

école — normale — supérieure — paris — saclay — ...

Decisiveness for countable MDPs and insights for NPLCSs and POMDPs

Patricia Bouyer

LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Joint work with Nathalie Bertrand (Inria, France), Thomas Brihaye (UMONS, Belgium), Paulin Fournier and Pierre Vandenhove (UMONS, Belgium)

Back to 2006/2007...

- ▶ Time, probabilities and games join force!
 - My first steps in probabilistic systems
- Trips to Dresden and Oxford

Back to 2006/2007...

- Time, probabilities and games join force!
 - My first steps in probabilistic systems
- Trips to Dresden and Oxford

Almost-Sure Model Checking of Infinite Paths in One-Clock Timed Automata

Christel Baier¹ Nathalie Bertrand² Patricia Bouyer^{3,*} Thomas Brihaye⁴ Marcus Größer¹

¹ Technische Universität Dresden, Germany

{baier,groesser}@tcs.inf.tu-dresden.de

3 LSV, CNRS & ENS Cachan, France

bouyer@lsv.ens-cachan.fr

nathalie.bertrand@irisa.fr

⁴ Université de Mons-Hainaut, Belgium

thomas.brihaye@umh.ac.be

Probabilistic and Topological Semantic for Timed Automata

Christel Baier¹, Nathalie Bertrand^{1,*}, Patricia Bouyer^{2,3,**}, Thomas Brihaye², and Marcus Größer¹

¹ Technische Universit¨at Dresden, Germany ² LSV - CNRS & ENS Cachan, France ³ Oxford University, England

When Are Timed Automata Determinizable?

Christel Baier¹, Nathalie Bertrand², Patricia Bouyer³, and Thomas Brihaye⁴

¹ Technische Universität Dresden, Germany

- ² INRIA Rennes Bretagne Atlantique, France
 - ³ LSV, CNRS & ENS Cachan, France
 - 4 Université de Mons, Belgium

STOCHASTIC TIMED AUTOMATA

NATHALIE BERTRAND ^a, PATRICIA BOUYER ^b, THOMAS BRIHAYE ^c, QUENTIN ME CHRISTEL BAIER^e, MARCUS GRÖSSER^f, AND MARCIN JURDZIŃSKI^g ^a Inria Rennes, France

e-mail address: nathalie.bertrand@inria.fr

^b LSV, CNRS & ENS Cachan, France e-mail address: bouyer@lsv.ens-cachan.fr

 c,d Université de Mons, Belgium e-mail address: {thomas.brihaye,quentin.menet}@umons.ac.be

 e,f TU Dresden, Germany e-mail address: {baier,groesser}@tcs.inf.tu-dresden.de

^g University of Warwick, UK e-mail address: mju@dcs.warwick.ac.uk

école — — normale — — supérieure — — paris — saclay — —

Decisiveness

A successful concept for Markov chains

Markov chains

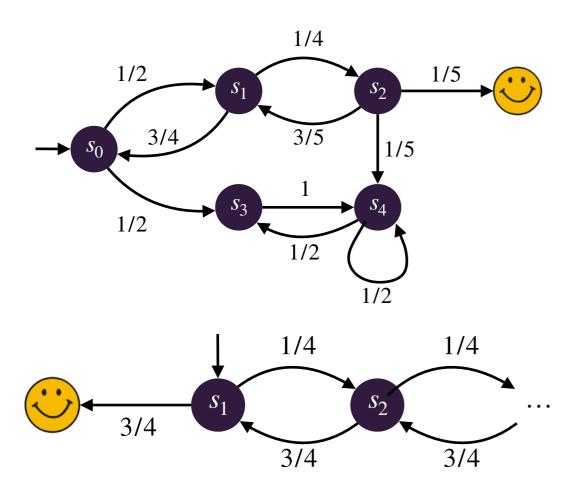
(Discrete-time) Markov chains

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

Markov chains

(Discrete-time) Markov chains

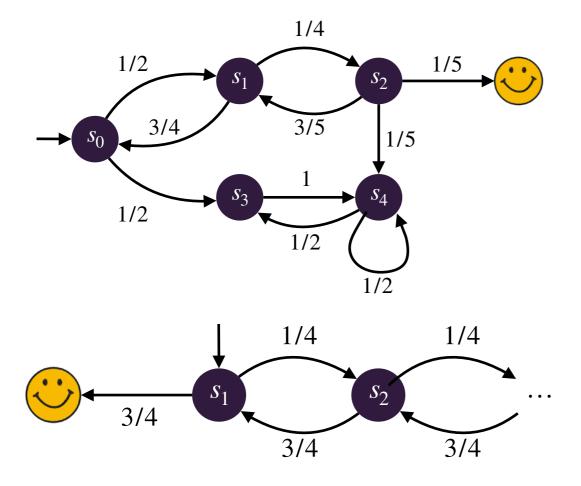
 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$



