
3110 Coq Tactics Cheatsheet
When proving theorems in Coq, knowing what tactics you have at your disposal is vital. In fact,

sometimes it's impossible to complete a proof if you don't know the right tactic to use!

We provide this tactics cheatsheet as a reference. It contains all the tactics used in the lecture

slides, notes, and lab solutions.

Quick Overview

Here is a brief overview of the tactics that we've covered. Click on any of the links for more

details about how to use them.

Solving simple goals:

• assumption: Solves the goal if it is already assumed in the context.

• reflexivity: Solves the goal if it is a trivial equality.

• trivial: Solves a variety of easy goals.

• auto: Solves a greater variety of easy goals.

• discriminate: Solves the goal if it is a trivial inequality and solves any goal if the context

contains a false equality.

• exact: Solves a goal if you know the exact proof term that proves the goal.

• contradiction: Solves any goal if the context contains False  or contradictory hypotheses.

Transforming goals:

• intros / intro: Introduces variables appearing with forall  as well as the premises (left-

hand side) of implications.

• simpl: Simplifies the goal or hypotheses in the context.

• unfold: Unfolds the definitions of terms.

• apply: Uses implications to transform goals and hypotheses.

• rewrite: Replaces a term with an equivalent term if the equivalence of the terms has

already been proven.

• inversion: Deduces equalities that must be true given an equality between two

constructors.

• left / right: Replaces a goal consisting of a disjunction P \/ Q  with just P  or Q .

• replace: Replace a term with a equivalent term and generates a subgoal to prove that the

equality holds.

Breaking apart goals and hypotheses:

• split: Replaces a goal consisting of a conjunction P /\ Q  with two subgoals P  and Q .

• destruct (and/or): Replaces a hypothesis P /\ Q  with two hypotheses P  and Q .

Alternatively, if the hypothesis is a disjunction P \/ Q , generates two subgoals, one where

P  holds and one where Q  holds.

• destruct (case analysis): Generates a subgoal for every constructor of an inductive type.

• induction: Generates a subgoal for every constructor of an inductive type and provides an
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induction hypothesis for recursively defined constructors.

Solving specific types of goals:

• ring: Solves goals consisting of addition and multiplication operations.

• tauto: Solves goals consisting of tautologies that hold in constructive logic.

• field: Solves goals consisting of addition, subtraction (the additive inverse), multiplication,

and division (the multiplicative inverse).

Tacticals (tactics that act on other tactics):

• ; (semicolon): Applies the tactic on the right to all subgoals produced by the tactic on the

left.

• try: Attempts to apply the given tactic but does not fail even if the given tactic fails.

• || (or): Tries to apply the tactic on the left; if that fails, tries to apply the tactic on the right.

• all:: Applies the given tactic to all remaining subgoals.

• repeat: Applies the given tactic repeatedly until it fails.

Solving simple goals

The following tactics prove simple goals. Generally, your aim when writing Coq proofs is to

transform your goal until it can be solved using one of these tactics.

assumption

If the goal is already in your context, you can use the assumption  tactic to immediately prove

the goal.

Example:

Theorem p_implies_p : forall P : Prop,

  P -> P.

Proof.

  intros P P_holds.

1 subgoal

P : Prop

P_holds : P

-------------------(1/1)

P

After introducing the hypothesis P_holds  (which says that P  is true) into the context, we can

use assumption  to complete the proof.

Theorem p_implies_p : forall P : Prop,

  P -> P.

Proof.

  intros P P_holds.

  assumption.

No more subgoals.
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reflexivity

If the goal contains an equality that looks obviously true, the reflexivity  tactic can finish off

the proof, doing some basic simplification if needed.

Example:

Theorem forty_two : 41 + 1 = 42.

Proof.

1 subgoal

-------------------(1/1)

41 + 1 = 42

Both the left and right sides of the equality in the goal are clearly equal (after simplification), so

we use reflexivity .

Theorem forty_two : 41 + 1 = 42.

Proof.

  reflexivity.

