
Architecture et Système 2022-2023
Département Informatique, ENS Paris Saclay

TD 1 : Integers and Bit Representation
Solutions

Exercise 1 - Binary Operations

The C language has bit manipulation mechanisms. For example, consider two variables x and y of type
integer and the operator ⊕ (xor). We denote the ith bit of x and y by xi and yi respectively. The result of
x⊕ y is the word z such that zi = xi ⊕ yi. The C operators are & (and), | (or), ^ (xor) and ~ (not).

Do not confuse logical operators such as &&, ||, etc. with operators for handling binary words. Note
that 4&2 is 0, 4&&2 is 1.

Binary operations can be condensed. So x=x|2 can be written x|=2, and x=x^y can be written x^=y.
The language also provides the right shift operators >> or the left shift <<.

1. What does the following code do:

n & (n-1)

Solution: Remove the least significant 1 (if n 6= 0). Equal to 0 if n = 0.

2. In the following snippet c and n are integers.

for (c = 0; n != 0; n &= (n-1)) c++;

What value does c take according to the values of n?

Solution: Example with n = 5.

c = 0 ; n 6= 0 so n&(n-1) or 5&4, in binary 101&100, so n = (100)2 and c = 1.

n is greater than 0 so 4&3 or 100&011 so n = 0 and c = 2.

c is the number of 1s in the binary representation of n.

We will study a method which efficiently counts the number of 1s in a word of length 2k (for a k ≥ 0),
that is, in O(k) number of operations, assuming 2k is the size of a register. Let l ≤ k and n be a word of
length 2k. We denote by l − block a block of 2l consecutive bits in n, such that these blocks do not overlap
. (For example, there are eight 2-blocks of length 4 in a 32-bit word.) The l-count of n is the word of length
2k such that each of its l -blocks contains the number of 1’s of the corresponding l-block in n. Trivially, any
word equals its own 0-count. We try to produce the k-count of n. In what follows, we will assume that k = 5,
and suddenly we are working with 32-bit registers. The method is, however, easy to generalize.

3. Find an operation that produces the 1-count of n (in constant time).

1

Solution: In one copy of n, we keep the bits in even positions, in another the bits in odd positions.
This is done with the help of masking. We know that for any bit b, 0&b = 0 and 1&b = b. Hence,
for the first copy, we AND the even positions with 1 (guarding) and the odd positions with 0 (masking).
Similarly, for the second copy, we guard the odd positions and mask the even positions. By shifting
one of the copies, we can add all the blocks at the same time.

((n & 0xaaaaaaaa) >> 1) + (n & 0x55555555)

Moreover, the additions are independent because any block is large enough to store the number of
1’s of the original block. Hence, it is in constant time.

4. Generalize and iterate this operation to calculate the 5-count of n.

Solution: We progressively generate the 1-count, 2-count, etc.

n = ((n & 0xaaaaaaaa) >> 1) + (n & 0x55555555);

n = ((n & 0xcccccccc) >> 2) + (n & 0x33333333);

n = ((n & 0xf0f0f0f0) >> 4) + (n & 0x0f0f0f0f);

n = ((n & 0xff00ff00) >> 8) + (n & 0x00ff00ff);

n = ((n & 0xffff0000) >> 16) + (n & 0x0000ffff);

We work with 64-bit registers. Let n = (stuvwxyz)2 be a byte, with s the most significant bit and z the
least significant.

5. What does the following C expression give? How? (see program bits.c)

(n * 0x0202020202 & 0x010884422010) % 1023

Solution: This expression inverts the order of the bits. i.e. it gives (zyxwvuts)2. See explanation here
: https://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64BitsDiv

Exercise 2 - De Bruijn sequences

In this part of the TD, we will develop an efficient method to count the number of trailing zero bits in a
given (unsigned) integer value x such that x > 0. Equivalently, we can compute the position of the least
significant bit whose value is 1. For example, if the binary representation of x is 10110100, then the bit we
are looking for is the 1 which is followed by the two final 0s.

An index in a bit string is identified from right to left starting at zero. E.g., for x = (10110100)2, the bits
of x at index 0 and 1 are 0, and the bit with index 2 is 1. We present this method for 23 = 8 bit words, but it
can be generalized to 2n bits for any n > 0.

Given x ∈ N such that 0 < x < 28, we will be interested in implementing a function ` : {1, . . . , 28 − 1} →
{0, . . . , 7} such that `(x) is equal to smallest index that is set to 1 in the binary representation of x. In the
example above, we have `(x) = 2.

1. Write a naive C function to solve this problem (skeleton below).

int main (){

unsigned int x; // we assume 0 < x < 256

int result = 0;

2

https://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64BitsDiv

... //to be filled

return result;

}

Solution:

int main (){

unsigned int x; // we assume 0 < x < 256

int result = 0;

while ((x & 1) == 0) {

result++;

x = x >> 1;

}

return result;

}

Remarque: Attention à bien parenthéser dans le while, le & n’a pas la priorité sur le ==.

However, the running time of this function depends on the number of bits in x. We will develop another
algorithm has constant running time, i.e. independent of the actual number of zeros. To this end, we study
de Bruijn sequences.

