Langages Formels - Grammaires et AAP

TD n°2

Isa Vialard vialard@lsv.fr

April 23, 2024

Exercise 1: Exemples d'automates à pile

- 1. Construire un automate à pile reconnaissant le langage $L_1 = \{ u\tilde{u} : u \in \Sigma^* \}$.
- 2. Construire un automate à pile reconnaissant le langage de Dyck D_n^* , le langage des mots bien parenthésés sur l'alphabet à n paires de parenthèses $\Sigma_n = \{ a_i, \bar{a}_i : i \in [1, n] \}$.
- 3. Construire un automate à pile reconnaissant le langage $L_2 = \{ w \in \Sigma^* : |w|_a = 2|w|_b \}.$
- 4. Construire un automate à pile reconnaissant par pile vide le langage $L_3 = \{ a^n b^p : 1 \le n \le p \le 2n \}$.

Exercise 2:

Mettre la grammaire suivante sous forme normale de Chomsky:

 $S \to aAa$

 $A \to Sb$

 $A \rightarrow bBB$

 $B \rightarrow abb$

 $B \to aC$

 $C \to aCA$

Exercise 3: Langages linéaires et automates à un pic

Un automate à un pic est un automate à pile tel que dans tout calcul valide, la taille de la pile n'augmente plus une fois qu'elle a diminué. La taille de la pile peut donc augmenter (au sens large) pendant une première partie du calcul, puis elle ne fait que diminuer (au sens large).

Un langage est à un pic s'il peut être accepté par pile vide par un automate à un pic.

- 1. Montrer que le langage $L = \{a^nb^n|n \ge 1\} \cup \{a^nb^{2n}|n \ge 1\}$ est un langage à un pic.
- 2. Montrer que le langage $K = \{ba^{i_1}ba^{i_2}b\cdots ba^{i_n}b|n \geq 1 \text{ et } \exists j, i_j \neq j\}$ est un langage à un pic.
- 3. Montrer que tout langage linéaire est un langage à un pic.

Exercise 4:

On s'intéresse ici à des automates dont l'alphabet de pile Γ est un singleton z.

- 1. Montrer que le langage $L = \{ a^n b^m c : 1 \le m \le n \}$ peut être accepté par pile vide et état final par un automate dont l'alphabet de pile est un singleton.
- 2. Montrer que le langage L ne peut pas être accepté par pile vide par un automate dont l'alphabet de pile est un singleton.

Contrôle continu

À rendre pour Jeudi 04/04.

Exercise 5: Exemples d'automates à pile

- 1. Construire un automate à pile reconnaissant le langage $L_1 = \{ a^i b^j c^k : i + j = k \}$.
- 2. Construire un automate à pile reconnaissant le langage $L_2 = \{ a^i b^j c^k : i + k = j \}$.
- 3. Construire un automate à pile reconnaissant le langage des palindromes $\{u \in \Sigma^* : \tilde{u} = u \}$ où \tilde{u} est l'image mirroir de u.

Exercise 6: Variantes d'automates à pile

Soit $A = (Q, \Sigma, Z, T, q_0, z_0, F)$ un automate à pile.

- 1. Montrer que l'on peut construire un automate à pile A' reconnaissant le même langage et tel que $T' \subseteq Q' \times Z \times (\Sigma \cup \{ \varepsilon \}) \times Q' \times Z^{\leq 2}$.
- 2. Montrer que l'on peut construire un automate à pile A'' équivalent à A tel que les mouvements de la pile sont uniquement du type push ou pop ou skip.