Markov chains

(Discrete-time) Markov chains

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$



$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

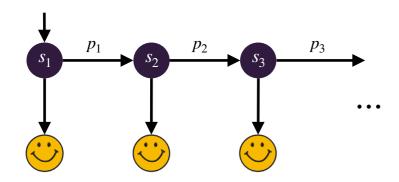
Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:



$$\mathbf{P}(\mathbf{G} \neg \mathbf{O}) = \prod_{i \geq 1} p_i$$

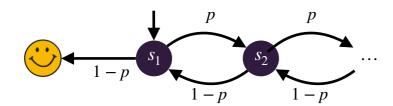
ullet Decisive iff this product equals 0

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:



- Recurrent random walk ($p \le 1/2$): decisive
- Transient random walk (p > 1/2): not decisive

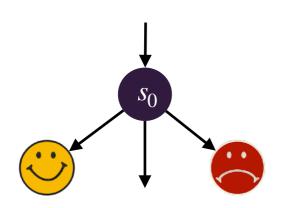
- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$ \smile $}}{ ext{$ \smile $}}$
- $= \{ s \in S \mid s \not\models \exists \mathbf{F} \circlearrowleft \}$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{\bigcirc}$

Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$arphi}}{ ext{$arphi}}$
- $\Rightarrow = \{ s \in S \mid s \not\models \exists \mathbf{F} \circlearrowleft \}$

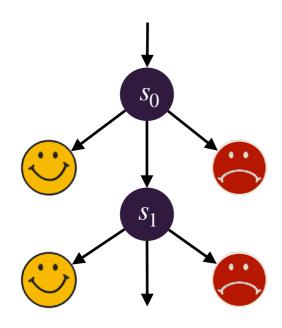


Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\text{yes}} \le \mathbb{P}(\mathbf{F}^{\circlearrowright}) \le 1 - p_1^{\text{no}}$$

ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{m \cup}$



Approximation scheme

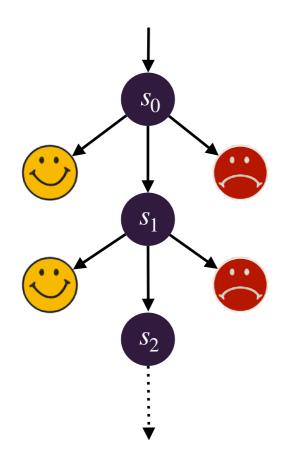
$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{o}}) \leq 1 - p_1^{\mathrm{no}}$$

$$| \wedge \qquad \qquad \forall |$$

$$p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{o}}) \leq 1 - p_2^{\mathrm{no}}$$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{m \cup}$

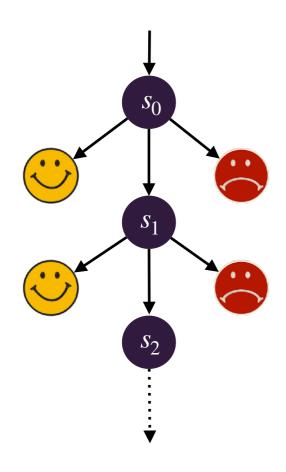


Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\text{yes}} \le \mathbb{P}(\mathbf{F}^{\text{o}}) \le 1 - p_1^{\text{no}}$$
 $| \wedge \qquad \qquad \forall |$
 $p_2^{\text{yes}} \le \mathbb{P}(\mathbf{F}^{\text{o}}) \le 1 - p_2^{\text{no}}$
 $| \wedge \qquad \qquad \vdots \qquad \forall |$

ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$\smile$}}{ ext{$\smile$}}$



Approximation scheme

Given $\varepsilon > 0$, for every n, compute:

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

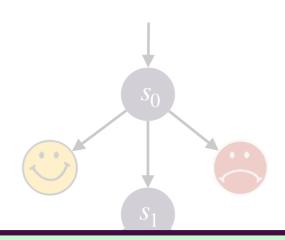
$$p_1^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\text{oo}}) \leq 1 - p_1^{\text{no}}$$
 $|\mathbf{h}| \qquad \forall |\mathbf{f}| \qquad |\mathbf{f}|$

