
Introduction to Security 2024-2025

TD 5: Toward computational security of protocols
Margot Catinaud margot.catinaud@lmf.cnrs.fr

Théo Vignon theo.vignon@lmf.cnrs.fr

December 13, 2024

First off, let’s start by define the primitive that we will use during all this exercise session, the symmetric encryption:

Definition: Symmetric encryption

A symmetric encryption scheme is defined by the following signature (K/2, E/3, D/2)a, where :

1. K is the key generation function, that given the security parameter ηb and some random seed,
generates the secret key used by the encryption and decryption functions.

2. E is the encryption function, that given the plaintext to encrypt, the key, and some randomness,
outputs the associated ciphertext. We will also use the notation {m}rk for E(m, k, r)

3. D is the decryption function, that given a ciphertext and a key, outputs the associated plaintext or
possibly a special error symbol ⊥.

In this exercise session (and almost all the time), we assume that an encryption scheme is at least correct,
meaning that the decryption of some encryption (with the same key) gives back the plaintext. Written
formally,

∀ m r k,D({m}rk, k) = m

aHere all those are interpreted as deterministic functions, to which we give their randomness explicity if necessary, we
could also interpret them as probabilistic functions that follow some distributions.

boften, the security parameter will be given as argument as 1η , the bitstring of length η only composed of 1. This is due
to implicit assumptions.

(a) that the numbers are given in binary
(b) the functions are in polynomial time in their input

Therefore, we want the key generation function to be polynomial in η and not logarithmic in η

1 of 10

Introduction to Security 2024-2025

Exercise 1: CPA and IND− CCA2

First, we need to adapt the definitions of IND− CPA and IND− CCA2 for the symmetric encryption setting.

Definition: IND− CPA

Given a symmetric encryption scheme (K, E , D). We define the IND− CPA security notion
as the indistinguishability between the following scenarios (the variations between those two
scenarios are parametrized by a boolean b):

• First, we compute a key k from K.

• Then, the adversary gets access to an oracle OE ,Ob
IND−CPA and returns a boolean b′. The

oracles are defined as such (with r being some fresh randomness at every call)

OE(m) := c = {m}rk

Ob
IND−CPA(m0,m1) =

{
{mb}rk if |m0| = |m1|
witness otherwise

where witness is some special message. The adversary wins if b′ = b
The advantage of an adversary A against the IND− CPA game is

Advη
IND−CPA(A) =

∣∣∣∣∣∣∣
Pr

[
k← K(1η, rk) : AOE ,O0

IND−CPA(1η) = 0
]

−Pr
[
k← K(1η, rk) : AOE ,O1

IND−CPA(1η) = 0
]
∣∣∣∣∣∣∣

Definition: IND− CCA2

Given a symmetric encryption scheme (K, E , D). We define the IND− CCA2 security notion
as the indistinguishability between the following scenarios (the variations between those two
scenarios are parametrized by a boolean b):

• First, we compute a key k form K, initialize a list log to the empty list []

• Then, the adversary gets access to an oracle OE ,OD,Ob
IND−CCA2 and returns a boolean

b′. The oracles are defined as such (with r being some fresh randomness at every call)

OE(m) := c = {m}rk

OD(c) := if c /∈ log then D(c, k) else witness

Ob
IND−CCA2(m0,m1) =


if |m0| = |m1|
then let c = {mb}rk in List.append(c, log); c
else witness

where witness is some special message. The adversary wins if b′ = b
The advantage of an adversary A against the IND− CPA game is

Advη
IND−CPA(A) =

∣∣∣∣∣∣∣
Pr

[
k← K(1η, rk) : AOE ,OD,O0

IND−CCA2(1η) = 0
]

−Pr
[
k← K(1η, rk) : AOE ,OD,O1

IND−CCA2(1η) = 0
]
∣∣∣∣∣∣∣

Let S be a symmetric encryption scheme (K, E ,D):

1. let A be an adversary against the IND− CPA assumption, find an adversary R(A) (so, a reduction

2 of 10

Introduction to Security 2024-2025

Exercise 1: CPA and IND− CCA2

built upon A) such that if A succeeds to break the IND− CPA assumption then R(A) also breaks
the IND− CCA2 assumption.

2. Show that if an encryption scheme is IND− CCA2-secure then it is also IND− CPA-secure.
Meaning, that you can upper-bound the advantage of an adversary against the IND− CPA assumption
by the advantage of an adversary against the IND− CCA2 assumption.

