
M1 – Introduction to Security 2025-2026

TD 5: Deducibility constraints in the symbolic setting
Margot Catinaud margot.catinaud@lmf.cnrs.fr

Recall the definition of deducibility constraint system:

Definition 1: Deducibility constraints system

A deducibility constraint is an expression of the form T `?
I u where T is a non-empty set of terms, u a term, I

(often omitted) is the deduction system used.

A deducibility constraint system is either ⊥ or a (possibly emptya) conjunction of deducibility constraints of
the form:

n∧
i=1

(
Ti `? ui

)
such that

• monotonicity: for all i ∈ J1;n− 1K, Ti ⊆ Ti+1 ;

• origination: for all i, fv(Ti) ⊆
i−1⋃
j=1

fv(uj)

aan empty conjunction is equivalent to >

The goal is to try to solve a deducibility constraint system:

Definition 2: Solution of a constraint system

A substitution σ is a solution of C =
n∧

i=1

(
Ti `? ui

)
, a deducibility constraint system if for all i ∈ J1;nK, there

exist a proof of Tiσ ` uiσ

To do so, we want a class of constraint system where it is “easy” to show that they have a solution:

Definition 3: Solved constraint system

A constraint system C is said to be solved if it is in the form

C =

n∧
i=1

(
Ti `? xi

)
where, for all i ∈ J1;nK, xi is a variable in X .

And then, we propose the following simplification algorithm

Definition 4: Simplification rules for constraint system

We consider a set of simplification rules for constraint system: a

C ∧
(
T `? u

)
 C if T ∪

{
x ∈ X

∣∣ (T ′ `? x) ∈ C, T ′ ⊆ T
}
` u (R1)

C ∧
(
T `? u

)
 σ Cσ ∧

(
Tσ `? uσ

)
if t ∈ st(T ), σ = mgu(t, u), t 6= u and t, u /∈ X (R2)

C ∧
(
T `? u

)
 σ Cσ ∧

(
Tσ `? uσ

)
if t, v ∈ st(T ), σ = mgu(t, v), t 6= v (R3)

C ∧
(
T `? u

)
 ⊥ if fv(T ∪ {u}) = ∅ and T 6` u (R4)

C ∧
(
T `? f(u1, . . . , un)

)
 C ∧

n∧
i=1

(
T `? ui

)
if (f/n) ∈ Σ is a constructor symbol (Rf )

aIn this exercise session the constructor symbols are senc, aenc, (_,_), blind and sign

1



M1 – Introduction to Security 2025-2026

Exercise 1 (From protocols to constraint system)
Recall the Needham-Schroeder protocol:

B → A : pk(B)

A → B : {A,NA}pk(B)

B → A : {NA, NB}pk(A)

A → B : {NB}pk(B)

We know (from TD2) that there is an attack on NB in this protocol, the goal of this exercise is to find it using
constraint system. To do this, we need to translate the protocol to some constraint systems. For that, we first
express the protocols as a set of rules. The idea behind those rules is to represent one possible transition of the
protocol. For example, from the first two interactions of the protocol

B → A : pk(B)

A → B : {A,NA}pk(B)

For the first interaction we write the rule:
→ pk(B) (B.1)

This rule represents the fact that without any input (there is nothing at the left side of the arrow), B sends its
public key. We can now write (A.1), representing the message that A sends to answer this (x here represents the
fact that A is willing to talk to anyone. So on input x, it sends back {A,NA}x).

x → {A,NA}x (A.1)

1. Write (B.2) and (A.2) representing the two other messages.
Hint: You can restrict the input using pattern matching to caracterize the inputs. For example, B only
answers back when the message it gets as input as this form: {(pk(A), y)}pk(B)

Now, we want to transform this rules into a constraint system. For that, we need an ordering on rules.

2. Is there any restriction made by the protocol on the ordering of the rules?

3. Respecting those restrictions, find an ordering of the rules that leads to an attack.

To transform this ordering into a constraint system, we need to know the initial knowledge of the adversary T0, and
then use the ordering

O : ∀ i ∈ J1;nK, ui → vi

Then, the ordering O leads to the constraint system C defined as follows:

C def
=

n∧
i=1

((
T0, (vj)

i−1
j=1

)
`? ui

)
∧

((
T0, (vj)

n
j=1

)
`? NB

)
.

since here, we want to show (actually break) the secrecy of NB

4. Give the initial knowledge of the adversary T0.

5. Give the corresponding constraint system C with the transformation given above.

6. Complete the subsitution σ = {x → pk(C), y → NA} to make it a solution of the constraint system C and then
prove that it is indeed a solution.

2



M1 – Introduction to Security 2025-2026

Exercise 2 (Examples of simplification)
On all those examples, try to apply the simplification rules as much as you can:

1. senc(n, k) `? senc(x, k)

2. senc
(
senc(t1, k), k

)
`? senc(x, k)

3. T `? x ∧ (T, n) `? y ∧
(
T, n, senc

(
m, senc(x, k)

)
, senc(y, k)

)
`? m

4. T `? x ∧ T `? (x, x)

5. n `? x ∧ n `? senc(x, k)

Exercise 3 (Needham-Schroeder simplification)
Apply the simplification rules on the constraint system given for the Needham-Schroeder protocol at the previous
exercise to get back σ.

Exercise 4 (Wide-mouthed frog)
The wide-mouthed-frog protocol is defined as follows:

A → S : A, {B, s,m1}kAS

S → B : {A, s,m2}kBS

Here, we are interested in the case where A agrees to talk to both B and C (a dishonest agent).

1. Write the protocol as rules with input and output.

2. Show that the associated constraint system does not have a solution, you can use the simplification rules to
do so.

Next, we propose a variant of the wide-mouthed-frog protocol:

A → S : A,B, {s}kAS

S → B : A, {s}kBS

3. Write down the protocol as rules with input and output.

4. Show that the associated constraint system does have a solution. Exhibit a solution using the constraint
solving simplification. What can you conclude?

3