At the limit: $\mathbb{P}(\mathbf{F} \bigcirc)$

 $1 - \mathbb{P}(\mathbf{F} \bigcirc)$

Aim: compute probability of ${f F}$

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$



The approximation scheme converges

 \mathscr{C} is decisive from s_0 w.r.t. \bigcirc

Approximation scheme

Given $\varepsilon > 0$, for every n, compute:

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

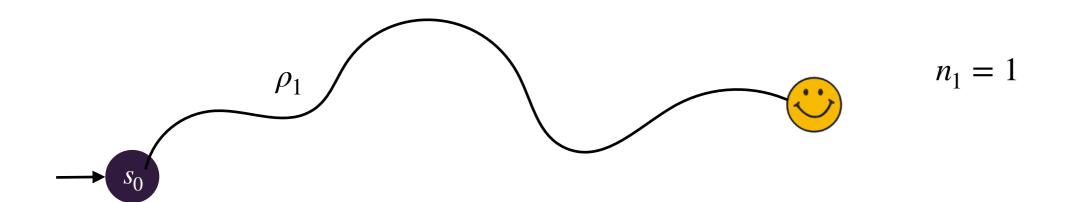
$$p_1^{\text{yes}} \le \mathbb{P}(\mathbf{F}^{\circlearrowright}) \le 1 - p_1^{\text{no}}$$

$$p_2^{\mathrm{yes}} \le \mathbb{P}(\mathbf{F}_{\bullet}) \le 1 - p_2^{\mathrm{no}}$$

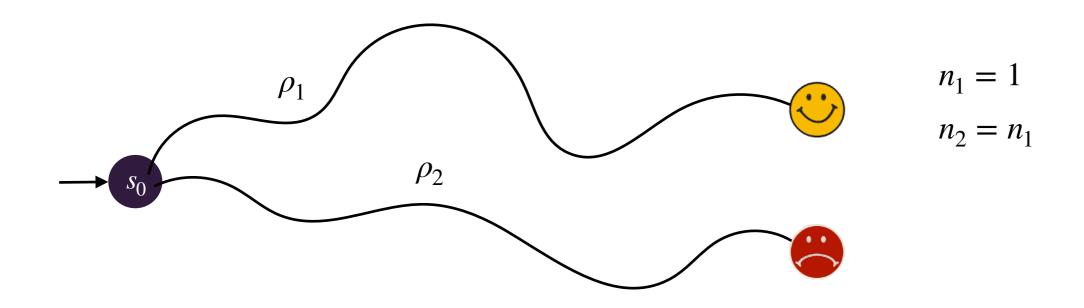
 $\mathbb{P}(\mathbf{F} \overset{\smile}{\smile})$ At the limit:

 $1 - \mathbb{P}(\mathbf{F} \overset{\boldsymbol{\leftarrow}}{\rightleftharpoons})$

