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Decisiveness

A successful concept for Markov chains
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Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

A DTMC   is decisive from  w.r.t.         if 𝒞 s ℙs(F ∨ F ) = 1

Decisiveness

= {s ∈ S ∣ s /⊧ ∃F }
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s1 s2 …
p1 s3

p2 p3

⋯
•

 

• Decisive iff this product equals 

ℙ(G¬ ) = ∏
i≥1

pi

0
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‣ Examples of decisive Markov chains: finite Markov chains, probabilistic lossy 
channel systems, probabilistic VASS, noisy Turing machines, …

‣ Example/counterexample:

Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

A DTMC   is decisive from  w.r.t.         if 𝒞 s ℙs(F ∨ F ) = 1

Decisiveness

= {s ∈ S ∣ s /⊧ ∃F }

• Recurrent random walk ( ): decisive 

• Transient random walk ( ): not decisive

p ≤ 1/2

p > 1/2
s1 s2 …

p

1 − p

p

1 − p
1 − p
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Statistical model-checking

n1 = 1

n3 = n2 + 1

ρ1

ρ3

⋮

n2 = n1

⋮

ρ2

Sample  paths N

s0

Return  + some confidence interval 
                       (in the best case)

nN

N

A sampled path starting at  almost-surely hits         or      
iff 

 is decisive from  w.r.t.       

s0

𝒞 s0

Termination (To our knowledge, never expressed like this)
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‣ Does this concept extend to MDPs and games?

Where do we stand?

➡ We will focus on MDPs

‣ Decisiveness = crucial concept for Markov chains 

- ensures termination of approximation algorithms 

- ensures feasibility of sampling in algorithms based on SMC

Natural question



12

Markov decision processes

What can we do for them?
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Compute  

 

ℙopt
ℳ,s0(F )
=

optσ scheduler ℙℳσ,s0(F )

Focus on 
reachability 
properties
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Where do we go?

➡ We call  the approximation scheme which extends in a natural way 
the approximation scheme for Markov chains

Approxopt
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Several « natural » decisiveness 
concepts for MDPs

An MDP   is opt-decisive from  w.r.t.         if ℳ s ℙopt
ℳ,s(F ∨ F opt) = 1

opt-Decisiveness
opt = {s ∈ S ∣ ℙopt

s (F ) = 0}

σ = {s ∈ S ∣ ℙσ,s(F ) = 0}

An MDP   is -decisive from  w.r.t.         if ℳ σ s ℙℳσ,s(F ∨ F σ) = 1

-Decisivenessσ

An MDP   is univ-decisive from  w.r.t.         if it is -decisive for every scheduler pp ℳ s σ σ

univ-Decisiveness pure 
positional
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A small example

s0

a,1 b,1/2

b,1/2

s0

s0

a,1
b,1/2b,1/2

s0

a,1
b,1/2b,1/2

⋮

 psup,+
1 = 1

psup,−
1 = 1/2

 psup,+
2 = 1

psup,−
2 = 1/2

The two sequences  and  are not adjacent(psup,−
n )n (psup,+

n )n

 is not converging, even for finite MDPs!Approxsup
unfold

‣ It is inf-decisive
‣ It is univ-decisive
‣ It is not sup-decisive
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The sliced MDPs

⋯

⋯
Distance n

ℳ

Some technical details are ignored

ℳn

‣ Scheme Approxopt
sliced

Converges over all finite MDPs…
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converges

Approxinf
unfold  

converges
Approxsup

unfold

 
converges

Approxinf
sliced  

converges
Approxsup

sliced

 inf-decisiveℳ  sup-decisiveℳ

 univ-decisiveℳ

 non-fleeingℳ

Finite branching

Finite action-branching

Results — Summary

 has a finite 
attractor

ℳ  semantically stoppingℳ

In finite MDPs, 
characterized by end-

components

Speaks about 
uncertainty of schedulers 

when diverging
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Applications

Two families of models Christel has worked on
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‣ NPLCS = non-deterministic and 
probabilistic lossy channel systems

NPLCS

s0
?b

?a

!b

s1

!a

⋯
s0, ε s1, ε

s1, a

s1, b

s1, ba

s1, aa

!b, .8

!b, .2

!a, .16

!a, .04 !a, .64

!a, .16

!a, .2

!a, .04
!a, .8

!a, .32

!a, .64
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‣ The set of configurations with an empty channel is an attractor for an 
NPLCS [BBS07] 

‣ Any NPLCS is univ-decisive: 
• The « inf schemes » can be applied 

• Under nonfleeingness, Approx  will converge as well 

‣ Checking  is undecidable

sup
sliced

ℙsup
ℳ,s0(F ) = 1

NPLCS

[BBS07] C. Baier, N. Bertrand, P. Schnoebelen. Verifying nondeterministic probabilistic channel systems against -regular linear-time properties 
              (ACM ToCL, 2007)

ω
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‣ POMDPs = partially observable MDPs

POMDPs

s0

s1

s2

a

a

a,1,

1/3,

1/3,

1/3,

‣ Schedulers only depend on colors

‣ Checking  is undecidable [GO10] 

There is no approximation algorithm for  in POMDPs [MHCS99] 

‣ What can we do for ?

ℙsup
ℳ,s0(F ) = 1

ℙsup(reach)

ℙinf(reach)

[GO10] H. Gimbert, Y. Oualhadj. Probabilistic automats on finite words: Decidable and undecidable problems (ICALP’10) 
[MHC99] O. Madani, S. Hanks, A. Condon. On the undecidability of probabilistic planning and infinite-horizon partially observable Markov decision 
                processes (1999)
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POMDPs

s0

s1

s2

a

a

a,1,

1/3,

1/3,

1/3,

[KLC98] L.P. Kaelbing, M.L. Littman, A.R. Cassandra. Planning and acting in partially observable stochastic domains (1998)
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POMDPs
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POMDPs

s0

s1

s2

a

a

a,1,

1/3,

1/3,

1/3,

s0 ↦ 1  s1 ↦ 1/2
s2 ↦ 1/2

 s1 ↦ 3/4
s2 ↦ 1/4

 s1 ↦ 7/8
s2 ↦ 1/8

a,2/3 a,5/6 a,11/12
⋯

a,1/3
a,1/6 a,1/12

The belief MDP [KLC98]
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Its -approx1/8

It is inf-decisive!
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‣ The « inf schemes » can be applied
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Conclusion
‣ Notions of decisiveness lifted to the setting of MDPs 

‣ Inf-decisiveness very relevant: two classes of systems satisfy this 
property 

‣ Sup-decisiveness less interesting, alternatives need to be worked out 

‣ Further work: more expressive properties, more classes, refined 
notions for specific classes, …


