
Machine Language Specification


Overview 

The computer we are designing is a von Neumann platform. It is a 16-bit machine, 
consisting of a CPU, two separate memory modules serving as instruction memory and 
data memory, and two memory-mapped I/O devices: a screen and a keyboard. 

Memory Address Spaces 


The Hack programmer is aware of two distinct address spaces: an instruction memory and 
a data memory. Both memories are 16-bit wide and have a 15-bit address space, meaning 
that the maximum addressable size of each memory is 32K 16-bit words. 

The CPU can only execute programs that reside in the instruction memory. The 
instruction memory is a read-only device, and programs are loaded into it using some 
exogenous means. For example, the instruction memory can be implemented in a ROM 
chip that is pre-burned with the required program. Loading a new program is done by 
replacing the entire ROM chip, similar to replacing a cartridge in a game console. In order 
to simulate this operation, hardware simulators of the Hack plat- form must provide a 
means to load the instruction memory from a text file contain- ing a machine language 
program. 

Registers 


The Hack programmer is aware of two 16-bit registers called D and A. These registers can 
be manipulated explicitly by arithmetic and logical instructions like A=D-1 or D=!A 
(where ‘‘!’’ means a 16-bit Not operation). While D is used solely to store data values, A 
doubles as both a data register and an address register. That is to say, depending on the 
instruction context, the contents of A can be interpreted either as a data value, or as an 
address in the data memory, or as an address in the instruction memory, as we now 
explain. 

First, the A register can be used to facilitate direct access to the data memory (which, 
from now on, will be often referred to as ‘‘memory’’). Since our instructions are 16-bit 
wide, and since addresses are specified using 15 bits, it is impossible to pack both an 
operation code and an address in one instruction. Thus, the syntax of the language 
mandates that memory access instructions operate on an implicit memory location labeled 
‘‘M’’, for example, D=M+1. In order to resolve this address, the convention is that M 
always refers to the memory word whose address is the current value of the A register. For 
example, if we want to effect the operation D = Memory[516] - 1, we have to use one 
instruction to set the A register to 516, and a subsequent instruction to specify D=M-1. 

In addition, the A register is also used to facilitate direct access to the instruction memory. 
Similar to the memory access convention, jump instructions do not specify a particular 
address. Instead, the convention is that any jump operation always effects a jump to the 
instruction located in the memory word addressed by A. Thus, if we want to effect the 



operation goto 35, we use one instruction to set A to 35, and a second instruction to code a 
goto command, without specifying an address. This sequence causes the computer to 
fetch the instruction located in InstructionMemory[35] in the next clock cycle. 


Example 


Since the language is self-explanatory, we start with an example. The only non-obvious 
command in the language is @value, where value is either a number or a symbol 
representing a number. This command simply stores the specified value in the A register. 
For example, if sum refers to memory location 17, then both @17 and @sum will have the 
same effect: A <——17. 

And now to the example: Suppose we want to add the integers 1 to 100, using repetitive 
addition. Figure 1 gives a C language solution and a possible compilation into the 
machine language. 


Figure 1 : C and Assembly versions of the same program. The infinite loop at the program’s end 
is the standard way to terminate the execution of these programs.



Although the syntax is more accessible than that of most machine languages, it may still 
look obscure to readers who are not familiar with low-level programming. In particular, 
note that every operation involving a memory location requires two commands: One for 
selecting the address on which we want to operate, and one for specifying the desired 
operation. Indeed, this language consists of two generic instructions: an address 
instruction, also called A-instruction, and a compute instruction, also called C-instruction. 
Each instruction has a binary representation, a symbolic representation, and an effect on 
the computer, as we now specify. 

The A-Instruction


The A-instruction is used to set the A register to a 15-bit value: 

A-instruction: @value 	 // Where value is either a non-negative decimal number 


// or a symbol referring to such number. 

This instruction causes the computer to store the specified value in the A register. For 
example, the instruction @5, which is equivalent to 0000000000000101, causes the 
computer to store the binary representation of 5 in the A register. 

The A-instruction is used for three different purposes. First, it provides the only way to 
enter a constant into the computer under program control. Second, it sets the stage for a 
subsequent C-instruction designed to manipulate a certain data memory location, by first 
setting A to the address of that location. Third, it sets the stage for a subsequent C-
instruction that specifies a jump, by first loading the address of the jump destination to the 
A register. These uses are demonstrated in Figure 1.


The C-Instruction 

The C-instruction is the programming workhorse of our platform—the instruction that 
gets almost everything done. The instruction code is a specification that answers three 
questions: (a) what to compute, (b) where to store the computed value, and (c) what to do 
next? Along with the A-instruction, these specifications determine all the possible 
operations of the computer. 