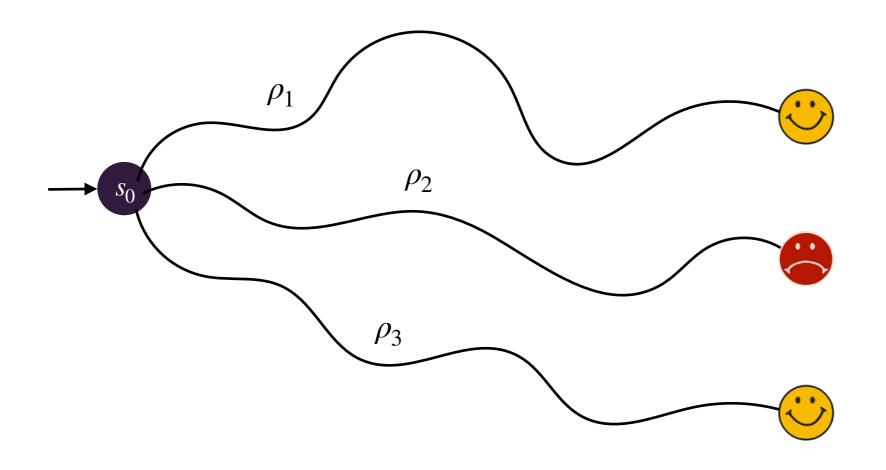
Sample N paths



Sample N paths



Sample N paths

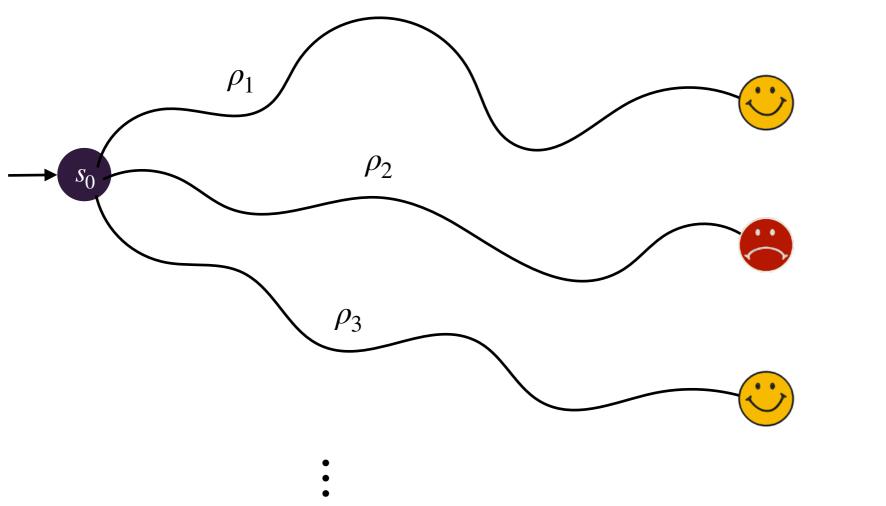


$$n_1 = 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

Sample N paths



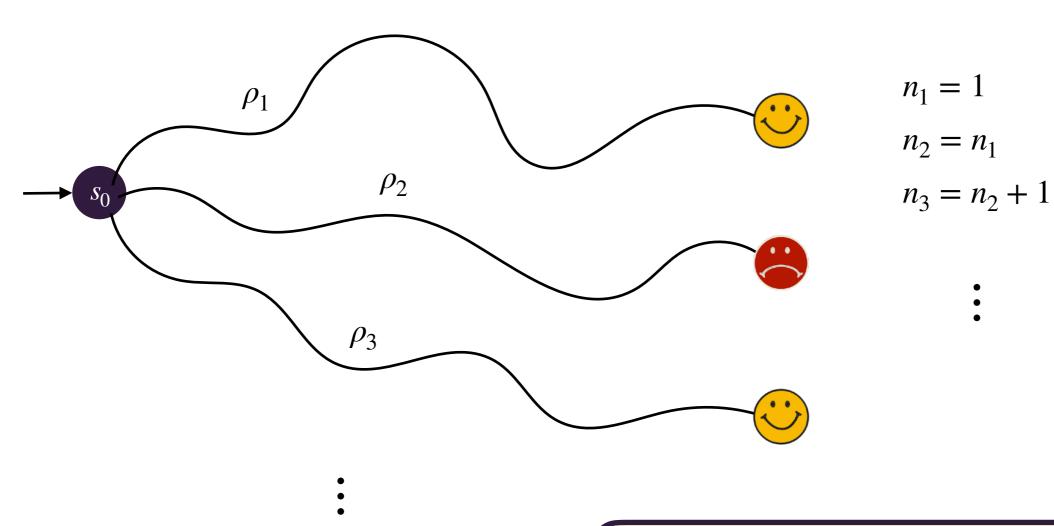
$$n_1 = 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

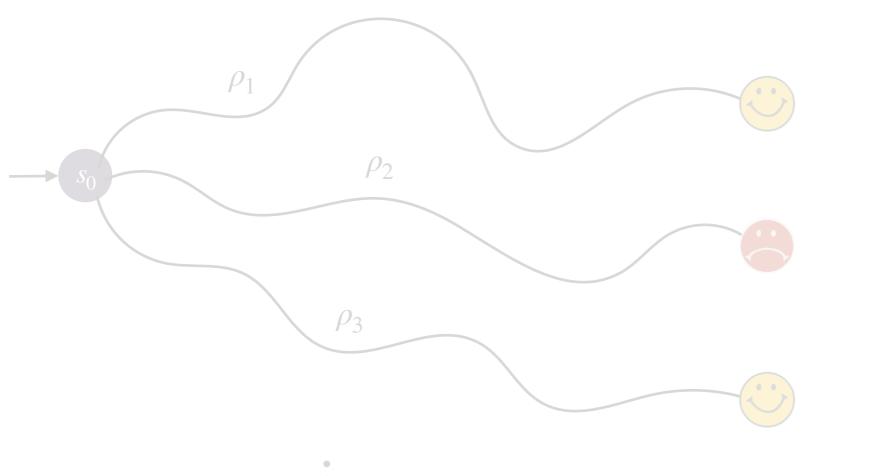
•

Sample N paths



Return $\frac{n_N}{N}$ + some confidence interval (in the best case)