3. Do you think that IND− CPA security implies ICCAA security? Why?

Exercise 2: Integrity for symmetric encryption

We define here a new kind of security notion, the integrity of ciphertext (INT− CTXT). Intuitively, this
notion capture that it is hard to make a valid ciphertext (ie that decrypts to an actual message) without
the key.

Definition: INT− CTXT

Given a symmetric encryption scheme (K, E , D). We define the INT− CTXT security notion
as the following scenario :

1. First, we compute a key k form K, initialize a list log to the empty list [], and some
boolean win to false

2. Then, the adversary gets access to two oracles OE ,OD and finishes when it wants.
The oracles are defined as such (with r being some fresh randomness at every call)

OE(m) := let c = {m}rk in List.append(c, log); c

OD(c) := let win = win ∨ (D(c, k) 6= ⊥ ∧ c /∈ log) in win

The adversary wins if win = true.
The advantage of an adversary A against the INT− CTXT game is

Advη
INT−CTXT(A) = Pr

[
k← K(1η, rk); log← [];

win← false;AOE ,OD (1η) : win = true

]

Show that this definition is equivalent to the following definition

3 of 10

Introduction to Security 2024-2025

Exercise 2: Integrity for symmetric encryption

Definition: INT− CTXT – Game-based setting

Given a symmetric encryption scheme (K, E , D). We define the INT− CTXT security notion
as the indistinguishability between the following scenarios (the variations between those two
scenarios are parametrized by a boolean b):

1. First, we compute a key k form K, initialize a list log to the empty list []

2. Then, the adversary gets access to two oracles OE ,Ob
D and send back a boolean b′.

The oracles are defined as such (with r being some fresh randomness at every call)

OE(m) := let c = {m}rk in List.append(c, log); c

Ob
D(c) := if b ∧ c /∈ log then D(c, k) else ⊥

The adversary wins if b = b′

The advantage of an adversary A against the INT− CTXT game is

Advη
INT−CTXT(A) =

∣∣∣∣∣∣∣
Pr

[
k← K(1η, rk); log← [] : AOE ,O0

D (1η) = 0
]

−Pr
[
k← K(1η, rk); log← [] : AOE ,O1

D (1η) = 0
]
∣∣∣∣∣∣∣

In the rest of the exercise session, we advise using the definition in the game-based setting.

Exercise 3: Integrity and privacy

Given a symmetric encryption scheme (K, E ,D), show that if this encryption scheme is IND− CPA-secure
and INT− CTXT-secure then it is IND− CCA2-secure.

Exercise 4: Wide-mouth frog

Recall the example of the wide-mouth frog protocol:

A → S : A, {B, s,m1}kAS

S → B : {A, s,m2}kBS

In this exercise, we are interested in proving the strong secrecy of s in the computational model under the
assumption that the symmetric encryption scheme used is both IND− CPA-secure and INT− CTXT-secure.
To do that, we need to write down formally the protocol and what it means for an adversary to break the
protocol.
Here, we will represent the protocol by a set of oracle {Init,A,S,Register}a, we assume that among those
oracles Init is a special oracle that is called at the beginning of the game and never after, as for the other
oracles, the adversary can call them freely.
Here, we will represent our security property (the strong secrecy of s) as the indistinguishability of two
sets of oracles for the adversary. Formally, we define the advantage of the adversary against sets of oracles
as:

4 of 10

Introduction to Security 2024-2025

Exercise 4: Wide-mouth frog

Definition: Advantage of the adversary

Let {O, InitO}, {I, InitI} be two sets of oracles. The advantage of an adversary A against the
game (O, I) is :

Advη
(O,I)(A) =

∣∣∣∣∣ Pr
[
()← InitO() : AO(1η) = 0

]
−Pr

[
()← InitI() : AI(1η) = 0

] ∣∣∣∣∣
We can now formally define the oracle of the original wide-mouth frog protocol

Definition: Wide mouth frog

We define here the original version of the wide-mouth frog WMF :=
{InitWMF,AWMF,SWMF,RegisterWMF} as such:

InitWMF() :=

kA
$←− dkey;

kB
$←− dkey;

keys← [];

keys[A]← kA;
keys[B]← kB .

AWMF(I) :=

s $←− dkey;

r $←− rand;

(A, {I, s,m1}r
kA
).

SWMF(x) :=

let O,m = x in

let kD = keys[O] in

let I, s, t = D(m, kD) in
let kE = keys[I] in

if t = m1

then r $←− rand;

{O, s,m2}r
kE
.

RegisterWMF(x) :=

let I, k = x in

if keys[I] = then keys[I]← k.

