
Architecture et Système Project 2022-2023
Département Informatique, ENS Paris Saclay

Project I: Computer Architecture

1 Project Guidelines

For the project, you need to complete the files in the zipped folder available at https://lmf.cnrs.fr/
downloads/IsaVialard/comparch.zip. The assignments for Sections 2 and 4 require the .hdl files to be
sent, along with the .asm file for Section 3. The deadline for the submission is 18th November 2022.
Each question is marked with points. Don’t worry about them too much, it is more a guideline for the effort
required per question, as opposed to the grade.

To launch the Hardware Simulator, use the command line ./tools/HardwareSimulator.sh inside the com-
parch folder. The folder with the files you need to complete is assignment/project. The other folders in
assignment are a correction of the chips of TP 2 and 3.

2 Recap: Introduction to Logic Gates

2.1 Introduction

Using the chips from the TPs 2 and 3, we will now build some other components in a similar fashion.
The .hdl along with the test cases are available in the Project Logic Gates folder of the zipped file. For
highest points, try to implement the chips using the number of instructions specified. If you cannot find the
optimal implementation, you will still be awarded partial points for a correct implementation. Note: All files
related to this exercise are available on comparch/assignment/project/logicgates.

2.2 Task

For this section, program the chips in the following order (assuming you have the chips from the TPs).

1. Or16Way (3 instructions) 1 point

2. CarryLookahead4 4 points

This is a 4-bit adder with the lookahead logic that you have seen in class. To learn more, refer to the
circuit description available in the folder logicgates. Note: Any implementation will be awarded full
points. Feel free to add other chips if it simplifies things for you.

3. UnaryALU (4 instructions) 2 points

4. ALU (9 instructions) 4 points

With some chips constructed earlier in this task, we can build a more compact ALU.

5. Subtract16 (1 instruction) 1 points

1

https://lmf.cnrs.fr/downloads/IsaVialard/comparch.zip
https://lmf.cnrs.fr/downloads/IsaVialard/comparch.zip


3 Machine Language Programming

3.1 Overview

In computer programming, machine code is any low-level programming language, consisting of machine
language instructions, which is used to control a computer’s central processing unit (CPU). Each instruction
causes the CPU to perform a very specific task, such as a load, a store, a jump, or an arithmetic logic unit
(ALU) operation on one or more units of data in the CPU’s registers or memory. Each hardware platform
is designed to execute a certain machine language, expressed using agreed upon binary codes. Writing
programs directly in binary code is a possible, but it is extremely tedious. Instead, we can write such
programs in a low-level symbolic language, called assembly, and have them translated into binary code
by a program called an assembler. In this project, you will write some low-level assembly programs, and
will be forever thankful for high-level languages like C and Python. (Actually, assembly programming can
be a lot of fun, if you are in the right mood; it’s an excellent brain teaser, and it allows you to control the
underlying machine directly and completely.)

3.2 Introduction

To get a taste of low-level programming in machine language, and to get acquainted with the computer
platform which we have been constructing for the past two TPs. In the process of working on this project,
you will become familiar with the assembly process — translating from symbolic language to machine-
language — and you will appreciate visually how native binary code executes on the target hardware
platform. Moreover, you will get acquainted with how the instructions are written and interpreted by the
machine. These lessons will be learned in the context of writing and analyzing the low-level programs
described below.

3.3 Resources

Note: All files related to this exercise are available on comparch/assignment/project/machinelanguage.
The assembly language is described in detail in the instruction manual in the Machine Language folder of
the Project. I suggest taking a look at this tutorial before you start this section of the project.

To run your program, you will need two tools: the supplied Assembler — a program that translates
programs written in the assembly language into binary code, and the supplied CPU Emulator — a program
that runs binary code on a simulated platform. These are included in the zipped file. To use the GUI of the
CPU Emulator, run tools/CPUEmulator.sh. You can have a look at the CPU Emulator Tutorial in case you
want to get an idea of how it works. If not, you can just learn by running the tool and experimenting.

3.4 Task

3.4.1 Warmup

We now move to the Machine Language folder of our Project. To first get a little acquainted with the machine
language, let us look at some more examples. What do the following programs in machine language
compute?

1. @2

D=A

@3

D=D+A

@0

M=D

2 points

2



2. @R0

D=M // D = first number

@R1

D=D-M // D = first number - second number

@OUTPUT_FIRST

D;JGT // if D>0 goto output_first

@R1

D=M // D = second number

@OUTPUT_D

0;JMP // goto output_d

(OUTPUT_FIRST)

@R0

D=M // D = first number

(OUTPUT_D)

@R2

M=D // M[2] = D

(INFINITE_LOOP)

@INFINITE_LOOP

0;JMP // infinite loop

3 points

3.4.2 Multiplying 2 Numbers

Write and test the following program described below. When executed on the CPU Emulator, your program
should generate the results mandated by the specified tests. 5 points

Description:

mult.asm : In the computer that we build, the top 16 RAM words (RAM[0]...RAM[15]) are also referred to
as R0...R15.

With this terminology in mind, this program computes the value R0*R1 and stores the result in R2.
The program assumes that R0>= 0, R1>= 0, and R0*R1< 32768. Your program need not test these

conditions, but rather assume that they hold.

Guidelines

• Use a plain text editor to write your mult.asm program using the assembly language specified in
Appendix A.