Sample N paths



$$n_1 = 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

•

Return $\frac{n_N}{N}$ + some confidence interval (in the best case)

Sample N paths

A sampled path starting at s_0 almost-surely hits $\stackrel{\smile}{\bigcirc}$ or $\stackrel{\smile}{\rightleftharpoons}$ iff

 \mathscr{C} is decisive from s_0 w.r.t. $\ensuremath{\circlearrowleft}$

Return $\frac{n_N}{N}$ + some confidence integral

Where do we stand?

- Decisiveness = crucial concept for Markov chains
 - ensures termination of approximation algorithms
 - ensures feasibility of sampling in algorithms based on SMC

Where do we stand?

- Decisiveness = crucial concept for Markov chains
 - ensures termination of approximation algorithms
 - ensures feasibility of sampling in algorithms based on SMC

Natural question

Does this concept extend to MDPs and games?

Where do we stand?

- Decisiveness = crucial concept for Markov chains
 - ensures termination of approximation algorithms
 - ensures feasibility of sampling in algorithms based on SMC

Natural question

Does this concept extend to MDPs and games?

→ We will focus on MDPs

école — normale — supérieure — paris – saclay — ...

Markov decision processes

What can we do for them?

Markov decision processes

Markov decision processes (MDPs)

```
\mathcal{M} = (S, s_0, \operatorname{Act}, P) with S at most denumerable, s_0 \in S and P: S \times \operatorname{Act} \times S \to [0,1] s.t. for each s \in S and a \in \operatorname{Act}, P(s, a, \bullet) \in \operatorname{Dist}(S)
```

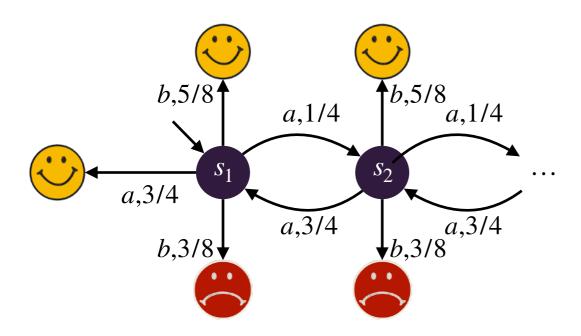
Markov decision processes (MDPs)

 $\mathcal{M} = (S, s_0, \operatorname{Act}, P)$ with S at most denumerable, $s_0 \in S$ and $P: S \times \operatorname{Act} \times S \to [0,1]$ s.t. for each $s \in S$ and $a \in \operatorname{Act}$, $P(s,a,\bullet) \in \operatorname{Dist}(S)$



Markov decision processes (MDPs)

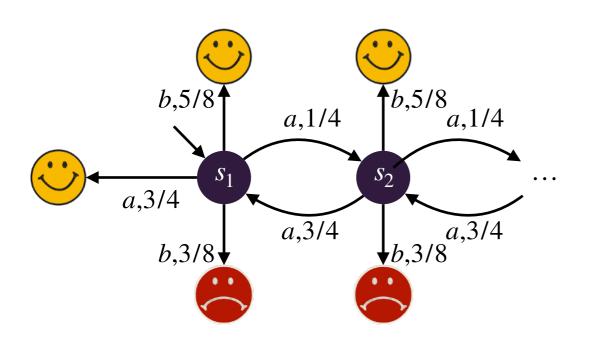
 $\mathcal{M} = (S, s_0, \operatorname{Act}, P)$ with S at most denumerable, $s_0 \in S$ and $P: S \times \operatorname{Act} \times S \to [0,1]$ s.t. for each $s \in S$ and $a \in \operatorname{Act}$, $P(s, a, \bullet) \in \operatorname{Dist}(S)$