No more subgoals.

trivial

The trivial  tactic can solve a variety of simple goals. It introduces variables and hypotheses

into the context and then tries to use various other tactics under the hood to solve the goal.

Any goal that can be solved with assumption  or reflexivity  can also be solved using

trivial .

Unlike most of the other tactics in this section, trivial  will not fail even if it cannot solve the

goal.

Example:

Theorem p_implies_p : forall P : Prop,

  P -> P.

Proof.

1 subgoal

-------------------(1/1)

P -> P

Previously, we proved this theorem using intros  and assumption ; however, trivial  can

actually take care of both those steps in one fell swoop.
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Theorem p_implies_p : forall P : Prop,

  P -> P.

Proof.

  trivial.

No more subgoals.

auto

The auto  tactic is a more advanced version of trivial  that performs a recursive proof

search.

Any goal that can be solved with trivial  can also be solved using auto .

Like trivial , auto  never fails even if it cannot do anything.

Example:

Theorem modus_tollens: forall (P Q : P

rop),

(P -> Q) -> ~Q -> ~P.

Proof.

1 subgoal

-------------------(1/1)

forall P Q : Prop, (P -> Q) -> ~ Q -> 

~ P

This proof is too complicated for trivial  to handle on its own, but it can be solved with auto !

Theorem modus_tollens: forall (P Q : P

rop),

(P -> Q) -> ~Q -> ~P.

Proof.

auto.

No more subgoals.

discriminate

The discriminate  tactic proves that different constructors of an inductive type cannot be

equal. In other words, if the goal is an inequality consisting of two different constructors,

discriminate  will solve the goal.

discriminate  also has another use: if the context contains a equality between two different

constructors (i.e. a false assumption), you can use discriminate  to prove any goal.
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Example 1:

Inductive element :=

| grass : element

| fire : element

| water : element.

Theorem fire_is_not_water : fire <> wa

ter.

Proof.

1 subgoal

-------------------(1/1)

fire <> water

You may be surprised to learn that auto  cannot solve this simple goal! However,

discriminate  takes care of this proof easily.

Inductive element :=

| grass : element

| fire : element

| water : element.

Theorem fire_is_not_water : fire <> wa

ter.

Proof.

  discriminate.

No more subgoals.

Example 2:

Theorem false_implies_anything : foral

l P : Prop,

0 = 1 -> P.

Proof.

  intros P zero_equals_one.

1 subgoal

P : Prop

zero_equals_one : 0 = 1

-------------------(1/1)

P

Recall that the natural numbers in Coq are defined as an inductive type with constructors O

(zero) and S  (successor of). The constructors on both sides of the false equality 0 = 1  are

different, so we can use discriminate  to prove our goal that any proposition P  holds.

Theorem false_implies_anything : foral

l P : Prop,

0 = 1 -> P.

Proof.

  intros P zero_equals_one.

  discriminate.

No more subgoals.
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exact

If you know the exact proof term that proves the goal, you can provide it directly using the

exact  tactic.

Example:

Theorem everything : 42 = 42.

Proof.

1 subgoal

-------------------(1/1)

42 = 42

Suppose we know that eq_refl 42  is a term with the type 42 = 42 . Then, we prove that there

exists a value that inhabits this type by supplying the term directly using exact , which proves

the theorem.

(We could have also used reflexivity  or other tactics to prove this goal.)

Theorem everything : 42 = 42.

Proof.

  exact (eq_refl 42).

No more subgoals.

contradiction

If there is a hypothesis that is equivalent to False  or two contradictory hypotheses in the

context, you can use the contradiction  tactic to prove any goal.

Example:

Theorem law_of_contradiction : forall 

(P Q : Prop),

  P /\ ~P -> Q.

Proof.

  intros P Q P_and_not_P.

  destruct P_and_not_P as [P_holds not

_P].

1 subgoal

P, Q : Prop

P_holds : P

not_P : ~ P

-------------------(1/1)

Q

After destructing the hypothesis P /\ ~P , we obtain two hypotheses P  and ~P  that
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contradict each other, so we use contradiction  to complete the proof.

Theorem law_of_contradiction : forall 

(P Q : Prop),

  P /\ ~P -> Q.

