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Exercise 1 : Déterminisation

Quel est le langage reconnu par A ? Déterminisez A.
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(a) Automate A

Exercise 2 :
Apply the algorithm of McNaughton-Yamada on the following automaton. Detail each step.
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Exercise 3 : Brzozowski-McCluskey algorithm
The goal of this exercise is to translate a finite automaton into a rational expression, giving
an alternate proof of the associated implication of Kleene’s theorem. We will proceed by
successive transformations of the automaton.

1. We call strongly normalized every automaton which has a unique initial state to which
no transition leads and a unique final state with no exiting transition, i.e. an auto-
maton A = ⟨Q,Σ, {i}, {f}, δ⟩ such that for every state q and letter a, (q, a, i) /∈ δ
and (f, a, q) /∈ δ. Show that for all finite automaton, there is a strongly normalized
automaton which recognizes the same language.

We will use a generalization of the definition of finite automata : the transition function will
be a subset of Q×2Σ

∗×Q. An execution of such an automaton recognizes the concatenation
of languages of the transitions’ labels. The automaton recognizes the union of the languages
of all its accepting executions.

2. Show that every generalized automaton is equivalent to a generalized automaton in
which there exists exactly one transition between each pair of states : q′ ∈ δ(q, L) et
q′ ∈ δ(q, L′) implies L = L′.
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3. Let A be a strongly normalized generalized automaton with initial state i and final
state f . Let q ∈ QA, q ̸∈ {i, f}. Show that there exists an automaton equivalent to A
with set of states QA \ {q}.

4. Conclude that if L is recognized by a strongly normalized generalized automaton A,
then L belongs to the rational closure of the labels of the transitions of A.

5. Show that every finite automaton has an equivalent generalized automaton.
6. Give a procedure which, given a finite automaton, outputs a rational expression of

same language.
7. Apply the construction to compute a rational expression corresponding to the following

automaton :
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Exercise 4 : Antimirov’s automaton
The goal of this exercise is to build an automaton from a regular expression. We will define
a partial derivative operation ∂a(E) which corresponds to a−1L(E) (via interpretation of
expressions). Formally, for every expression E and letter a, we define the set of expressions
∂a(E) as follows :

∂a(∅) = ∅

∂a(b) =

{
∅ if a ̸= b
{∅∗} else

∂a(E + E ′) = ∂a(E) ∪ ∂a(E
′)

∂a(E
∗) = ∂a(E) · {E∗}

∂a(E · E ′) =

{
∂a(E) · {E ′} if ε ̸∈ E
(∂a(E) · {E ′}) ∪ ∂a(E

′) else

where concatenation is naturally extended over sets of expressions.
We define ∂w(E) for a word w inductively with ∂ε(E) = {E} and ∂wa(E) = ∂a(∂w(E)),
where ∂w(S) =

⋃
E∈S ∂w(E) when S is a set of expressions.

Given a set of regular expressions S, we denote by L(S) the set
⋃

E∈S L(E).
1. Give the partial derivatives of (ab+ b)∗ba by a and b.
2. Prove that for every L,L′ ⊆ Σ∗ and a ∈ Σ,

a−1(L ∪ L′) = (a−1L) ∪ (a−1L′)

a−1L∗ = (a−1L) · L∗

a−1(L · L′) =

{
a−1L · L′ si ε /∈ L

(a−1L · L′) ∪ (a−1L′) sinon

3. Show that L(∂w(E)) = w−1L(E).
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4. We define the set of non empty suffixes of a word :

Suf(w) = { v ∈ Σ+ : ∃u,w = uv }

Show that for every w ∈ Σ+ :

∂w(E + E ′) = ∂w(E) ∪ ∂w(E
′)

∂w(E · E ′) ⊆ (∂w(E) · E ′) ∪
⋃

v∈Suf(w)

∂v(E
′)

∂w(E
∗) ⊆

⋃
v∈Suf(w)

∂v(E) · E∗

5. Let ∥E∥ be the number of occurences of letters of Σ in E. Show that the set of partial
derivatives different to E has at most ∥E∥+ 1 elements.

6. Conclude, and apply the construction to the expression (ab+ b)∗ba.
Exercise 5 : A rational half ?

Let L be a rational language over a finite alphabet Σ. Show that Half(L) = { f ∈ Σ∗ :
ff ∈ L } is rational.
Is FH(L) = { f ∈ Σ∗ : ∃h ∈ Σ∗. |h| = |f |, fh ∈ L } rational ?
Is Double-pad(L) = { fh ∈ Σ∗ : f ∈ L, h ∈ Σ∗, |h| = |f | } rational ?
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