A de Bruijn sequence s(n) of order n is a cyclic bit string such that every binary string of length n occurs
exactly once in s. For example, for n = 2 we can set s(n) = 00110 since 00, 01, 10 and 11 can all be found
in s(n).

2. Give a trivial lower bound for the minimal length of a de Bruijn sequence s(n).

Solution: There are 2n different words in Bn. A trivial lower bound for a sequence s is therefore of 2n + (n−
1), since each word in Bn must start at a position other than s and must be followed by n− 1 more bits.

De Bruijn sequences can be obtained from paths in de Bruijn graphs. The vertices of a de Bruijn graph
of order n are all bit strings of length n. There is a directed edge between two vertices b1b2 · · · bn and
c1c2 · · · cn if and only if b2 = c1, b3 = c2, . . . , bn = cn−1.

The figure 1 depicts the de Bruijn graph of order 2.

3. Draw the de Bruijn graph of order 3.

3

00

0110

11

Figure 1: De Bruijn graph of order 2.

Solution:

000

001100

111

011110

010

101

A de Bruijn sequence can be obtained from a de Bruijn graph by following a Hamiltonian cycle that
starts and ends in the vertex 0 · · · 0. A Hamiltonian cycle is a cycle that visits each vertex exactly once
before returning to the starting vertex. For instance, the only Hamiltonian cycle in the graph in the figure
above is 00 → 01 → 11 → 10 → 00. This cycle corresponds to the aforementioned de Bruijn sequence
00110. One can in fact prove that such a Hamiltonian cycle exists in every de Bruijn graph.

4. Find two different de Bruijn sequences of order 3 by following two different Hamiltonian paths in your
de Bruijn graph of order 3 starting in vertex 000.

Solution:

000→ 001→ 010→ 101→ 011→ 111→ 110→ 100

0001011100

000→ 001→ 011→ 111→ 110→ 101→ 010→ 100

0001110100

4

5. Choose a de Bruijn sequence s(3) of order 3 from the previous question and complete the following
table:

bit-string 7- index in s(3)

000 0
001
010
011
100
101
110
111

Solution:

Using the sequence 0001011100, we obtain the table below We observe that the right column is a
permutation of {0, . . . , 7}.

bit-string index in s

000 0
001 1
010 2
011 4
100 7
101 3
110 6
111 5

6. Let s(3) be the de Bruijn sequence from the previous question and 0 ≤ j < 8. What is the value
assigned by the table of the bit string:

((s(3)� j)� 7) & 0x7

Here,� and� mean shift-left and shift-right, respectively, and & is binary AND.

Solution: Let e(j) = ((s(3) � j) � 7) & 0x7 The relation between e(j) and j is exactly the table
given above, which is bijective. Hence, for e(j) = 000 we have j = 0, etc.

7. Given an unsigned integer k > 0, what is the value of k & (−k), where −k is the two’s complement
of k?

Solution: Refresher: The two’s complement is obtained by flipping (inverting) the bits in binary and
adding 1.

Example : 4 : 00000100 ; flipping-> 11111011 ; 2’s complement(+1) : 11111100 Hence, if the binary
representation of x is c0c1 · · · ci10 · · · 0, the negation is c̄0c̄1 · · · c̄i01 · · · 1, and the representation of −x
becomes c̄0c̄1 · · · c̄i10 · · · 0, and the expression then has only one non-zero bit, at position `(x), which
evaluates to 2`(x).

8. Propose an implementation of `(x).

5

Solution: We use the De Bruijn sequence to build up a multiply-right-shift perfect hashing algorithm
to index the LSB of the given integer, and use that index to return LSB index of the given integer. The
first step is to isolate the LSB. As we saw from the previous question, in order to do that we compute
k & (−k). Next we multiply this by the De Bruijn sequence. A good De Bruijn sequence must hash
all possible power-of-two integers (i.e. that have only one bit set) uniquely.

Multiplying by a power of 2 is equivalent to a shift. If the input to the hash function has a bit on in
position i, then the multiplication causes debruijn to be shifted left by i positions. . Each of the n
possible shifts causes the top log2n bits of the resulting n-bit word to take on a distinct value.

Next, we shift by the required bits (n− log2n = 8− 3 = 5). Shifting these log2n bits into the low-order
bits of the word allows us to index the table mapping the “de Bruijn index" into the normal index.

See debruijn.c on the Teaching page for the complete implementation in C.

Exercise 3 - Some logical components

Recall the NAND gate : It is a logic gate which produces an output which is false only if all its inputs are
true. We have its truth table below:

p q p ↑ q

0 0 1
0 1 1
1 0 1
1 1 0

The goal of this exercise is to implement other components, in an incremental fashion. This is the
only component you can use at the start. Once you have implemented a component correctly, it will be
usable for the implementation of future components. Try to optimize both, the least number of pre-defined
components used, as well as the number of NAND-gates used.

1. NOT

2. AND

3. OR

4. XOR

5. Equal to Zero (input is a 4-bit word)

6. Bonus: You can assume you have the 16 bit components for the above functions, along with a 16-bit
adder. Construct a SUBTRACTOR that subtracts B from A (A-B), where A and B are 16-bit numbers.

6