Proof.

  intros P Q P_and_not_P.

  destruct P_and_not_P as [P_holds not

_P].

  contradiction.

No more subgoals.

Transforming goals

While proving a theorem, you will typically need to transform your goal to introduce

assumptions into the context, simplify the goal, make use of assumptions, and so on. The

following tactics allow you to make progress toward solving a goal.

intros / intro

If there are universally quantified variables in the goal (i.e. forall ), you can introduce those

variables into the context using the intros  tactic. You can also use intros  to introduce all

propositions on the left side of an implication as assumptions.

If intros  is used by itself, Coq will introduce all the variables and hypotheses that it can, and

it will assign names to them automatically. You can provide your own names (or introduce

fewer things) by supplying those names in order. See Example 2.

intros  also has a sister tactic intro  that introduces just one thing.

intros  used by itself will never fail, even if there's nothing to introduce. If you supply some

names to intros , however, it will fail if a name is already in use or if there's not enough stuff

left to introduce.

Example 1:

Theorem modus_tollens : forall (P Q :

Prop),

(P -> Q) -> ~Q -> ~P.

Proof.

1 subgoal

-------------------(1/1)

forall P Q : Prop, (P -> Q) -> ~ Q -> 

~ P

We can introduce the two variables P  and Q , as well as the two hypotheses (P -> Q)  and

~Q  using intros .
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Theorem modus_tollens : forall (P Q :

Prop),

(P -> Q) -> ~Q -> ~P.

Proof.

  intros.

1 subgoal

P, Q : Prop

H : P -> Q

H0 : ~ Q

-------------------(1/1)

~ P

Example 2:

The names that Coq chose for the hypotheses H  and H0  aren't very descriptive. We can

provide more descriptive names instead. Note that we also have to give names to the two

variables after the forall  because intros  introduces things in order.

Theorem modus_tollens : forall (P Q :

Prop),

(P -> Q) -> ~Q -> ~P.

Proof.

  intros P Q P_implies_Q not_Q.

1 subgoal

P, Q : Prop

P_implies_Q : P -> Q

not_Q : ~ Q

-------------------(1/1)

~ P

simpl

The simpl  tactic reduces complex terms to simpler forms. You'll find that it's not always

necessary to use simpl  because other tactics (e.g. discriminate ) can do the simplification

themselves, but it's often helpful to try simpl  to help you figure out what you, as the writer of

the proof, should do next.

You can also use simpl  on a hypothesis in the context with the syntax simpl in

<hypothesis> .

simpl  will never fail, even if no simplification can be done.

Example:

Theorem switch_to_honors : 2110 + 2 =

2112.

Proof.

1 subgoal

-------------------(1/1)

2110 + 2 = 2112

Let's simplify that goal with simpl .
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Theorem switch_to_honors : 2110 + 2 =

2112.

Proof.

  simpl.

1 subgoal

-------------------(1/1)

2112 = 2112

unfold

The unfold  tactic replaces a defined term in the goal with its definition.

You can also use unfold  on a hypothesis in the context with the syntax unfold <term> in

<hypothesis> .

Example 1:

Definition plus_two (x : nat) : nat :=

  x + 2.

Theorem switch_to_honors_again : 

  plus_two 2110 = 2112.

Proof.

1 subgoal

-------------------(1/1)

plus_two 2110 = 2112

This time, nothing happens if we try simpl . However, we can unfold  and transform the goal

into something that we can then simplify.

Theorem switch_to_honors_again : 

  plus_two 2110 = 2112.

Proof.

  unfold plus_two.

1 subgoal

-------------------(1/1)

2110 + 2 = 2112

Example 2:

Theorem demorgan : forall (P Q : Pro

p),

~(P \/ Q) -> ~P /\ ~Q.

Proof.

  intros P Q not_P_or_Q.

  unfold not.

1 subgoal

P, Q : Prop

not_P_or_Q : ~ (P \/ Q)

-------------------(1/1)

(P -> False) /\ (Q -> False)

We'd like to unfold the ~(P \/ Q)  in our context as well, so we use unfold..in.. .
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(In thie case, we could have also applied unfold  before intros  to unfold all the negations at

once.)

