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Purpose of this work

Design algorithms to estimate probabilities in some infinite-state 
Markov chains, with guarantees

Our contributions

‣ Review two existing approaches (approximation algorithm and estimation 
algorithm) and specify the required hypothesis for correctness 

‣ Propose an approach based on importance sampling and abstraction to 
partly relax the hypothesis 

‣ Analyze empirically the approaches
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‣ For state , let  be such that:s xs

‣ The least fixpoint of this equation characterizes ℙs(F )

‣ For finite DTMCs, it amounts to solving a system of linear equations (polynomial 
time) [RKNP04]

• For the previous example: ℙs0
(F ) = 1/19
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‣ For some Markov chains with some structured high-level description, explicit 
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‣ Specific approaches for decisive Markov chains
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Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)
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Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

A DTMC   is decisive from  w.r.t.         if 𝒞 s ℙs(F ∨ F ) = 1

Decisiveness

= {s ∈ S ∣ s /⊧ ∃F }

s1 s2 …
p1 s3
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•

 

• Decisive iff this product equals 

ℙ(G¬ ) = ∏
i≥1

pi

0
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‣ Examples of decisive Markov chains: finite Markov chains, probabilistic lossy 
channel systems, probabilistic VASS, noisy Turing machines, …

‣ Example/counterexample:

Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

A DTMC   is decisive from  w.r.t.         if 𝒞 s ℙs(F ∨ F ) = 1

Decisiveness

= {s ∈ S ∣ s /⊧ ∃F }

• Recurrent random walk ( ): decisive 

• Transient random walk ( ): not decisive

p ≤ 1/2

p > 1/2
s1 s2 …

p

1 − p

p

1 − p
1 − p
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Deciding decisiveness?

‣ Probabilistic pushdown automata with constant weights [ABM07] 

‣ Random walks with polynomial weights [FHY23] 

‣ So-called probabilistic homogeneous  one-counter machines with polynomial 
weights (this extends the model of quasi-birth death processes) [FHY23]

Classes where decisiveness can be decided

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007) 
[FHY23] A. Finkel, S. Haddad, L. Yé. About decisiveness of dynamic probabilistic models (CONCUR’23)
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Non-converging example

s1 s2 …
p1 s3

p2 p3

⋯
with ∏

i≥1

pi > 0

‣         = ∅

‣ lim
n→+∞

pyes
n = ℙ(F ) < 1

‣ lim
n→+∞

1 − pno
n = 1

The approximation scheme 
does not converge
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Statistical model-checking

n1 = 1

n3 = n2 + 1

ρ1

ρ3

⋮

n2 = n1

⋮

ρ2

Sample  paths N

s0

Return  + some confidence interval
nN

N
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Termination and efficiency

 is decisive from  w.r.t.        
iff 

a sampled path starting at  almost-surely hits           or     

𝒞 s

s

Termination (To our knowledge, never expressed like this)

‣  is decisive from  w.r.t.          iff  is recurrent𝒞 s0
̂𝒞

‣ If  is positive recurrent, then sampling a single path in  will take finite timê𝒞 𝒞

‣ If  is null recurrent, then sampling a single path in  might take an arbitrary timê𝒞 𝒞

Efficiency of sampling The time to sample even 
increases/diverges!
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L = 1F 𝔼( fL, ) = ℙ(F )

A slightly more general 
setting

The two previous approaches extend under the 
same conditions to -bounded         -functionsB

Let  s.t. . Then: ε, δ > 0 N ≥
8B2

ε2
log( 2

δ )

ℙ ( fN
N

− 𝔼(fL, ) ≥
ε
2 ) ≤ δ

Empirical 
estimation
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What can we do for 
non-decisive Markov chains??
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Another numerical generic 
approach

[FHY23b] A. Finkel, S. Haddad, L. Ye. Introducing divergence for infinite probabilistic models (RP’23)
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Another numerical generic 
approach

[FHY23b] A. Finkel, S. Haddad, L. Ye. Introducing divergence for infinite probabilistic models (RP’23)

Can be decided in some classes
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Importance sampling for 
rare events evaluation

‣ Issue: rare events in 𝒞

[Bar14] B. Barbot. Acceleration for statistical model checking (PhD thesis) 
[BHP12] B. Barbot, S. Haddad, C. Picaronny. Coupling and Importance Sampling for Statistical Model Checking (TACAS’12)
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Before that, only 
estimators!!
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We propose to use the importance 
sampling approach to analyze some 

non-decisive DTMCs!

