Architecture et Systeme 2023-2024
Département Informatique, ENS Paris Saclay

TP 12 : Threads and semaphores : Second Episode

1 Basics

How to compile :
gcc -pthread program.c -o program
How to declare, create and join threads :
pthread_t ti;
pthread_create takes as arguments a pointer to the thread ID, attributes to set the properties of thread,

a function pointer to the function that thread will run in parallel on start (this function should accept a void *
and return void * too) and arguments to be passed to the function. For instance :

pthread_create(&tl, NULL, &function, NULL);
Don’t forget to join the thread afterward :
pthread_join(tl, NULL);

The second argument is a pointer to store the return value from the thread. pthread_create and pthread_join
both return 0 if the thread has been created/joined successfully.

How to declare, initialize, destroy and use semaphores :

sem_t si;
sem_init(&s1, 0, n);
sem_destroy (&s1);

sem_open takes as second argument 0 because the semaphore is shared between threads and not
processes. The argument n means that sem_wait can be called n times until the semaphore is locked. For
intance if n = 0 it means a sem_post must be used first. sem_open and sem_destroy both return 0 if the
semaphore has been opened/destroyed successfully.

sem_wait (&s1);
\\ critical code section
sem_post (&s1);;

sem_post frees the semaphore (i.e., increases n), sem_wait waits for the semaphore to be free (n > 0) and
decreases n.
See sem.c as an example.

How to declare, initialize, destroy and use mutexes :

pthread_mutex_t mil;
pthread_mutex_init(&ml1, NULL);
pthread_mutex_destroy (&ml) ;
pthread_mutex_lock(&ml) ;
pthread_mutex_unlock(&ml) ;



2 Julia set by inverse iteration

We can approximate the Julia set of a complex function by interating its inverse. As an example, we can

study the function :
C —=C
Qc = { 2
zZ =zt +c

With ¢ € C.
We define the reverse orbit as { /- "(20); n € N}. To compute it we can se that if 22+c = w, then z = pexp(if)
with p = \/|w — c[, and 0 = ¥ + o7 with § € {0, 1}, where

B o 0 siR(w—c)>0
¥ = arctan(S(w — ¢)/R(w —¢)) + {F sinon
The initial point wy does not matter. We want to create several threads computing orbits, each orbit having
a different starting point.
We will write the points either on the standard output or in a file, with each line being of the form x y.
If the point are in a file denoted julia.dat, we can output the graph with the command gnuplot julia.p
assuming that julia.p is the following script :

set terminal png size 500,500
set output ’julia.png’

set title ’Julia set’

plot ’julia.dat’

Don’t forget to include math.h and complex.h and to compile with -1m at the end of the command line.
the following command should work gcc julia.c -lpthread -1m.

Try to draw the Julia set for the following values of ¢: c € {—1,—-0.4—0.6¢,—1.5, —i,—0.84+0.44,0.5,3, 1+
i,2}

3 Datetime Server : Simple mutual exclusion

We want to set-up a client-server architecture (We won’t use th socket API, we will just do a thread for
the server and some threads for the clients) in which the server is tasked to give the date each time a client
requests it.

Therefore, the server runs continuously waiting for a request from the clients. Once it receives a re-
squest, it sends back a the current time and the date as a string to the client. After this, the server is ready
to answer another request.

The client thread will run 50 times a function that :

— sends a request to the server

— recieves the date sent back by the server,

— displays it along with the request number (these should stay ordered).

a) Which information is shared between the threads ? Which means of communication will they use to

transmit data ?

b) How to synchronize the various threads ?

c) Implement the solution with more than one client.

4 Peterson’s algorithm

We will try to implement the Peterson’s algoritm for mutual exclusion (You can find useful details on
Wikipedia). The gobal idea is to use 3 variables £f0, f1 et turn to deal with the entrance of the « critical



section ». The « critical section »being the section that contains the code where we want to avoid concurents
access. Show that this algorithm ensures mutual exclusion.

a) By looking into the Wikipedia page : write a process0 and process1 function which do similar things,
but use Peterson’s algorithm to avoid concurrent execution of a certain part of their code.

b) Adapt the code of process0 and process1 to write a function process which allows the generic
invocation of a thread (meaning when creating two different threads with it, they will enforce mutual
axclusion).

¢) Change your code to accomodate for 4 simultaneous processes.

d) Same questions for Dekker’s algorithm.

5 Binary and Semaphores (Bonus)

We want to have n threads that each display the corresponding number from 0 to n — 1. Howerever, they
should synchronize to get them in order. In order to do this, they should use semaphores. During class, you
saw a method which uses n — 1 semaphores but we can do it in log,(n) semaphores.

Hint : The semaphores should represent the binary digits of the thread whose turn it is
Hint 2 : Handle endianess with care



	Basics
	Julia set by inverse iteration
	Datetime Server : Simple mutual exclusion
	Peterson's algorithm
	Binary and Semaphores (Bonus)