Theorem demorgan : forall (P Q : Pro

p),

~(P \/ Q) -> ~P /\ ~Q.

Proof.

  intros P Q not_P_or_Q.

  unfold not. 

  unfold not in not_P_or_Q.

1 subgoal

P, Q : Prop

not_P_or_Q : P \/ Q -> False

-------------------(1/1)

(P -> False) /\ (Q -> False)

apply

The apply  tactic has a variety of uses.

If your goal is some proposition B  and you know that A -> B , then in order to prove that B

holds, it suffices to show A  holds. apply  uses this reasoning to transform the goal from B  to

A . See Example 1.

apply  can also be used on hypotheses. If you have some hypothesis that states that A  holds,

as well as another hypothesis A -> B , you can use apply  to transform the first hypothesis

into B . The syntax is apply <term> in <hypothesis>  or apply <term> in <hypothesis> as

<new-hypothesis> . See Example 2.

You can even apply previously proven theorems. See Example 3.

Example 1:

Theorem modus_ponens : forall (P Q : P

rop),

(P -> Q) -> P -> Q.

Proof.

  intros P Q P_implies_Q P_holds.

1 subgoal

P, Q : Prop

P_implies_Q : P -> Q

P_holds : P

-------------------(1/1)

Q

Since we know that P -> Q , proving that P  holds would also prove that Q  holds. Therefore,

we use apply  to transform our goal.
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Theorem modus_ponens : forall (P Q : P

rop),

(P -> Q) -> P -> Q.

Proof.

  intros P Q P_implies_Q P_holds.

  apply P_implies_Q.

1 subgoal

P, Q : Prop

P_implies_Q : P -> Q

P_holds : P

-------------------(1/1)

P

Example 2:

Alternatively, we notice that P  holds in our context, and because we know that P -> Q , we

can apply that implication to our hypothesis that P  holds to transform it.

Theorem modus_ponens : forall (P Q : P

rop),

(P -> Q) -> P -> Q.

Proof.

  intros P Q P_implies_Q P_holds.

  apply P_implies_Q in P_holds.

1 subgoal

P, Q : Prop

P_implies_Q : P -> Q

P_holds : Q

-------------------(1/1)

P

Note that this replaces our previous hypothesis (and now its name is no longer very

applicable)! To prevent this, we can give our new hypothesis its own name using the

apply..in..as..  syntax.

Theorem modus_ponens : forall (P Q : P

rop),

(P -> Q) -> P -> Q.

Proof.

  intros P Q P_implies_Q P_holds.

  apply P_implies_Q in P_holds as Q_ho

lds.

1 subgoal

P, Q : Prop

P_implies_Q : P -> Q

P_holds : P

Q_holds : Q

-------------------(1/1)

P

Example 3:
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Lemma modus_ponens'' : forall (P Q : P

rop),

  P -> (P -> Q) -> Q.

Proof.

auto.

Qed.

Theorem double_negation : forall (P :

Prop),

  P -> ~~P.

Proof.

  unfold not. intro P.

1 subgoal

P : Prop

-------------------(1/1)

P -> (P -> False) -> False

We notice that our goal is just an instance of P -> (P -> Q) -> Q , which we already proved is

true. Therefore, we can use apply  to apply our lemma, which finishes the proof.

Lemma modus_ponens'' : forall (P Q : P

rop),

  P -> (P -> Q) -> Q.

Proof.

auto.

Qed.

Theorem double_negation : forall (P :

Prop),

  P -> ~~P.

Proof.

  unfold not. intro P.

  apply modus_ponens''.

No more subgoals.

rewrite

Given some known equality a = b , the rewrite  tactic lets you replace a  with b  or vice

versa in a goal or hypothesis

The syntax is rewrite -> <equality>  to replace a  with b  in the goal or rewrite <-

<equality>  to replace b  with a . Note that rewrite <equality>  is identical to rewrite ->

<equality> .

You can also rewrite terms in hypotheses with the rewrite..in..  syntax.