First time that importance 
sampling is used not to accelerate 

the analysis, but to enable the 
analysis
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• Decisiveness of  is required, decisiveness of  is not𝒞′ 𝒞
•  can be unbounded even if  is boundedL′ L

‣ Need of developing methods to ensure nice properties of 𝒞′ 

• [BHP12] for rare events: approach for finite Markov chains via coupling and 
abstractions with reduced variance
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for paths from . It is in particular the case when    

fL, s fL′ ,
s fL, = 1F

‣ We need:

• To ensure the decisiveness of 𝒞′ 

• To compute  (useful in two places: to sample paths and to compute the 
final value when hitting       )
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‣ Standard approach for importance sampling: no set  
(  coincides with          ) 

‣ Will be useful to adjust the properties satisfied by the abstraction to be correct 

• Requirement will be « outside  » 
• For instance, congestion of systems

F
F

F

Role of F
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Example

𝒞 𝒞∙ 𝒞′ 

F = { } = {q0}  is decisive𝒞′ 
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And «concretely»?
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Theorem

Correctness of the approach
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Let  be an LMC with level function ,  the random walk of parameter . Assume 
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‣ Argument based on a variation on Foster’s theorem:

• If there is  and a non-negative Lyapunov function  s.t. for every , 
, then for all , the expected timed to  is finite, implying 

that  is an attractor

ε > 0 ℒ s ∉ A
ℒ(s) − ∑

s′ 
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A

-divergencep
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surely



30

Let  be an LMC with level function ,  the random walk of parameter . Assume 

there is  s.t. .Then:

𝒞 λ 𝒞∙
p p

N0
1
2

< p < p+ = inf{P+(s) ∣ λ(s) > N0}

‣  is an abstraction for 𝒞∙
p 𝒞

‣ The corresponding biased Markov chain  is decisive w.r.t. 𝒞′ 

‣ The expected time to sample an execution is finite

Theorem

Correctness of the approach

‣ Argument based on a variation on Foster’s theorem:

• If there is  and a non-negative Lyapunov function  s.t. for every , 
, then for all , the expected timed to  is finite, implying 

that  is an attractor

ε > 0 ℒ s ∉ A
ℒ(s) − ∑

s′ 

P(s, s′ )ℒ(s′ ) ≥ ε s ∉ A A

A

‣ Apply this theorem to 𝒞′ 

-divergencep

Reached almost-
surely



30

Let  be an LMC with level function ,  the random walk of parameter . Assume 

there is  s.t. .Then:

𝒞 λ 𝒞∙
p p

N0
1
2

< p < p+ = inf{P+(s) ∣ λ(s) > N0}

‣  is an abstraction for 𝒞∙
p 𝒞

‣ The corresponding biased Markov chain  is decisive w.r.t. 𝒞′ 

‣ The expected time to sample an execution is finite

Theorem

Correctness of the approach

‣ Argument based on a variation on Foster’s theorem:

• If there is  and a non-negative Lyapunov function  s.t. for every , 
, then for all , the expected timed to  is finite, implying 

that  is an attractor

ε > 0 ℒ s ∉ A
ℒ(s) − ∑

s′ 

P(s, s′ )ℒ(s′ ) ≥ ε s ∉ A A

A

‣ Apply this theorem to 𝒞′ 

-divergencep

+ slight generalization via 
« uniformisation »

Reached almost-
surely



30

Let  be an LMC with level function ,  the random walk of parameter . Assume 

there is  s.t. .Then:

𝒞 λ 𝒞∙
p p

N0
1
2

< p < p+ = inf{P+(s) ∣ λ(s) > N0}

‣  is an abstraction for 𝒞∙
p 𝒞

‣ The corresponding biased Markov chain  is decisive w.r.t. 𝒞′ 

‣ The expected time to sample an execution is finite

Theorem

Correctness of the approach

‣ Argument based on a variation on Foster’s theorem:

• If there is  and a non-negative Lyapunov function  s.t. for every , 
, then for all , the expected timed to  is finite, implying 

that  is an attractor

ε > 0 ℒ s ∉ A
ℒ(s) − ∑

s′ 

P(s, s′ )ℒ(s′ ) ≥ ε s ∉ A A

A

‣ Apply this theorem to 𝒞′ 

-divergencep

+ slight generalization via 
« uniformisation »