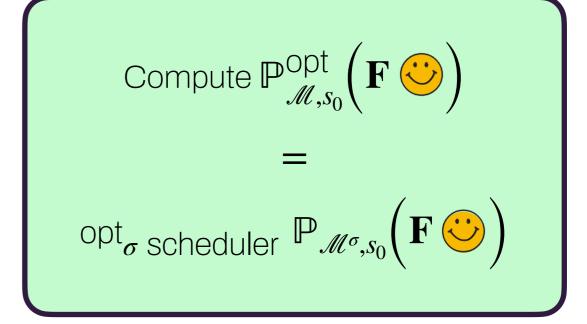


- ▶ Requires a scheduler: σ : Hist → Dist(Act)
- ullet \mathscr{M} under σ is a Markov chain (written \mathscr{M}^{σ})

Markov decision processes (MDPs)

 $\mathcal{M} = (S, s_0, \operatorname{Act}, P)$ with S at most denumerable, $s_0 \in S$ and $P: S \times \operatorname{Act} \times S \to [0,1]$ s.t. for each $s \in S$ and $a \in \operatorname{Act}$, $P(s,a,\bullet) \in \operatorname{Dist}(S)$

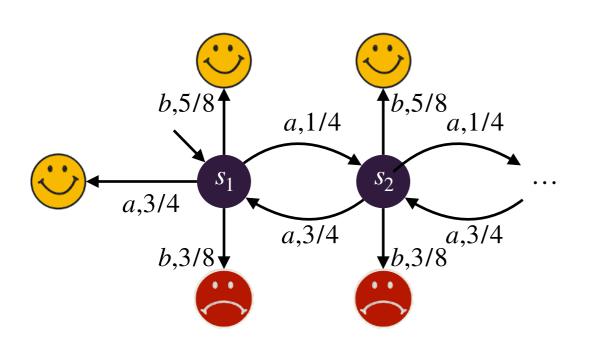




- ▶ Requires a scheduler: σ : Hist → Dist(Act)
- \mathcal{M} under σ is a Markov chain (written \mathcal{M}^{σ})

Markov decision processes (MDPs)

 $\mathcal{M} = (S, s_0, \operatorname{Act}, P)$ with S at most denumerable, $s_0 \in S$ and $P: S \times \operatorname{Act} \times S \to [0,1]$ s.t. for each $s \in S$ and $a \in \operatorname{Act}$, $P(s,a,\bullet) \in \operatorname{Dist}(S)$



- Compute $\mathbb{P}^{\mathrm{opt}}_{\mathcal{M},s_0}(\mathbf{F} \buildrel)$ = $\mathrm{opt}_{\sigma} \ \mathrm{scheduler} \ \mathbb{P}_{\mathcal{M}^{\sigma},s_0}(\mathbf{F} \buildre)$
- ▶ Requires a scheduler: σ : Hist → Dist(Act)
- \mathscr{M} under σ is a Markov chain (written \mathscr{M}^{σ})

Our goal

We want to design (approximation) algorithms to compute inf/sup-values of MDPs

Our goal

We want to design (approximation) algorithms to compute inf/sup-values of MDPs

Some remarks

- ▶ The values can be characterized via fixpoints, but no general stopping criterion. The values are not known to be computable in general.
- Remarks: inf and sup are very different (in terms of (existence and nature of) optimal schedulers for example).
 - Optimal positional schedulers exist for inf
 - Optimal schedulers may not exist for sup

Our goal

We want to design (approximation) algorithms to compute inf/sup-values of MDPs

Some remarks

- ▶ The values can be characterized via fixpoints, but no general stopping criterion. The values are not known to be computable in general.
- <u>Remarks</u>: inf and sup are very different (in terms of (existence and nature of) optimal schedulers for example).
 - Optimal positional schedulers exist for inf
 - Optimal schedulers may not exist for sup
- → We call Approx^{opt} the approximation scheme which extends in a natural way the approximation scheme for Markov chains

opt-Decisiveness

$$\bigcirc \mathsf{Opt} = \{ s \in S \mid \mathbb{P}_s^{\mathsf{Opt}}(\mathbf{F} \bigcirc) = 0 \}$$

An MDP \mathcal{M} is opt-decisive from s w.r.t. \bigcirc if $\mathbb{P}^{\mathrm{opt}}_{\mathcal{M},s}(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc\mathrm{opt})=1$

opt-Decisiveness

$$\bigcirc \mathsf{Opt} = \{ s \in S \mid \mathbb{P}_s^{\mathsf{Opt}}(\mathbf{F} \bigcirc) = 0 \}$$