Example:

3110 Coq Tactics Cheatsheet https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/...

12 of 25 10/4/23, 14:33



Theorem add_comm : forall (x y : nat),

  x + y = y + x.

Proof.

  intros. induction x.

- trivial.

- simpl. 

1 subgoal

x, y : nat

IHx : x + y = y + x

-------------------(1/1)

S (x + y) = y + S x

We can try using auto  to see if Coq can figure out the rest of the proof for us, but it can't

because it doesn't know that addition is commutative (that's what we're trying to prove!).

However, we can apply our inductive hypothesis x + y = y + x  by rewriting the x + y  in the

goal as y + x  using rewrite :

Theorem add_comm : forall (x y : nat),

  x + y = y + x.

Proof.

  intros. induction x.

- trivial.

- simpl. rewrite -> IHx.

1 subgoal

x, y : nat

IHx : x + y = y + x

-------------------(1/1)

S (y + x) = y + S x

Now you can finish the proof by simply using trivial  or auto .

inversion

Suppose you have a hypothesis S m = S n , where m  and n  are nats . The inversion  tactic

allows you to conclude that m = n . In general, if you have a hypothesis that states an equality

between two constructors and the constructors are the same, inversion  helps you figure out

that all the arguments to those constructors must be equal as well, and it tries to rewrite the

goal using that information.

Example:

Theorem succ_eq_implies_eq : forall (x 

y : nat),

  S x = S y -> x = y.

Proof.

  intros x y succ_eq.

1 subgoal

x, y : nat

succ_eq : S x = S y

-------------------(1/1)

x = y

Since S x = S y , we use inversion  to extract a new hypothesis that states x = y .

inversion  actually goes one step further and rewrites the goal using that equality.
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Theorem succ_eq_implies_eq : forall (x 

y : nat),

  S x = S y -> x = y.

Proof.

  intros x y succ_eq.

  inversion succ_eq.

1 subgoal

x, y : nat

succ_eq : S x = S y

H0 : x = y

-------------------(1/1)

y = y

left / right

If the goal is a disjunction A \/ B , the left  tactic replaces the goal with the left side of the

disjunction A , and the right  tactic replaces the goal with the right side B .

Example 1:

Theorem or_left : forall (P Q : Prop),

  P -> P \/ Q.

Proof.

  intros P Q P_holds.

1 subgoal

P, Q : Prop

P_holds : P

-------------------(1/1)

P \/ Q

Since we know that P  holds, it makes sense to change the goal to the left side of the

disjunction using left .

Theorem or_left : forall (P Q : Prop),

  P -> P \/ Q.

Proof.

  intros P Q P_holds.

  left.

1 subgoal

P, Q : Prop

P_holds : P

-------------------(1/1)

P

Example 2:

Theorem or_right : forall (P Q : Pro

p),

  Q -> P \/ Q.

Proof.

  intros P Q Q_holds.

1 subgoal

P, Q : Prop

Q_holds : Q

-------------------(1/1)

P \/ Q

This time, we know that Q  holds, so we replace the goal with its right side using right .
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Theorem or_right : forall (P Q : Pro

p),

  Q -> P \/ Q.

Proof.

  intros P Q Q_holds.

  right.

1 subgoal

P, Q : Prop

Q_holds : Q

-------------------(1/1)

Q

replace

The replace  tactic allows you to replace a term in the goal with another term and produces a

new subgoal that asks you to prove that those two terms are equal. The syntax is replace

<term> with <term> .

Example:

Theorem one_x_one : forall (x : nat),

1 + x + 1 = 2 + x.

Proof.

  intro. simpl.

1 subgoal

x : nat

-------------------(1/1)

S (x + 1) = S (S x)

We believe that x + 1  and S x  are equal, so we can use replace  to assert that this equality

is true and then prove it later.

Theorem one_x_one : forall (x : nat),

1 + x + 1 = 2 + x.

Proof.

  intro. simpl.

  replace (x + 1) with (S x).

