Langages Formels – TD 4

Guillaume Scerri guillaume.scerri@lmf.cnrs.fr

13 février 2025

Exercise 1: Regular identities

We study identities on regular expressions r, s, t. Here, r = s means $\mathcal{L}(r) = \mathcal{L}(s)$.

- 1. Prove the following identities :
 - (a) (r+s)t = rt + st
 - (b) $(r^*)^* = r^*$

(c)
$$(rs+r)^*r = r(sr+r)^*$$

- 2. Prove or disprove the following identities :
 - (a) $(r+s)^* = r^* + s^*$
 - (b) $(r^*s^*)^* = (r+s)^*$
 - (c) $s(rs+s)^*r = rr^*s(rr^*s)^*$

Exercise 2: Minimization by MOORE's algorithm

1. Minimize the automata \mathcal{A}_1 and \mathcal{A}_2 , using MOORE's algorithm :

(a) Automaton \mathcal{A}_1

2. Give a minimal automaton for $\mathcal{L} = ((a(a+b)^2+b)^*a(a+b))^*$.

Exercise 3:

- We define by |e| the size of a regular expression e, i.e. the number of symbols appearing in e.
 - 1. Is there a unique minimal regular expression e such that $\mathcal{L}(e) = L$ for a given regular language L?
 - 2. Give a procedure which, given a finite automaton \mathcal{A} , returns a minimal regular expression e such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(e)$.

Langages formels

Exercise 4: Flashback

We proved that the language of palindromes over alphabet $\Sigma = \{a, b\}$ is not recognizable. We say a palindrome is *non trivial* if its length is greater than or equal to 2. Determine which of the following languages are recognizable (and prove it) :

- 1. The language L_1 of words in Σ^* containing a non trivial palindrome as a prefix.
- 2. The language L_2 of words in Σ^* containing a non trivial palindrome of even length as a prefix.

Exercise 5: Résiduels

Calculer les résiduels de $\mathcal{L} = a^*(aa+b) + b(a+ba)^*$ et construire son automate minimal.

Exercise 6: Characterizing recognizability

We want to show a converse to the pumping lemma. We say that a language L satisfies P_h if for all $uv_1 \ldots v_h w$ avec $|v_i| \ge 1$, there exists $0 \le j < k \le h$ such that

$$uv_1 \dots v_h w \in L \Leftrightarrow uv_1 \dots v_j v_{k+1} \dots v_h w \in L.$$

The theorem of Ehrenfeucht, Parikh & Rozenberg states that L is rational iff there exists h such that L satisfies P_h .

- 1. Show that if L satisfies P_h , then $w^{-1}L$ also does for every word $w \in \Sigma^*$.
- 2. Let $h \in \mathbb{N}$. We want to show that the number of languages satisfying P_h is finite. We use the following statement of Ramsey's theorem :

For every k there is N such that, for every set E of cardinal greater than N and every bipartition \mathcal{P} of $\mathfrak{P}_2(E) = \{ \{e, e'\} : e, e' \in E, e \neq e' \}$, there exists a subset $F \subseteq E$ of cardinal k such that $\mathfrak{P}_2(F)$ is contained in one of the classes of \mathcal{P} .

Let N be the natural number given by Ramsey's theorem for k = h + 1. Let L and L' be two languages satisfying P_h and coinciding on words of size smaller than N. Prove that they coincide on words or size $M \ge N$, by induction on M. You may consider, for a word $f = a_1 \dots a_N t$ of size M (with $a_i \in \Sigma$), the following partition of $\mathfrak{P}_2([0; N])$:

$$X_f = \{ (j,k) : 0 \le j < k \le N, a_1 \dots a_j a_{k+1} \dots a_N t \in L \}$$
$$Y_f = \mathfrak{P}_2([0;N]) \setminus X_f$$

Conclude.

3. Conclude that if a language L satisfies P_h for some h, then L is regular.