
Architecture et Système 2022-2023
Département Informatique, ENS Paris Saclay

TD 03 : Floating Point Representation
Solutions

Find the files for this TP at https://lmf.cnrs.fr/downloads/IsaVialard/float.zip.

1 Float behaviour

1. First, open up the float_equality.c program and look through the code. This program compares
doubles using == - a seemingly-fine operation, but what happens when you compile it? What output
do you get?

2. Run the program now changing the data type to float and examine the output. Was there a change
in the output? Why might this be? What impact does that have on the arithmetic? You may also want
to see what the float values look like in the float visualizer here: click on https://www.h-schmidt.
net/FloatConverter/IEEE754.html.

3. Try and see if you can find the min/max values for the different datatypes. How do the min/max values
of the float/double range compare to the min/max of int/long? Note the lack of symmetry in the
definition names: INT_MAX/FLT_MAX are largest magnitude positive int/float, but INT_MIN is largest
magnitude negative int whereas FLT_MIN is smallest magnitude positive float (normalized). What is
the largest magnitude negative float ?

4. When an integer operation overflows, the result is wrapped back around the number circle. What is
the result of a float operation that overflows? An integer divide by zero halts the program. What about
floating point divide by zero? The float representation includes the exceptional float values infinity
and NaN. What kind of calculations produce an exceptional result? What happens when you use an
exceptional value in further calculations? Do the observed behaviors seem like reasonable choices
to you?

Solution: Un double est codé avec deux fois plus de bits qu’un float, donc il a plus de précision qu’un float.
Ça veut aussi dire que sa comparaison est plus précise. Comme le == est moins précis sur un float, il
accepte plus facilement. Comme le signe d’un float ne dépend que d’un seul bit, le "largest magnitude
negative float" vaut exactement −FLT_MAX . Overflow = infinity (ou - infinity). Division par 0 = infinity, sauf
division de 0 par 0 = NaN. Si on utilise une valeur exceptionnelle dans les opérations suivantes, ça retourne
toujours cette valeur exceptionnelle. C’est d’ailleurs la clé de la prochaine partie.

2 Software Bug: Acing every test

This is a true story of code encountered at a well-known online educational platform. Specifically, they had
a function to check correct answers in their quizzes - we’ve provided an implementation resembling the
original code below, and in test.c. However, their failure to account for exceptional float values created an
embarrassing vulnerability in the implementation. The function worked by scoring quiz items with a numeric

1

https://lmf.cnrs.fr/downloads/IsaVialard/float.zip
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html


response using a "tolerance" feature that accepted all responses within a tolerance of the true answer as
correct. For example, if the true answer was 200.7 and the tolerance was 0.01, responses within 1% of
200.7 would be scored as correct.

The code to score the student’s quiz response looked something like this:

bool is_correct(const char *response, float target) {

/* Is student response within acceptable tolerance of target?

- response : student's answer (string)

- target : instructor result (number)

*/

const float TOLERANCE = 0.01;

float val = strtof(response, NULL);

float at_most = TOLERANCE * fmax(fabs(val), fabs(target));

return fabs(val - target) <= at_most;

}

It turns out that there is a response that enabled users to get every answer right. What is the magic
answer? You can test your hypothesis by running the test.c program. It takes in one command-line
argument and uses that as your "answer" to various hardcoded questions. Try different answers to see
what you find!

To compile, use the command line gcc test.c -o test -lm

Solution: Inf donne juste à toutes les questions possibles. En effet, la valeur at_most est définie en fonction
de votre réponse et pas juste de la réponse cible, d’où le problème.

3 Floating point addition

For this question, you are to complete the float-skel.c file.
Reminder : In C, the type float is represented according to the IEEE 754 standard in the 32 bit. 1 bit

for the sign, 8 for the exponent and 23 for the mantisse.

typedef struct { int sign; int exponent; int mantissa; } fc;

1. Write a C function that decomposes a float into its three components. For example, the representation
of 2.5 in IEEE 754 is:

0 . 1000 0000 . 010 0000 0000 0000 0000 0000

In this case, the returned structure would contain sign = 0, exponent = 0x80 = 128 and mantissa =
0x200000 = 2097152.

Reminder : To do this, it is convenient to use typecast.

2. Create a function that does the opposite, that is to say that returns the float corresponding to a given
fc structure.

3. Realize the actual addition based on the addition of integers by going through the structures of fc.
To simplify, we will make the following restrictions: (i) both operands are positive (ii) no special cases
NaN / Inf etc.

Addition in the fc type is done in three steps:

(a) Standardize the two values, i.e. if the two exponents are different, we adjust the mantissa of one
of the two according to the difference.

2



(b) Add the sum of the two mantissae, taking into account the “hidden" bit representing the 1.

(c) Normalize the mantissa for whatever is in [1, 2), while adjusting the exponent of the result.

4 Mandelbrot revisited

We are again interested in the Mandelbrot fractal which associates with each pixel in an image a coordinate
(x, y) to paint a colour that is a function of (x, y). Suppose that we are interested in zooming in on a
specific point (x0, y0). For ε = 0.25, we look therefore a series of images of 1024 x 1024 pixels where
the image number i represents the interval [x0 − εi, x0 + εi] × [y0 − εi, y0 + εi]. After a certain number
of iterations, the image becomes blurred: the precision of the floating point representation is no longer
sufficient to distinguish 1024 values different in width or height; so some pixels will be associated with the
same coordinates. Suppose first that the calculation is done with type float. To simplify, we are only
interested in the width, so we set x0 = 0.375 for any y0.

Floating point formats consist of three components, the sign, the exponent and the mantissa. In what
follows the sign will always be positive (0). For the float type, the exponent has 8 bits and the mantissa 23.
So the binary representation of the exponent will be a an integer between 0 and 255, and we subtract 127
to get the exponent to use. (Special cases like 0, ∞, NaN will have no consequence in what follows.) In
the mantissa, the most significant bit represents 0.5, and it will always be necessary to add 1. We consider
the representation binary following a float (the dots simply indicate the limit between sign, exponent,
mantissa):

0.011 1110 1.100 0000 0000 0000 0000 0000

With the above explanations, this is the representation of 2125−127 · (1 + 0.5) = 0.375.

1. Give the binary representation of ε and ε2. (You can omit the zeros that lag behind at the end.)

2. Give the binary representation of x0+ ε2 and x0+ ε3. (Be careful to choose the right exponent in each
case.)

3. What is the representation of x0 − ε3, knowing that (x0 + εi) + (x0 − εi) = 2x0?

4. How many different values can we represent in the interval [x0− ε3, x0 + ε3]? (A response of the form
2n is enough.)

5. What will be the maximum value of i such that the precision is sufficient to represent 1024 = 210

different values in image number i? And if the calculation was done with the double type, where the
exponent has 11 bits and the mantissa 52?

Solution: Aidez-vous de https://www.h-schmidt.net/FloatConverter/IEEE754.html pour vérifiez vos
représentations binaires. Dans l’intevalle [x0 − ε3, x0 + ε3], on peut représenter environ 220 valeurs.
Pour i = 8, on en a 210 valeurs. Avec un type double, qui a 29 bits en plus dans sa mantisse, on peut
avoir 239 valeurs différentes dans l’image i = 8. On peut zoomer jusqu’à i = 22 pour avoir 210 valeurs
différentes.

3

https://www.h-schmidt.net/FloatConverter/IEEE754.html

	Float behaviour
	Software Bug: Acing every test
	Floating point addition
	Mandelbrot revisited