2 subgoals

x : nat

-------------------(1/2)

S (S x) = S (S x)

-------------------(2/2)

S x = x + 1

Breaking apart goals and hypotheses

The following tactics break apart goals (or hypotheses) into several simpler subgoals (or

hypotheses).

split
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If the goal is a conjunction A /\ B , the split  tactic replaces the goal with two subgoals A

and B .

Example:

Theorem implies_and : forall (P Q R :

Prop),

  P -> (P -> Q) -> (P -> R) -> (Q /\ 

R).

Proof.

  intros P Q R P_holds.

  intros P_implies_Q P_implies_R.

1 subgoal

P, Q, R : Prop

P_holds : P

P_implies_Q : P -> Q

P_implies_R : P -> R

-------------------(1/1)

Q /\ R

In order to make progress in the proof, we use split  to break up Q /\ R  into two subgoals.

Theorem implies_and : forall (P Q R :

Prop),

  P -> (P -> Q) -> (P -> R) -> (Q /\ 

R).

Proof.

  intros P Q R P_holds.

  intros P_implies_Q P_implies_R.

  split.

2 subgoals

P, Q, R : Prop

P_holds : P

P_implies_Q : P -> Q

P_implies_R : P -> R

-------------------(1/2)

Q

-------------------(2/2)

R

destruct (and / or)

If there is a hypothesis containing a conjunction or a disjunction in the context, you can use the

destruct  tactic to break them apart.

A hypothesis A /\ B  means that both A  and B  hold, so it can be destructed into two new

hypotheses A  and B . You can also use the destruct..as [...]  syntax to give your own

name to these new hypotheses. See Example 1.

On the other hand, a hypothesis A \/ B  means that at least one of A  and B  holds, so in

order to make use of this hypothesis, you must prove that the goal holds when A  is true (and

B  may not be) and when B  is true (and A  may not be). You can also use the destruct..as

[... | ...]  syntax to provide your own names to the hypotheses that are generated (note the

presence of the the vertical bar). See Example 2.

Example 1:
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Theorem and_left : forall (P Q : Pro

p),

(P /\ Q) -> P.

Proof.

  intros P Q P_and_Q.

1 subgoal

P, Q : Prop

P_and_Q : P /\ Q

-------------------(1/1)

P

Since there's a conjunction P /\ Q  in our context, using destruct  on it will give us both P

and Q  as separate hypotheses.

Theorem and_left : forall (P Q : Pro

p),

(P /\ Q) -> P.

Proof.

  intros P Q P_and_Q.

  destruct P_and_Q.

1 subgoal

P, Q : Prop

H : P

H0 : Q

-------------------(1/1)

P

The names that Coq chose for the new hypotheses aren't very descriptive, so let's provide our

own.

Theorem and_left : forall (P Q : Pro

p),

(P /\ Q) -> P.

Proof.

  intros P Q P_and_Q.

  destruct P_and_Q as [P_holds Q_hold

s].

1 subgoal

P, Q : Prop

P_holds : P

Q_holds : Q

-------------------(1/1)

P

Example 2:

Theorem or_comm : forall (P Q : Prop),

  P \/ Q -> Q \/ P.

Proof.

  intros P Q P_or_Q.

1 subgoal

P, Q : Prop

P_or_Q : P \/ Q

-------------------(1/1)

Q \/ P

We can destruct  the hypothesis P \/ Q  to replace our current goal with two new subgoals

P \/ Q  with different contexts: one in which P  holds and one in which Q  holds.
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Theorem or_comm : forall (P Q : Prop),

  P \/ Q -> Q \/ P.

Proof.

  intros P Q P_or_Q.

  destruct P_or_Q as [P_holds | Q_hold

s].

2 subgoals

P, Q : Prop

P_holds : P

-------------------(1/2)

Q \/ P

-------------------(2/2)

Q \/ P

After we've proven the first subgoal, we observe that, in the context for the second subgoal, we

have the hypothesis that Q  holds instead.

Theorem or_comm : forall (P Q : Prop),

  P \/ Q -> Q \/ P.

Proof.

  intros P Q P_or_Q.

  destruct P_or_Q as [P_holds | Q_hold

s].