Once we have this formalization of the wide-mouth frog protocol, we still need to define our ideal game
(the one where the strong secrecy of s holds for sure).

5 of 10

Introduction to Security 2024-2025

Exercise 4: Wide-mouth frog

Definition: Ideal game

We define here the idealized version of the wide mouth frog Ideal :=
{InitIdeal,AIdeal,SIdeal,RegisterIdeal} as such:

InitIdeal := InitWMF, SIdeal := SWMF, RegisterIdeal := RegisterWMF

and

AIdeal(I) :=

s $←− dkey;

r $←− rand;

if I = B

then (A, {I, 0|s|,m1}r
kA
).

else (A, {I, s,m1}r
kA
).

So, our goal in this exercise, is to upper-bound Advη
(WMF,Ideal)(A) for any A, with the advantage of

some adversary (built on A) against IND− CPA and INT− CTXT. To do that, we will do it step by step,
introducing multiple intermediary games. The first game that we want to introduce is the game that
represents the application of INT− CTXT assumption on the encryption scheme used by WMF:

Definition: WMF− CTXT

We define here the version of the WMF once the idealization of the CTXT was applied WMF−
CTXT :=

{
InitWMF−CTXT,AWMF−CTXT,SWMF−CTXT,RegisterWMF−CTXT

}
as such:

InitWMF−CTXT() :=

()← InitWMF;

log← [].

AWMF−CTXT(I) :=

s $←− dkey;

r $←− rand;

let c = {I, s,m1}r
kA

in

log[c, kA]← (I, s,m1);

(A, c).

SWMF−CTXT(x) :=

let O,m = x in

let kD = keys[O] in

let I, s, t = log[m, kD] in
let kE = keys[I] in

if t = m1

then r $←− rand;

let c = {O, s,m2}r
kE

in

log[c, kE]← (O, s,m2);

c.

RegisterWMF−CTXT(x) := RegisterWMF(x)

1. Let A be an adversary against the game (WMF,WMF − CTXT), find an adversary R(A) (so, a
reduction built upon A) such that if A wins against the game (WMF,WMF − CTXT) then R(A)
breaks the INT− CTXT assumption.

6 of 10

Introduction to Security 2024-2025

Exercise 4: Wide-mouth frog

2. Give (for any A) an upper-bound of Advη
(WMF,WMF−CTXT)(A) as a function of the advantage of a

adversary against the INT− CTXT assumption.

3. Define WMF− CPA, the set of oracles that correspond to WMF−CTXT after the application of the
IND− CPA assumption.

4. Give (for any A) an upper bound of Advη
(WMF−CTXT,WMF−CPA)(A) as a function of the advantage of

an adversary against the IND− CPA assumption.

5. Define Ideal−CTXT, the set of oracles that correspond to Ideal after the application of the INT− CTXT

assumption.

6. Give (for any A) an upper bound of Advη
(Ideal,Ideal−CTXT)(A) as a function of the advantage of an

adversary against the INT− CTXT assumption.

7. Define Ideal − CPA, the set of oracles that correspond to Ideal − CTXT after the application of the
IND− CPA assumption.

8. Give (for any A) an upper bound of Advη
(Ideal−CTXT,Ideal−CPA)(A) as a function of the advantage of an

adversary against the IND− CPA assumption.

9. Show that for all A Advη
(WMF−CPA,Ideal−CPA)(A) = 0

10. Using all the previous questions, give for any A an upper bound of Advη
(WMF,Ideal)(A) as a function

of the advantage of (multiples) adversary against the IND− CPA and INT− CTXT assumption.
aThe number, inputs, name of the oracles are specific to the exact protocol at had here, but the method is generic.

Exercise 5: MAC and encryption

One last question that remains is how to build a symmetric encryption scheme that is both IND− CPA

and INT− CTXT. This is exactly the goal of this exercise. To do that, we want to introduce some building
block (and also of independent interest), the message authentication code scheme :

Definition: Message authentication code

A message authentication code (MAC) scheme is defined by the following signature (K/2,
S/2, V/3)a, where :

1. K is the key generation function, that given the security parameter η and some random
seed, generates the secret key used by the signature and verification functions.

2. S is the signing function, that given the message to sign and the key, outputs the
associated signature.

3. V is the verification function, that given a message, a signature and, a key, either accepts
(outputs the boolean true) or refuses (outputs the boolean false) the signature.