The leftmost bit is the C-instruction code, which is 1. The next two bits are not used. The 
remaining bits form three fields that correspond to the three parts of the instruction’s 
symbolic representation. The overall semantics of the symbolic instruction dest = 
comp;jump is as follows. The comp field instructs the ALU what to compute. The dest 
field instructs where to store the computed value (ALU output). The jump field specifies a 
jump condition, namely, which command to fetch and execute next. We now describe the 
format and semantics of each of the three fields. 

The Computation Specification


 The ALU is designed to compute a fixed set of functions on the D, A, and M registers 
(where M stands for Memory[A]). The computed function is specified by the a-bit and the 
six c-bits comprising the instruction’s comp field. This 7-bit pattern can potentially code 
128 different functions, of which only the 28 listed below are documented in the language 
specification.

Figure 2 : The compute-field of the C instruction. D and A are names of registers. M refers to the 
memory location addressed by A, namely, to Memory[A]. The symbols + and - denote 16-bit 2’s 
complement addition and subtraction, while !, |, and & denote the 16-bit bit-wise Boolean 
operators Not, Or, and And, respectively. Note the similarity between this instruction set and the 
ALU specification we designed.




Recall that the format of the C-instruction is 111a cccc ccdd djjj. Suppose we want to 
have the ALU compute D-1, the current value of the D register minus 1. According to 
figure 2, this can be done by issuing the instruction 1110 0011 1000 0000 (the 7-bit 
operation code is in bold). To compute the value of D|M, we issue the instruction 1111 
0101 0100 0000. To compute the constant -1, we issue the instruction 1110 1110 1000 
0000, and so on. 

The Destination Specification


The value computed by the comp part of the C- instruction can be stored in several 
destinations, as specified by the instruction’s 3-bit dest part (see figure 3). The first and 
second d-bits code whether to store the computed value in the A register and in the D 
register, respectively. The third d-bit codes whether to store the computed value in M (i.e., 
in Memory[A]). One, more than one, or none of these bits may be asserted. 


Figure 3 : The dest field of the C-instruction

Recall that the format of the C-instruction is 111a cccc ccdd djjj. Suppose we want the 
computer to increment the value of Memory[7] by 1 and to also store the result in the D 
register. According to figures 4.3 and 4.4, this can be accomplished by the following 
instructions: 


The first instruction causes the computer to select the memory register whose address is 7 
(the so-called M register). The second instruction computes the value of M + 1 and stores 
the result in both M and D. 


The Jump Specification


The jump field of the C-instruction tells the computer what to do next. There are two 
possibilities: The computer should either fetch and execute the next instruction in the 



program, which is the default, or it should fetch and execute an instruction located 
elsewhere in the program. In the latter case, we assume that the A register has been 
previously set to the address to which we have to jump. 

Whether or not a jump should actually materialize depends on the three j-bits of the jump 
field and on the ALU output value (computed according to the comp field). The first j-bit 
specifies whether to jump in case this value is negative, the second j-bit in case the value 
is zero, and the third j-bit in case it is positive. This gives eight possible jump conditions, 
shown in figure 4.

Figure 4 : The jump field of the C-instruction. Out refers to the ALU output and jump implies |
continue execution with the instruction addressed by the A register”.

The following example illustrates the jump commands in action: 


The last instruction (0;JMP) effects an unconditional jump. Since the C-instruction 
syntax requires that we always effect some computation, we instruct the ALU to compute 
0 (an arbitrary choice), which is ignored. 



Conflicting Uses of the A Register 


As was just illustrated, the programmer can use the A register to select either a data 
memory location for a subsequent C-instruction involving M, or an instruction memory 
location for a subsequent C-instruction involving a jump. Thus, to prevent conflicting use 
of the A register, in well-written programs a C-instruction that may cause a jump (i.e., 
with some non-zero j bits) should not contain a reference to M, and vice versa. 

Symbols 

- Virtual registers: To simplify assembly programming, the symbols R0 to R15 are pre-
defined to refer to RAM addresses 0 to 15 respectively.


Syntax:


Assembly Language Files 


By convention, assembly language programs are stored in text files with an .asm 
extension, for example, Prog.asm. An assembly language file is composed of text lines, 
each representing either an instruction or a symbol declaration:

- Instruction: an A-instruction or a C-instruction. 

- (Symbol): This pseudo-command causes the assembler to assign the label Symbol to the 
memory location in which the next command of the program will be stored. It is called 
‘‘pseudo-command’’ since it generates no machine code. 

Constants and Symbols 


Constants must be non-negative and are always written in decimal notation. A user-
defined symbol can be any sequence of letters, digits, un- derscore (_), dot (.), dollar sign 
($), and colon (:) that does not begin with a digit. 

Comments 


Text beginning with two slashes (//) and ending at the end of the line is considered a 
comment and is ignored. 

White Space 


Space characters are ignored. Empty lines are ignored. 

Case Conventions 


All the assembly mnemonics must be written in uppercase. The rest (user-defined labels 
and variable names) is case sensitive. The convention is to use uppercase for labels and 
lowercase for variable names. 