- right. assumption.

- 

1 subgoal

P, Q : Prop

Q_holds : Q

-------------------(1/1)

Q \/ P

destruct (case analysis)

The destruct  tactic can also be used for more general case analysis by destructing on a term

or variable whose type is an inductive type.

Example:
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Inductive element :=

| grass : element

| fire : element

| water : element.

Definition weakness (e : element) : el

ement :=

  match e with

| grass => fire

| fire => water

| water => grass

end.

Theorem never_weak_to_self : forall (e 

: element),

  weakness e <> e.

Proof.

1 subgoal

-------------------(1/1)

forall e : element, weakness e <> e

In order to proceed with this proof, we need to prove that it holds for each constructor of

element  case-by-case, so we use destruct .

Theorem never_weak_to_self : forall (e 

: element),

  weakness e <> e.

Proof.

  destruct e.

3 subgoals

-------------------(1/3)

weakness grass <> grass

-------------------(2/3)

weakness fire <> fire

-------------------(3/3)

weakness water <> water

induction

Using the induction  tactic is the same as using the destruct  tactic, except that it also

introduces induction hypotheses as appropriate.

Once again, you can use the induction..as [...]  syntax to give names to the terms and

hypotheses produced in the different cases.

See lecture, notes, and lab 22 for more on induction.

Example:
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Theorem n_plus_n : forall (n : nat),

  n + n = n * 2.

Proof.

  induction n as [| x IH].

2 subgoals

-------------------(1/2)

0 + 0 = 0 * 2

-------------------(2/2)

S x + S x = S x * 2

The base case 0  doesn't produce anything new, so we don't need to provide any names

there. The inductive case S x  produces a new term x  and a new hypothesis, so we give

those names. The vertical bar separates the two cases.

After proving the base case, we move on to the inductive case. Hey, Coq came up with the

correct induction hypothesis for us. Thanks, Coq!

Theorem n_plus_n : forall (n : nat),

  n + n = n * 2.

Proof.

  induction n as [| x IH].

- reflexivity.

- simpl.

1 subgoal

x : nat

IH : x + x = x * 2

-------------------(1/1)

S (x + S x) = S (S (x * 2))

From here, we can make use of the induction hypothesis with rewrite  and then apply auto

to knock out the rest of the proof.

Theorem n_plus_n : forall (n : nat),

  n + n = n * 2.

Proof.

  induction n as [| x IH].

- reflexivity.

- simpl. rewrite <- IH. auto.

No more subgoals.

Solving specific types of goals

The tactics in this section are automated tactics that are specialized for solving certain types of

goals.

ring

The ring  tactic can solve any goal that contains only addition and multiplication operations.

You must first use the command Require Import Arith.  in order to use ring .
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Example:

Require Import Arith.

Theorem foil : forall a b c d,

(a + b) * (c + d) = a*c + b*c + a*d 

+ b*d.

Proof.

  intros. ring.

No more subgoals.

It would be pretty painful to prove this using simpler tactics, but fortunately ring  is here to

save the day.

tauto

The tauto  tactic can solve any goal that's a tautology (in constructive logic). A tautology is a

logical formula that's always true, regardless of the values of the variables in it.

Example:

Theorem demorgan : forall (P Q : Pro

p),

~(P \/ Q) -> ~P /\ ~Q.

Proof.

  tauto.

No more subgoals.

DeMorgan's law is a tautology, so it can be proven by applying tauto .

field

The field  tactic can solve any goal that contains addition, subtraction (the additive inverse),

multiplication, and division (the multiplicative inverse).

Note that field  cannot be used on the natural numbers or integers, because integer division

is not the inverse of multiplication (e.g. (1 / 2) * 2  does not equal 1).

You must first use the command Require Import Field.  in order to use field .

See lecture notes 22 (http://www.cs.cornell.edu/courses/cs3110/2017fa/l/22-coq-induction

/notes.v) for more information on field .
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Tacticals

The following tacticals are "higher-order tactics" that operate on tactics.