An MDP \mathcal{M} is opt-decisive from s w.r.t. \bigcirc if $\mathbb{P}^{\mathrm{opt}}_{\mathcal{M},s}(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc\mathrm{opt})=1$

σ -Decisiveness

An MDP
$$\mathcal{M}$$
 is σ -decisive from s w.r.t. \bigcirc if $\mathbb{P}_{\mathcal{M}^{\sigma},s}(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc\sigma)=1$

opt-Decisiveness

$$\bigcirc \mathsf{Opt} = \{ s \in S \mid \mathbb{P}_s^{\mathsf{Opt}}(\mathbf{F} \bigcirc) = 0 \}$$

An MDP \mathcal{M} is opt-decisive from s w.r.t. \bigcirc if $\mathbb{P}^{\mathrm{opt}}_{\mathcal{M},s}(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc\mathrm{opt})=1$

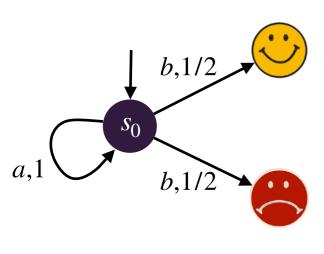
σ -Decisiveness

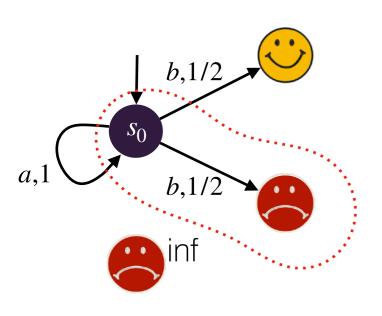
An MDP \mathcal{M} is σ -decisive from s w.r.t. \bigcirc if $\mathbb{P}_{\mathcal{M}^{\sigma},s}(\mathbf{F}\bigcirc\vee\mathbf{F})=1$

univ-Decisiveness

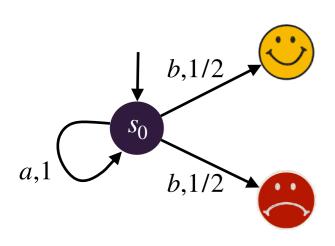
pure positional

An MDP ${\mathscr M}$ is univ-decisive from s w.r.t. $\stackrel{\smile}{\smile}$ if it is σ -decisive for every scheduler pp σ