We lose finite 
time sampling in 

general

Reached almost-
surely



31

Example

 is not decisive𝒞

𝒞 𝒞∙
0.6 𝒞′ 

 is decisive𝒞′ 



32

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)



32

‣ Automaton with a stack

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)



32

‣ Automaton with a stack

‣ Transition rules of the type  with  and q ?a!w q′ a ∈ Σ w ∈ Σ≤2

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)



32

‣ Automaton with a stack

‣ Transition rules of the type  with  and q ?a!w q′ a ∈ Σ w ∈ Σ≤2

‣ Probabilities given by weights

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)



32

‣ Automaton with a stack

‣ Transition rules of the type  with  and q ?a!w q′ a ∈ Σ w ∈ Σ≤2

‣ Probabilities given by weights

• In general:  with  a transition and  a stack contentW(t, w) t w ∈ Σ*

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)



32

‣ Automaton with a stack

‣ Transition rules of the type  with  and q ?a!w q′ a ∈ Σ w ∈ Σ≤2

‣ Probabilities given by weights

• In general:  with  a transition and  a stack contentW(t, w) t w ∈ Σ*
• [EKM06]:  only depends on W t

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)



32

‣ Automaton with a stack

‣ Transition rules of the type  with  and q ?a!w q′ a ∈ Σ w ∈ Σ≤2

‣ Probabilities given by weights

• In general:  with  a transition and  a stack contentW(t, w) t w ∈ Σ*
• [EKM06]:  only depends on W t
• Polynomial weight:  is a polynomial in W(t, w) |w |

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)



32

‣ Automaton with a stack

‣ Transition rules of the type  with  and q ?a!w q′ a ∈ Σ w ∈ Σ≤2

‣ Probabilities given by weights

• In general:  with  a transition and  a stack contentW(t, w) t w ∈ Σ*
• [EKM06]:  only depends on W t
• Polynomial weight:  is a polynomial in W(t, w) |w |

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)

Analysis can be done 
using the first-order theory of 

the reals



32

‣ Automaton with a stack

‣ Transition rules of the type  with  and q ?a!w q′ a ∈ Σ w ∈ Σ≤2

‣ Probabilities given by weights

• In general:  with  a transition and  a stack contentW(t, w) t w ∈ Σ*
• [EKM06]:  only depends on W t
• Polynomial weight:  is a polynomial in W(t, w) |w |

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)

Analysis can be done 
using the first-order theory of 

the reals

A 1 C A n BB B 5 ε
B n AA C 1 C



32

‣ Automaton with a stack

‣ Transition rules of the type  with  and q ?a!w q′ a ∈ Σ w ∈ Σ≤2

‣ Probabilities given by weights

• In general:  with  a transition and  a stack contentW(t, w) t w ∈ Σ*
• [EKM06]:  only depends on W t
• Polynomial weight:  is a polynomial in W(t, w) |w |

‣ Can be seen as a layered Markov chain, using the length of the stack content

Application to probabilistic 
pushdown automata

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)

Analysis can be done 
using the first-order theory of 

the reals

A 1 C A n BB B 5 ε
B n AA C 1 C



33

Implementation

https://cosmos.lacl.fr/ 
[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from 
concepts to experimentation (Performance Evaluation)

https://cosmos.lacl.fr/


33

‣ Implementation of the two approaches in tool Cosmos 
(development effort: Benoît Barbot)

Implementation

https://cosmos.lacl.fr/ 
[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from 
concepts to experimentation (Performance Evaluation)

https://cosmos.lacl.fr/


33

‣ Implementation of the two approaches in tool Cosmos 
(development effort: Benoît Barbot)

‣ Cosmos: essentially implements statistical model checking

Implementation

https://cosmos.lacl.fr/ 
[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from 
concepts to experimentation (Performance Evaluation)

https://cosmos.lacl.fr/


33

‣ Implementation of the two approaches in tool Cosmos 
(development effort: Benoît Barbot)

‣ Cosmos: essentially implements statistical model checking

‣ Add the approximation algorithm, as efficiently as we could think of

Implementation

https://cosmos.lacl.fr/ 
[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from 
concepts to experimentation (Performance Evaluation)

https://cosmos.lacl.fr/


33

‣ Implementation of the two approaches in tool Cosmos 
(development effort: Benoît Barbot)

