
Architecture et Système 2021-2022
Département Informatique, ENS Paris Saclay

TP 7 : Processes and Signals

1 Warming up : Forks in C

To write a C program using fork, you must include the following libraries in your programs :

#include <unistd.h>

You will probably also need the following libraries later :

#include <sys/types.h>
#include <sys/wait.h>

1. How many times is "Hello World" printed?

#include <stdio.h>
#include <sys/types.h>
int main()
{
fork();
fork();
fork();
printf("Hello World\n");
return 0;
}

2. Given a macro BOUND, write a program that can create 2BOUND processes.
3. Predict the output of the following code snippet :

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
void forkexample()
{
// child process because return value zero
if (fork() == 0)
printf("Hello from Child!\n");

// parent process because return value non-zero.
else
printf("Hello from Parent!\n");
}
int main()
{
forkexample();
return 0;
}

1



4. Consider the following code fragment :

if (fork() == 0) {
a = a + 5;
printf("a = %d, &a = %d\n", a, &a);
}
else {
a = a –5;
printf("a = %d, &a = %d\n", a, &a);
}

Is the value of a same in both print statements? What about the value of &a?

2 Exit status

In this exercise we study the use and evaluation of the exit code of a process. Normally the exit code is
used to indicate, for example, the success or failure of a program. Here, we use it to provide the results of
a calculation. (Note : the exit code must be between 0 and 255, so it is really not very effective for this sort
of thing.)

1. We start with a simple example simple.c which calculates the sum of two integers. Complete the
program (you can access the skeleton from the website). The objective is that the child uses exit to
communicate the sum to the parent and the parent receives this value by wait.

2. More complicated : download the archive calc, which contains a simple calculator that evaluates
expressions with natural numbers, additions, multiplications and subtractions. In the current state
the program converts the expression to a tree, then it traverses the nodes of the tree one by one
to calculate the values of all the sub-expressions. Your task is to allow the program to compute
the sub-expressions in parallel. When the program evaluates a sub-expression, it should start two
child processes which evaluate their sub-expressions and which reports the result to the parent
process by their exit codes. The parent process waits for the two results and applies the operation
corresponding to get its own result. It (should) suffice to modify the compute function.

3 Signals in ANSI and POSIX

Write a program with a parent process that
— creates a child process
— transmits a sequence of keyboard-entered bits (the user enters 0’s and 1’s), bit by bit, to this child

process.
The child process must display the sequence in the correct order as received from the parent. To do this,
use signals. The difficulty with this exercise is that the order is not guaranteed : a signal A sent before signal
B by the parent process can be received in the reverse order by the child process. Take care to test several
patterns of sequences (alternations of 0’s and 1’s, successions of 0, successions of 1). To enter the bits,
you can use

for (c = 0; c != 0 && c != 1 && c != EOF; c = getchar());
if (c == 0) // Do something
if (c == 1) // Do something
if (c == EOF) break;

1. First implement with the ANSI C API (kill, pause, signal functions). What issue do you face?

2. Improve your program by using POSIX.

2


	Warming up: Forks in C
	Exit status
	Signals in ANSI and POSIX

