
Architecture et Système 2023-2024
Département Informatique, ENS Paris Saclay

TP 12 : Threads and semaphores : Second Episode

1 Basics

How to compile :
gcc -pthread program.c -o program

How to declare, create and join threads :
pthread_t t1;

pthread_create takes as arguments a pointer to the thread ID, attributes to set the properties of thread,
a function pointer to the function that thread will run in parallel on start (this function should accept a void *
and return void * too) and arguments to be passed to the function. For instance :

pthread_create(&t1, NULL, &function, NULL);

Don’t forget to join the thread afterward :
pthread_join(t1, NULL);

The second argument is a pointer to store the return value from the thread. pthread_create and pthread_join
both return 0 if the thread has been created/joined successfully.

How to declare, initialize, destroy and use semaphores :
sem_t s1;
sem_init(&s1, 0, n);
sem_destroy(&s1);

sem_open takes as second argument 0 because the semaphore is shared between threads and not
processes. The argument n means that sem_wait can be called n times until the semaphore is locked. For
intance if n = 0 it means a sem_post must be used first. sem_open and sem_destroy both return 0 if the
semaphore has been opened/destroyed successfully.

sem_wait(&s1);
\\ critical code section
sem_post(&s1);;

sem_post frees the semaphore (i.e., increases n), sem_wait waits for the semaphore to be free (n > 0) and
decreases n.

See sem.c as an example.

How to declare, initialize, destroy and use mutexes :

pthread_mutex_t m1;
pthread_mutex_init(&m1, NULL);
pthread_mutex_destroy(&m1);
pthread_mutex_lock(&m1);
pthread_mutex_unlock(&m1);

1

2 Julia set by inverse iteration

We can approximate the Julia set of a complex function by interating its inverse. As an example, we can
study the function :

Qc =

{
C → C
z 7→ z2 + c

With c ∈ C.
We define the reverse orbit as {f−n

c (z0);n ∈ N}. To compute it we can se that if z2+c = w, then z = ρ exp(iθ)
with ρ =

√
|w − c|, and θ = ϑ

2 + δπ with δ ∈ {0, 1}, where

ϑ = arctan(ℑ(w − c)/ℜ(w − c)) +

{
0 si ℜ(w − c) > 0

π sinon

The initial point w0 does not matter. We want to create several threads computing orbits, each orbit having
a different starting point.

We will write the points either on the standard output or in a file, with each line being of the form x y.
If the point are in a file denoted julia.dat, we can output the graph with the command gnuplot julia.p
assuming that julia.p is the following script :

set terminal png size 500,500
set output ’julia.png’
set title ’Julia set’
plot ’julia.dat’

Don’t forget to include math.h and complex.h and to compile with -lm at the end of the command line.
the following command should work gcc julia.c -lpthread -lm.

Try to draw the Julia set for the following values of c : c ∈ {−1,−0.4−0.6i,−1.5,−i,−0.8+0.4i, 0.5, 3, 1+
i, 2}

3 Datetime Server : Simple mutual exclusion

We want to set-up a client-server architecture (We won’t use th socket API, we will just do a thread for
the server and some threads for the clients) in which the server is tasked to give the date each time a client
requests it.

Therefore, the server runs continuously waiting for a request from the clients. Once it receives a re-
squest, it sends back a the current time and the date as a string to the client. After this, the server is ready
to answer another request.

The client thread will run 50 times a function that :
— sends a request to the server
— recieves the date sent back by the server,
— displays it along with the request number (these should stay ordered).
a) Which information is shared between the threads? Which means of communication will they use to

transmit data?
b) How to synchronize the various threads?
c) Implement the solution with more than one client.

4 Peterson’s algorithm

We will try to implement the Peterson’s algoritm for mutual exclusion (You can find useful details on
Wikipedia). The gobal idea is to use 3 variables f0, f1 et turn to deal with the entrance of the « critical

2

section ». The « critical section »being the section that contains the code where we want to avoid concurents
access. Show that this algorithm ensures mutual exclusion.

a) By looking into the Wikipedia page : write a process0 and process1 function which do similar things,
but use Peterson’s algorithm to avoid concurrent execution of a certain part of their code.

b) Adapt the code of process0 and process1 to write a function process which allows the generic
invocation of a thread (meaning when creating two different threads with it, they will enforce mutual
axclusion).

c) Change your code to accomodate for 4 simultaneous processes.
d) Same questions for Dekker’s algorithm.

5 Binary and Semaphores (Bonus)

We want to have n threads that each display the corresponding number from 0 to n−1. Howerever, they
should synchronize to get them in order. In order to do this, they should use semaphores. During class, you
saw a method which uses n− 1 semaphores but we can do it in log2(n) semaphores.
Hint : The semaphores should represent the binary digits of the thread whose turn it is
Hint 2 : Handle endianess with care

3

	Basics
	Julia set by inverse iteration
	Datetime Server : Simple mutual exclusion
	Peterson's algorithm
	Binary and Semaphores (Bonus)