In this exercise session (and almost all the time), we assume that a message authentication
code scheme is at least correct, meaning that the verification of a signature of the same
message under the same key accepts. Written formally,

∀ m k,V(m,S(m, k), k) = true

aall those are interpreted as deterministic functions as before, with the same remark

7 of 10

Introduction to Security 2024-2025

Exercise 5: MAC and encryption

Here, from an IND− CPA symmetric encryption scheme (K, E , D), and a SUF− MAC MAC scheme
(KS , S, V), we want to find a way to build a symmetric encryption that is both IND− CPA and INT− CTXT.
First off, let’s define the SUF− MAC security notion for MAC (We give the usual definition as well as the
game-based versiona):

Definition: SUF− MAC

Given a MAC scheme (KM, S, V). We define the SUF− MAC security notion as the following
scenario :

1. First, we compute a key k form KM, initialize a list log to the empty list [], and some
boolean win to false

2. Then, the adversary gets access to two oracles OS ,OV and finishes when it wants.
The oracles are defined as such

OS(m) := let s = S(m, k) in List.append((s,m), log); s

OS(s,m) := let win = win ∨ (V(m, s, k) ∧ (s,m) /∈ log) in win

The adversary wins if win = true.
The advantage of an adversary A against the SUF− MAC game is

Advη
SUF−MAC(A) = Pr

[
k← KM(1η, rk); log← [];

win← false;AOS ,OV (1η) : win = true

]

Definition: SUF− MAC – Game-based setting

Given a symmetric encryption scheme (KM, S, V). We define the SUF− MAC security notion
as the indistinguishability between the following scenarios (the variations between those two
scenarios are parametrized by a boolean b):

1. First, we compute a key k form K, initialize a list log to the empty list []

2. Then, the adversary gets access to two oracles OS ,Ob
V and sends back a boolean b′.

The oracles are defined as such

OS(m) := let s = S(m, k) in List.append((s,m), log); c

Ob
V(m, s) := if b ∨ (s,m) /∈ log then V(m, s, k)else false

The adversary wins if b = b′

The advantage of an adversary A against the SUF− MAC game is

Advη
SUF−MAC(A) =

∣∣∣∣∣∣∣
Pr

[
k← K(1η, rk); log← [] : AOS ,O0

V (1η) = 0
]

−Pr
[
k← K(1η, rk); log← [] : AOS ,O1

V (1η) = 0
]
∣∣∣∣∣∣∣

First, to build an encryption scheme, we must define the key generation function. Here in all the way to
combine the two schemes, we will use the same construction for the key generation function, so we will
define it once and for all,

8 of 10

Introduction to Security 2024-2025

Exercise 5: MAC and encryption

Definition: key generation function

Given K the key generation function of the encryption scheme and KM the key generation
function of the MAC scheme. We define K∪ as :

K∪(1
η, (r1, r2)) := (K(1η, r1),KM(1η, r2))

A first way to combine the two scheme is to encrypt and mac at the same time:

Definition: Encrypt-and-MAC

We define a new symmetric encryption scheme form the previous two (KE&M, EE&M,DE&M). As
we already mention, KE&M := K∪. As for the encryption:

EE&M(m, (k1, k2), r) :=
let c = E(m, k1, r) in
let s = S(m, k2) in
(c, s)

1. Define the associated decryption function

2. Show that this encryption scheme is not IND− CPA secure.

3. Show that this encryption scheme is not INT− CTXT secure.

A second way, could be to mac then encrypt.

Definition: MAC-then-encrypt

We define a new symmetric encryption scheme form the previous two (KMtE, EMtE,DMtE). As
we already mention, KMtE := K∪. As for the others two:

EMtE(m, (k1, k2), r) :=
let s = S(m, k2) in
E((m, s), k1, r)

DMtE(c, (k1, k2)) :=
let (m, s) = D(c, k1) in
if S(m, s, k2)
then m else ⊥

4. Show that this encryption scheme is IND− CPA secure.

5. Show that this encryption scheme is not INT− CTXT secure.

One last way to do it, would be to encrypt then mac.

9 of 10

Introduction to Security 2024-2025

Exercise 5: MAC and encryption

Definition: Encrypt-then-MAC

We define a new symmetric encryption scheme form the previous two (KEtM, EEtM,DEtM). As
we already mention, KEtM := K∪. As for the others two:

EEtM(m, (k1, k2), r) :=
let c = E(m, k1, r) in
let s = S(c, k2) in
(c, s)

DEtM((c, s), (k1, k2)) :=
let m = D(c, k1) in
if S(c, s, k2)
then m else ⊥

6. Show that this encryption scheme is IND− CPA secure.

7. Show that this encryption scheme is INT− CTXT secure.
ayou can show that they are equivalent if you want, but it is very similar to the first exercise

10 of 10