; (semicolon)

The ;  tactical applies the tactic on the right side of the semicolon to all the subgoals produced

by tactic on the left side.

Example:

Theorem and_comm : forall (P Q : Pro

p),

  P /\ Q -> Q /\ P.

Proof.

  intros P Q P_and_Q.

  destruct P_and_Q. 

  split.

- assumption.

- assumption.

Qed.

The two subgoals generated by split  were solved using the same tactic. We can use ;  to

make the code more concise.

Theorem and_comm : forall (P Q : Pro

p),

  P /\ Q -> Q /\ P.

Proof.

  intros P Q P_and_Q.

  destruct P_and_Q. 

  split; assumption.

Qed.

try

Many tactics will fail if they are not applicable. The try  tactical lets you attempt to use a tactic

and allows the tactic to go through even if it fails. This can be particularly useful when chaining
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tactics together using ; .

Example:

Inductive element :=

| grass : element

| fire : element

| water : element.

Definition weakness (e : element) : el

ement :=

  match e with

| grass => fire

| fire => water

| water => grass

end.

Theorem fire_weak_implies_grass : 

  forall (e : element),

    weakness e = fire -> e = grass.

Proof.

  destruct e.

3 subgoals

-------------------(1/3)

weakness grass = fire -> grass = gras

s

-------------------(2/3)

weakness fire = fire -> fire = grass

-------------------(3/3)

weakness water = fire -> water = gras

s

We'd like to use discriminate  to take care of the second and third subgoals, but we can't

simply write destruct e; discriminate.  because discriminate  will fail when Coq tries to

apply it to the first subgoal. This is where the try  tactic comes in handy.

Theorem fire_weak_implies_grass :

  forall (e : element),

    weakness e = fire -> e = grass.

Proof.

  destruct e; try discriminate.

1 subgoal

-------------------(1/1)

weakness grass = fire -> grass = gras

s

|| (or)

The ||  tactical first tries the tactic on the left side; if it fails, then it applies the tactic on the

right side.

Example:
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Theorem fire_weak_implies_grass : 

  forall (e : element),

    weakness e = fire -> e = grass.

Proof.

  destruct e; try discriminate.

1 subgoal

-------------------(1/1)

weakness grass = fire -> grass = gras

s

Let's use this theorem from the last section again. discriminate  took care of the other two

subgoals, and we know that trivial  can solve this one. In other words, we apply either

discriminate  or trivial  to the subgoals generated by destruct e , so we can use ||  to

shorten the proof.

Theorem fire_weak_implies_grass : 

  forall (e : element),

    weakness e = fire -> e = grass.

Proof.

  destruct e; discriminate || trivial.

No more subgoals.

all:

The all:  tactical applies a tactic to all the remaining subgoals in the proof.

Example:

Theorem fire_weak_implies_grass : 

  forall (e : element),

    weakness e = fire -> e = grass.

Proof.

  destruct e.

  all: discriminate || trivial.

1 subgoal

-------------------(1/1)

weakness grass = fire -> grass = gras

s

An alternative proof for the previous theorem using all: .

repeat

The repeat  tactical repeatedly applies a tactic until it fails.

Note that repeat  will never fail, even if it applies the given tactic zero times.
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Example:

Require Import Arith.

Theorem add_assoc_4 : forall (a b c d 

: nat),

(a + b + c) + d = a + (b + c + d).

Proof.

  intros.

1 subgoal

a, b, c, d : nat

-------------------(1/1)

a + b + c + d = a + (b + c + d)

Coq provides a theorem Nat.add_assoc : forall n m p : nat, n + (m + p) = n + m + p  in

the Arith  library that we can make use of two times for this proof.

Require Import Arith.

Theorem add_assoc_4 : forall (a b c d 

: nat),

(a + b + c) + d = a + (b + c + d).

Proof.

  intros.

  repeat rewrite -> Nat.add_assoc.

1 subgoal

a, b, c, d : nat

-------------------(1/1)

a + b + c + d = a + b + c + d

Acknowledgement: Inspired by the Coq Tactic Index (https://pjreddie.com/coq-tactics/) by

Joseph Redmon.
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