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Markov chains, with guarantees

Our contributions

Review two existing approaches (approximation algorithm and estimation
algorithm) and specity the required hypothesis for correctness

Propose an approach based on importance sampling and abstraction to
partly relax the hypothesis

Analyze empirically the approaches
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Discrete-time Markov chains

Discrete-time Markov chain (DTMC)

C = (3, sy, 0) with S at most denumerable, s, € Sand o : § — Dist(S)

+ effectivity conditions...
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Quantitative analysis of
Markov chains

Closed-form solution

> Random walk of parameter p > 1/2: if s = ©
I - .
PS (F@) =Kn’\/\/here]<=—p if s #HF@
' p ZIP(S — ) - X, otherwise

»  Does not always exist

P, (F©)=1/19

System must be finite

Prone to numerical error

» NoO general method exists for infinite Markov chains
» Ad-hoc methods in specific classes
» Specific approaches for decisive Markov chains
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Decisiveness

B =(seS|s FIFO)

Decisiveness

ADTMC € is decisive fromswrt. @ if P(FO) VF @) = 1

» Examples of decisive Markov chains: finite Markov chains, probabilistic lossy
channel systems, probabilistic VASS, noisy Turing machines, ...

» Example/counterexample:

« Recurrent random walk (p < 1/2): decisive

L=p L-p - Transient random walk (p > 1/2): not decisive



Deciding decisiveness?

Classes where decisiveness can be decided

» Probabilistic pushdown automata with constant weights
» Random walks with polynomial weights

» So-called probabilistic homogeneous one-counter machines with polynomial
weights (this extends the model of quasi-birth death processes)




Approximation scheme

»  Aim: compute probability of F ©)

» @ =(seS|s FIFO)

[IN97] P. Ilyer, M. Narasimha. Probabilistic lossy channel systems (TAPSOFT'97)
[ABMO7] PA. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007) 8



Approximation scheme

Approximation scheme
»  Aim: compute probability of F ©)
Given € > 0, for every n, compute:

» @ =(seS|s FIFO)

PF,, ©)

H:D(FSn @)
until pY°° + p9 > 1 — ¢




Approximation scheme

Approximation scheme
»  Aim: compute probability of F ©)
Given € > 0, for every n, compute:

, @ =(seS|s FIFO) PE. ©)

H:D(FSn Q)




Approximation scheme

Approximation scheme
»  Aim: compute probability of F ©)
Given € > 0, for every n, compute:

, @ =(seS|s FIFO)

P(F., ©)
H:D(FSn Q)

5 until pY°° + p9 > 1 — ¢

5 P/ < PFQ) < 1 —p[°

& (- . Y
yes

p; < PFQ) <1-pi°



Approximation scheme

Approximation scheme
»  Aim: compute probability of F ©)
Given € > 0, for every n, compute:

, @ =(seS|s FIFO)

S until pY¥° + plo > 1 — ¢
5 p}® < PEQ) < 1-p°

& (- $ v
yes

@ py <PEFQ) < 1-pi°

IA : V]



Approximation scheme

Approximation scheme
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Approximation scheme

Approximation scheme

Given € > 0, for every n, compute:

Jee P(F., ©)
H:D(FSn Q)

The approximation scheme converges A VI
i p;° <PEFQ) < 1-p)°

@ is decisive from sy wrt. ©)

IA : V]

Atthelimit.  P(F Q) 1 - P(F Q)
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Statistical model-checking

Sample N paths
nl —_

N )
N, = ny

'02 n3=n2+1

P3

n

N . |
Return W + some confidence interval

(in the best case)
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Termination, efficiency and
guarantees

Termination (To our knowledge, never expressed like this)

A sampled path starting at s almost-surely hits @ or %
iff
€ is decisive from sp w.rt. ©

+ efficiency if finite return time
(« € is positive recurrent »)

Guarantees: Hoeffding’s inequalities

832 9 b bound on the
ote,5> 05N > — log<g>. Then functon
E

/fN <
Pk ~ —Elfe)| 25 ) <0

£
E : confidence interval
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What can we do for
non-decisive Markov chains?”
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Importance sampling
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[KH51] H. Kahn, T. E. Harris. Estimation of particle transmission by random sampling (National Bureau of Standards applied mathematics series, 1951)
[Bar14] B. Barbot. Acceleration for statistical model checking (PhD thesis) 15
[BHP12] B. Barbot, S. Haddad, C. Picaronny. Coupling and Importance Sampling for Statistical Model Checking (TACAS’12)
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|[KH51]