• Use the supplied Assembler to translate your mult.asm program, producing a file containing binary
instructions.

• Next, load the supplied mult.tst script into the CPU Emulator. This script loads the Mult program,
and executes it.

• Run the script. If you get any errors, debug and edit your mult.asm program. Then assemble the
program, re-run the mult.tst script, etc.

3



Chip Name:

Screen // Memory map of the physical screen

Inputs:

in[16], // What to write

load, // Write-enable bit

address[13] // Where to write

Output:

out[16] // Screen value at the given address

Function:

Functions exactly like a 16-bit 8K RAM:

1. out(t)=Screen[address(t)](t)

2. If load(t-1) then Screen[address(t-1)](t)=in(t-1)

(t is the current time unit, or cycle)

Comment:

Has the side effect of continuously refreshing a 256

by 512 black-and-white screen (simulators must

simulate this device). Each row in the physical

screen is represented by 32 consecutive 16-bit words,

starting at the top left corner of the screen. Thus

the pixel at row r from the top and column c from the

left (0<=r<=255, 0<=c<=511) reflects the c%16 bit

(counting from LSB to MSB) of the word found at

Screen[r*32+c/16].

Figure 1: Screen

4 Computer

4.1 Introduction

In previous projects we’ve built the computer’s basic processing and storage devices (ALU and RAM,
respectively). In this project we will put everything together, yielding the complete Hardware Platform. The
result will be a general-purpose computer that can run any program that you fancy.

4.2 Task

Note: All files related to this exercise are available on comparch/assignment/project/computer.
Implement the chips in the following order:

1. Memory (6 instructions) 5 points

We will reuse the RAM built in the previous TP as well as our ALU to build a real computer. Our
computer will use two external peripherals: a keyboard and a screen (which are built-in), and whose spec-
ification is given to you respectively in Fig. 1 and Fig. 2. Note that the Hardware Simulator manages the
inputs /outputs for you. In our case, we will not take care of the entries. In the Hardware Simulator, under
the option View you can select Screen to see what some tests produce (like ComputerRect-external.tst).

4



Chip Name:

Keyboard // Memory map of the physical keyboard.

// Outputs the code of the currently

// pressed key.

Output:

out[16] // The ASCII code of the pressed key, or

// one of the special codes

Function:

Outputs the code of the key presently pressed on the

physical keyboard.

Comment:

This chip is continuously being refreshed from a

physical keyboard unit (simulators must simulate this

service).

Figure 2: Keyboard

2. CPU (19 instructions) 10 points

Our objective is to come up with a logic gate architecture capable of (i) decoding an instruction (ii) exe-
cuting this instruction, and (iii) determining which instruction should be fetched and executed next. In order
to do so, the proposed CPU implementation includes an ALU chip capable of computing arithmetic/logical
functions, a set of registers and a program counter (represented by the built-in chips ARegister, DRegister
and PC (see Fig. 4)), and some additional gates designed to help decode, execute, and fetch instructions.
Since all these building blocks were already built in previous chapters, the key question that we face now
is how to arrange and connect them in a way that effects the desired CPU operation. In order to help you,
you will find in Fig. 3, a diagram which summarizes the internal behavior of the CPU.

Figure 3: CPU

[Instruction decoding]
The 16-bit value of the CPU’s instruction input represents either an A-instruction or a C-instruction.

In order to figure out the semantics of this instruction, we can parse, or unpack it, into the following fields:

ixxac1c2c3c4c5c6d1d2d3j1j2j3 .

5



Chip Name:

PC // 16-bit counter with load and reset controls.

Input:

in[16], load, inc, reset

Output:

out[16]

Function:

If reset(t-1) then out(t) = 0

else if load(t-1) then out(t) = in(t-1)

else if inc(t-1) then out(t) = out(t-1) + 1 (integer addition)

else out(t) = out(t-1)

Figure 4: PC

The i-bit (also known as opcode) codes the instruction type, which is either 0 for an A-instruction or
1 for a C-instruction. In case of an A-instruction, the entire instruction represent the 16-bit value of
the constant that should be loaded into the A register. In case of a C-instruction, the a- and c-bits code
the comp part of the instruction, while the d- and j-bits code the dest and jump parts of the instruction,
respectively (the x-bits are not used, and can be ignored). See the instruction manual in the Machine

Language folder to see how to decode the comp, dest and jump parts.

Now you are finally ready to put everything together ! The computer chip is straightforward, just follow
the diagram in Fig. 5.

3. Computer (3 instructions) 3 points

Figure 5: Computer

In our architecture, we must load our program in memory which will be different from the RAM. Here it
will be the ROM. For that, we will also use a built-in chip which will simulate this component, see Fig. 6.

6



Chip Name:

ROM32K // 16-bit read-only 32K memory

Input:

address[15] // Address in the ROM

Output:

out[16] // Value of ROM[address]

Function:

out=ROM[address] // 16-bit assignment

Comment:

The ROM is preloaded with a machine language program.

Hardware implementations can treat the ROM as a

built-in chip. Software simulators must supply a

mechanism for loading a program into the ROM.

Figure 6: ROM

7


	Project Guidelines
	Recap: Introduction to Logic Gates
	Introduction
	Task

	Machine Language Programming
	Overview
	Introduction
	Resources
	Task
	Warmup
	Multiplying 2 Numbers


	Computer
	Introduction
	Task