‣ Cosmos: essentially implements statistical model checking

‣ Add the approximation algorithm, as efficiently as we could think of
• Front of visited states, select the most probable one to pursue

Implementation

https://cosmos.lacl.fr/ 
[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from 
concepts to experimentation (Performance Evaluation)

https://cosmos.lacl.fr/


33

‣ Implementation of the two approaches in tool Cosmos 
(development effort: Benoît Barbot)

‣ Cosmos: essentially implements statistical model checking

‣ Add the approximation algorithm, as efficiently as we could think of
• Front of visited states, select the most probable one to pursue
• Efficient implementation of small numbers

Implementation

https://cosmos.lacl.fr/ 
[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from 
concepts to experimentation (Performance Evaluation)

10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

https://cosmos.lacl.fr/


33

‣ Implementation of the two approaches in tool Cosmos 
(development effort: Benoît Barbot)

‣ Cosmos: essentially implements statistical model checking

‣ Add the approximation algorithm, as efficiently as we could think of
• Front of visited states, select the most probable one to pursue
• Efficient implementation of small numbers

• Data structures: a hash table (to know the states which are present) and a max-
heap to select  the most probable state

Implementation

https://cosmos.lacl.fr/ 
[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from 
concepts to experimentation (Performance Evaluation)

10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

https://cosmos.lacl.fr/


33

‣ Implementation of the two approaches in tool Cosmos 
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‣ Cosmos: essentially implements statistical model checking

‣ Add the approximation algorithm, as efficiently as we could think of
• Front of visited states, select the most probable one to pursue
• Efficient implementation of small numbers

• Data structures: a hash table (to know the states which are present) and a max-
heap to select  the most probable state

‣ Some experiments have been done

Implementation

https://cosmos.lacl.fr/ 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𝒞 p N0
𝒞 p′ N′ 0

1/2 < p′ ≤ p
N′ 0 ≥ N0
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improve the analysis time, both for 
Approx and Estim (no formal 
guarantee, though)

‣ There seems to be « a best  » 
(  here)
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‣ For that best , Approx behaves 
very well!
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‣ It is not decisive 

‣ It is -divergent for every p 1/2 < p < 1
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‣ Estim-SMC not too sensitive to p
• Neverthess (log-log scale): 

clear bell effect on p

‣ Approx very sensitive to p
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‣ General bell effect on ?p

‣ Suggests the following strategy: 

• Estimate the best  using Estim-SMC 
• Apply Approx on the corresponding biased Markov chain 

p

Empirical conclusions



41

Conclusion



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)
• A general low-level model (LMC) + application to prob. pushdown automata



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)
• A general low-level model (LMC) + application to prob. pushdown automata

‣ Interesting empirical results



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)
• A general low-level model (LMC) + application to prob. pushdown automata

‣ Interesting empirical results
• Acceleration of the verification of decisive Markov chains in some cases?



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)
• A general low-level model (LMC) + application to prob. pushdown automata

‣ Interesting empirical results
• Acceleration of the verification of decisive Markov chains in some cases?

• Existence of a « best  » (trade-off)?p



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)
• A general low-level model (LMC) + application to prob. pushdown automata

‣ Interesting empirical results
• Acceleration of the verification of decisive Markov chains in some cases?

• Existence of a « best  » (trade-off)?p
Any theoretical 

justification for that?



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)
• A general low-level model (LMC) + application to prob. pushdown automata

‣ Interesting empirical results
• Acceleration of the verification of decisive Markov chains in some cases?

• Existence of a « best  » (trade-off)?p
Any theoretical 

justification for that?

Some more classes 
to be applied?



41

Conclusion

‣ Two approaches (numerical and statistical) for analysis of infinite Markov chains
• Both require a decisiveness assumption!

‣ Use of importance sampling to handle some non-decisive Markov chains
• Original application of the importance sampling idea 

(and slight extension with desactivation zone)
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)
• A general low-level model (LMC) + application to prob. pushdown automata

‣ Interesting empirical results
• Acceleration of the verification of decisive Markov chains in some cases?

• Existence of a « best  » (trade-off)?p
Any theoretical 

justification for that?
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to be applied?
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