Langages Formels - TD 5

March 4, 2024

Exercise 1: Flashback

We proved that the language of palindromes over alphabet $\Sigma=\{a, b\}$ is not recognizable. We say a palindrome is non trivial if its length is greater than or equal to 2. Determine which of the following languages are recognizable (and prove it):

1. The language L_{1} of words in Σ^{*} containing a non trivial palindrome as a prefix.
2. The language L_{2} of words in Σ^{*} containing a non trivial palindrome of even length as a prefix.

Exercise 2: Congruences and monoids

An equivalence relation R on Σ^{*} is a congruence if $u R v$ implies $x u y R x v y$ for all x, y. We will call congruence classes the equivalence classes of a congruence.

1. Prove that a language is regular iff it is the union of some of the congruence classes of a congruence relation of finite index, i.e. with a finite number of congruence classes.

A congruence c_{1} is coarser (i.e. "grossière") than another congruence c_{2} if every congruences classe of c_{2} is included in a congruence class of c_{1}.
2. Let L be a language. Find a characterization of the coarsest congruence \equiv_{L} such that L is the union of some of its congruence classes.

This congruence is called the syntactic congruence of L.
3. Give a more precise criterion for the recognizability of a language. Apply it to prove that $\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is not recognizable.
4. We know that a language of Σ^{*} is regular iff there exists a finite monoid (M, \times), a morphism $\mu:\left(\Sigma^{*}, \cdot\right) \rightarrow(M, \times)$, and a set $P \subseteq M$ such that $L=\mu^{-1}(P)$. Find a characterization of the smallest such monoid for a regular language L.
5. What is the link between the syntactic congruence, this smallest monoid, and the minimal automaton?

Exercise 3: Transition monoid

We consider the following finite deterministic complete automaton \mathcal{A} over $\Sigma=\{a, b\}$:

1. Give $\mathcal{L}(\mathcal{A})$.
2. Give M the transition monoid of this automata, a morphism ϕ and $P \subset M$ such that $L=\phi^{-1}(P)$.
3. What is the syntactical congruence of L ? What are its equivalence classes?

Exercise 4: State complexity of a language

Given a recognizable language L, we define its state complexity $\mathrm{Sc}(L)$ by the number of states of its minimal automaton. Show that the following inequalities hold (L^{t} is the transposed of L, the language of the mirror images of words of L):

1. $\mathrm{Sc}(L \cap K) \leq \operatorname{Sc}(L) \operatorname{Sc}(K)$;
2. $\mathrm{Sc}(L \cup K) \leq \operatorname{Sc}(L) \operatorname{Sc}(K)$;
3. $\operatorname{Sc}\left(L^{\mathrm{t}}\right) \leq 2^{\operatorname{Sc}(L)}$;
4. $\mathrm{Sc}(L K) \leq(2 \mathrm{Sc}(L)-1) 2^{\mathrm{Sc}(K)-1}$.

We will now show that some of these bounds have the right order of magnitude. Let $\Sigma=\{a, b\}$.
5. Consider $L_{n}=\left\{|w|_{a}+|w|_{b}=2 n\right\}$ and $L_{n}^{\prime}=\left\{|w|_{a}+2|w|_{b}=3 n\right\}$ for the bound for intersection.
6. Consider $L_{n}=\Sigma^{n-1} a \Sigma^{*}$ for the bound for transposition.

Contrôle continu 5

À rendre pour le $07 / 03$ à 16 h15.

Exercise 5: Automate \rightarrow Monoïde

Donnez le monoïde syntaxique M du langage \mathcal{L} reconnu par cet automate, un morphisme ϕ et $P \subset M$ tel que $\phi^{-1}(P)=\mathcal{L}$.

Quelle est la congruence syntaxique de \mathcal{L} ? Quelles sont ses classes d'équivalence?

Exercise 6: Minimization by Brzozowski inversion

1. Show that the determinized of a co-deterministic co-accessible automaton which recognizes a language L is (isomorphic to) the minimal automaton of L.
2. Using this result, devise a procedure to minimize an automaton. What is the complexity of this method?
