. Donner un automate déterministe qui reconnait le même langage que l'automate A_0 .

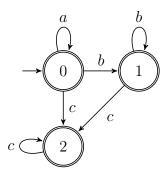


FIGURE 1 – Automate A_0 déterminisé

Exercise 5: Plus long préfixe commun

Étant donné un automate reconnaissant un langage L non vide, montrer que l'on peut calculer le plus long préfixe commun à tous les mots de L.

Exercise 6: Langages sans étoile

Soit $\Sigma = \{a, b\}$. La familles des *langages sans étoile* est la plus petite famille contenant \emptyset , $\{\ell\}$ pour tout $\ell \in \Sigma$, et close par union, complément et concaténation.

- 1. Exprimez les langages suivants comme langages sans étoile :
 - (a) $\{\varepsilon\}$
 - (b) les mots contenant bab
- 2. Exprimez $L_1 = (ab)^*$ comme un langage sans étoile.
- 3. Est-ce que $L_2 = (b^* + ab)^* + (b^* + ab)^*a$ est un langage sans étoile?