Langages Formels - TD 5

March 4, 2024

Exercise 1: Flashback

We proved that the language of palindromes over alphabet $\Sigma = \{a, b\}$ is not recognizable. We say a palindrome is *non trivial* if its length is greater than or equal to 2. Determine which of the following languages are recognizable (and prove it):

- 1. The language L_1 of words in Σ^* containing a non-trivial palindrome as a prefix.
- 2. The language L_2 of words in Σ^* containing a non-trivial palindrome of even length as a prefix.

Exercise 2: Congruences and monoids

An equivalence relation R on Σ^* is a *congruence* if uRv implies xuyRxvy for all x, y. We will call *congruence classes* the equivalence classes of a congruence.

1. Prove that a language is regular iff it is the union of some of the congruence classes of a congruence relation of *finite index*, i.e. with a finite number of congruence classes.

A congruence c_1 is *coarser* (i.e. "grossière") than another congruence c_2 if every congruences classe of c_2 is included in a congruence class of c_1 .

2. Let L be a language. Find a characterization of the coarsest congruence \equiv_L such that L is the union of some of its congruence classes.

This congruence is called the *syntactic* congruence of L.

- 3. Give a more precise criterion for the recognizability of a language. Apply it to prove that $\{a^n b^n : n \in \mathbb{N}\}$ is not recognizable.
- 4. We know that a language of Σ^* is regular iff there exists a finite monoid (M, \times) , a morphism $\mu : (\Sigma^*, \cdot) \to (M, \times)$, and a set $P \subseteq M$ such that $L = \mu^{-1}(P)$. Find a characterization of the smallest such monoid for a regular language L.
- 5. What is the link between the syntactic congruence, this smallest monoid, and the minimal automaton?

Exercise 3: Transition monoid

We consider the following finite deterministic complete automaton \mathcal{A} over $\Sigma = \{a, b\}$:

- 1. Give $\mathcal{L}(\mathcal{A})$.
- 2. Give M the transition monoid of this automata, a morphism ϕ and $P \subset M$ such that $L = \phi^{-1}(P)$.
- 3. What is the syntactical congruence of L? What are its equivalence classes?

Exercise 4: State complexity of a language

Given a recognizable language L, we define its state complexity Sc(L) by the number of states of its minimal automaton. Show that the following inequalities hold (L^{t} is the transposed of L, the language of the mirror images of words of L):

- 1. $\mathsf{Sc}(L \cap K) \leq \mathsf{Sc}(L)\mathsf{Sc}(K);$
- 2. $Sc(L \cup K) \leq Sc(L)Sc(K);$
- 3. $Sc(L^{t}) \leq 2^{Sc(L)};$
- 4. $Sc(LK) \le (2Sc(L) 1)2^{Sc(K)-1}$.

We will now show that some of these bounds have the right order of magnitude. Let $\Sigma = \{a, b\}.$

- 5. Consider $L_n = \{|w|_a + |w|_b = 2n\}$ and $L'_n = \{|w|_a + 2|w|_b = 3n\}$ for the bound for intersection.
- 6. Consider $L_n = \Sigma^{n-1} a \Sigma^*$ for the bound for transposition.

Contrôle continu 5

À rendre pour le 07/03 à 16h15.

Exercise 5: Automate \rightarrow Monoïde

Donnez le monoïde syntaxique M du langage \mathcal{L} reconnu par cet automate, un morphisme ϕ et $P \subset M$ tel que $\phi^{-1}(P) = \mathcal{L}$.

Quelle est la congruence syntaxique de \mathcal{L} ? Quelles sont ses classes d'équivalence ?

Exercise 6: Minimization by BRZOZOWSKI inversion

- 1. Show that the determinized of a co-deterministic co-accessible automaton which recognizes a language L is (isomorphic to) the minimal automaton of L.
- 2. Using this result, devise a procedure to minimize an automaton. What is the complexity of this method ?