Langages Formels

TD 7 - Révisions

Isa Vialard
vialard@lsv.fr

March 14, 2024

Exercise 1: Intermède: congruences

Let's explore the fabulous world of congruences!

1. Using congruences, prove that $\left\{x c x: x \in\{a, b\}^{*}\right\}$ is not regular.
2. Same question for any infinite subset of $\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$.
3. Consider the regular language L represented by $a^{*} b^{*}+b^{*} a^{*}$.
(a) Draw the minimal automaton for L.
(b) Give a regular expression describing each of the equivalence classes of the syntactic congruence of L, denoted \equiv_{L}.
4. Let Σ be an alphabet. Let \equiv be a a congruence of finite index over Σ^{*}. Prove that any equivalence class of \equiv is a regular language of Σ^{*}.

Exercise 2: Two way automata (Boustrophédon)

A two way automaton is a finite automaton which, for each transition, can move its reading head one step to the right or one step to the left. Equivalently, it is a Turing machine with one ribbon which cannot write.

1. Build a two way automaton with $O(n)$ states that accept $\Sigma^{*} a \Sigma^{n}$.
2. Show that all language accepted by a deterministic two way automaton is regular.
3. Show that from any deterministic two way automaton with n states, we can construct an equivalent deterministic finite automaton with $2^{O\left(n^{2}\right)}$ states.

Exercise 3: Selection property

A morphism $\mu: A^{*} \rightarrow B^{*}$ has the selection property iff for every regular language L, there exists a regular language $K \subseteq L$ such that μ is injective over K and $\mu(K)=\mu(L)$. The goal of this exercise is to show that every morphism has the selection property.

1. Show that all injective morphisms have the selection property
2. Show that if morphisms μ and ν have the selection property, then the morphism $\mu \circ \nu$ also has it.

We call projection a morphism $\pi: A^{*} \rightarrow B^{*}$ such that for every letter $a \in A, \pi(a)=a$ or $\pi(a)=\varepsilon$.
3. Show that for every morphism $\mu: A^{*} \rightarrow B^{*}$, there exists an alphabet C, an injective morphism $\iota: A^{*} \rightarrow C^{*}$ and a projection $\pi: C^{*} \rightarrow B^{*}$ such that $\mu=\pi \circ \iota$.

We call elementary projection a projection $\pi: A^{*} \rightarrow B^{*}$ such that there exists a unique letter $a \in A$ such that $\pi(a)=\varepsilon$.
4. Show that every projection is the composition of elementary projections.
5. Show that all elementary projection has the selection property. (Cette question est plus dure qu'il n'y parait.)
6. Conclude.