» Originally used for rare events
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@

P1

P ,
P

&

» Originally used for rare events
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Correct the bias

/
Cg Cg M It p endsin @
yip)=< P P

0 otherwise

» Originally used for rare events

15



Importance sampling

» Analyze a biased Markov chain 6"’
Correct the bias

P
) = {% it p ends in ©

0 otherwise

151 G’

» Originally used for rare events

15



Importance sampling

» Analyze a biased Markov chain 6"’
Correct the bias

P
) = {% it p ends in ©

0 otherwise

151 G’

» Originally used for rare events

15



Importance sampling

» Analyze a biased Markov chain 6"’
Correct the bias

P
) = {% it p ends in ©

0 otherwise

151 G’

» Originally used for rare events
» Setting giving statistical guarantees [BHP12 Barl4]

15
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Properties of the biased
Markov chain

BEREYIOEE
P L(F&)

» The analysis of € can be transferred to that of €', provided some conditions on €’

e Decisiveness of €' is required for both approx. and estim. methods
e Boundedness of ¥ is required as well

C G’

P1

P2 ,
P3

&

[BHP12] B. Barbot, S. Haddad, C. Picaronny. Coupling and Importance Sampling for Statistical Model Checking (TACAS’12) 16



Properties of the biased

Markov chain

) Po(F ©) =Eg(r)

» The analysis of € can be transferred to that of €', provided some conditions on €’

e Decisiveness of €' is required for both approx. and estim. methods
e Boundedness of ¥ is required as well

G

(s;)
There is a best choice: p; = s * D p
p(s) .
» Therv.in €’ takes value u(s) D> @

» One needs to know p!

16
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Importance sampling

u" is the probability

via an abstraction oreah@n®

Cannot
reach F

+ Monotony
condition

a

—>

D Plsy.59) p(alsy) < p(als))

P,(Sl’ Sz) — P(Sl, S2) : M.(a(SZ))

p(a(sy))




Importance sampling
via an abstraction

Cannot
reach F

+ Monotony

condition
outside F

a

—>

u" is the probability to reach F* in 6*

D Plsy.sy) pi(alsy) < pi(als)) Ps,.50) = P(s,. 5, @8

p(a(sy))

No bias here!

Desactivation
Z0oNe
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Further properties of the biased
Markov chain obtained via an
abstraction

Property of the bias

() = {,u’(a(so)) if p endsin ©

0 otherwise

It is bivaluated, hence bounded

Theorem

f Fisfinteandforevery0 < x < 1, {s € S| u*(a(s)) > x} isfinite, then €"is
decisive w.rt. ©).

Proof using attractors, martingale theory

» The analysis can be performed on €’

19
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»  Model = layered Markov chain (LMC) &”: there is a level function 4 : S = N s.t.

- forevery s; = 8, A(sy) — A(s,) < 1, and

. forevery n, A~ (n) is finite

1
, Abstraction = random walk Cg]') of parameterp > —
2

Only one condition needs to be satisfied...
The monotony condition!

That will be ensured by a

divergence property depending on p,

expressing a congestion = / /
phenomenon p OKana > <p <p=pOK

1
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€' is decisive
+ finite sampling time

€ is not decisive
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Implementation and

experiments

https://cosmos.lacl.fr/
[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from
concepts to experimentation (Performance Evaluation)
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» Implementation of the two approaches in tool Cosmos
(development effort: Benoit Barbot)

» Application to probabilistic pushdown automata viewed as LMCs

» Methodology:
. |f € is decisive
- Apply Approx and Estim on €

. If G is « p-divergent »

1
Use the abstraction €', with Y <p<p

- Apply Approx and Estim on corresponding %1’9 (computed on-the-fly)

Note: in all experiments, the confidence is set to 99 %
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Examples of results

e =0.1 e =0.02 e = 0.005

Estim | Estim Estim - -0 -

ApPpProx | APProx APProx —e—
F | | | | | | ;
1000 = E
100 = E
- O --0--6-0--0-0-06 0O .
% 10 ¢ .
- - 3
[ I ]
1 = e E
0.1 = E
0.01 I | | | | | | |

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Parameter p for the abstraction
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