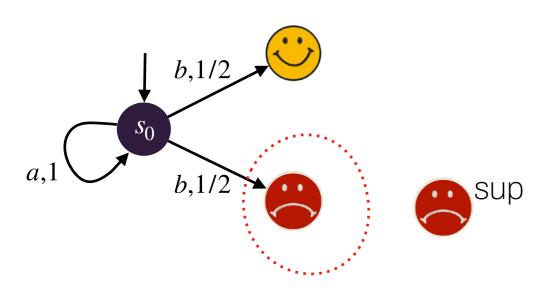




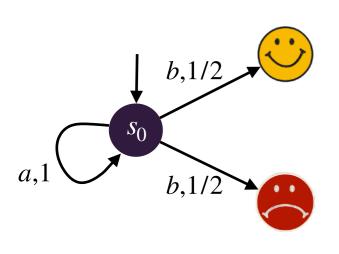
▶ It is inf-decisive

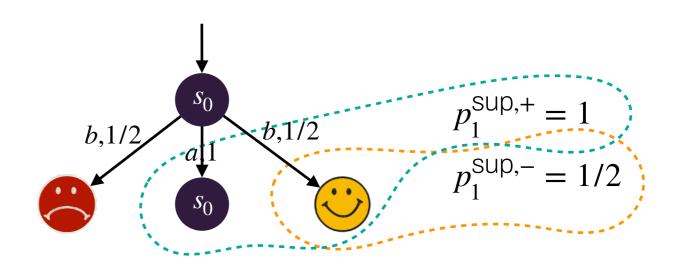


- ▶ It is inf-decisive
- ▶ It is univ-decisive

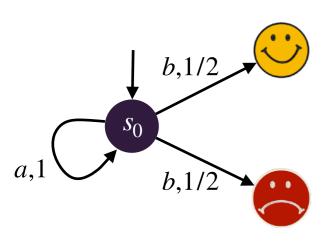


- ▶ It is inf-decisive
- ▶ It is univ-decisive
- It is **not** sup-decisive

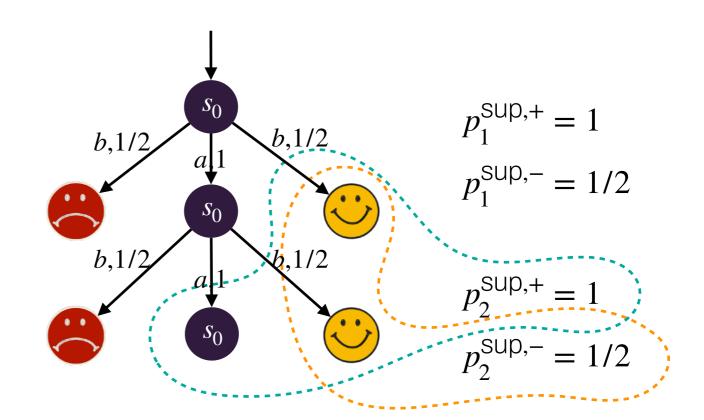


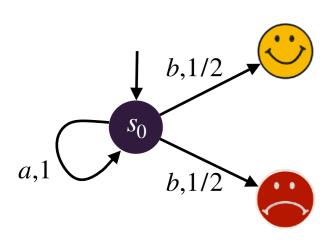


- ▶ It is inf-decisive
- ▶ It is univ-decisive
- It is **not** sup-decisive

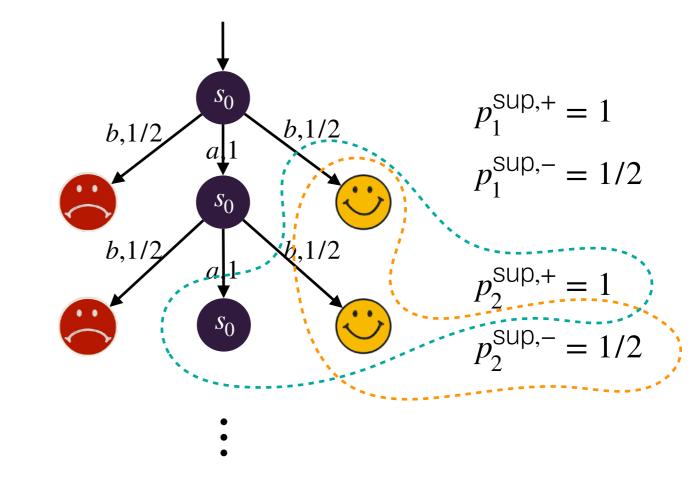


- ▶ It is inf-decisive
- ▶ It is univ-decisive
- It is **not** sup-decisive

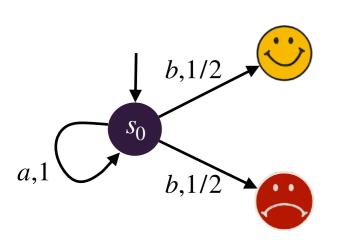




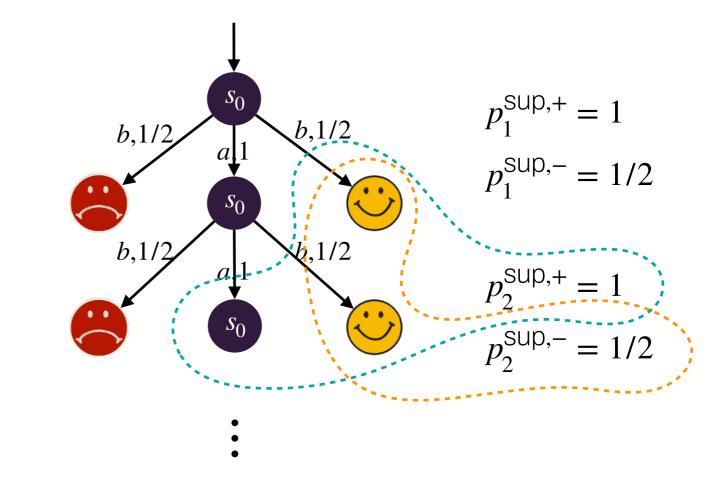
- ▶ It is inf-decisive
- ▶ It is univ-decisive
- It is **not** sup-decisive



The two sequences $(p_n^{\mathrm{SUP},-})_n$ and $(p_n^{\mathrm{SUP},+})_n$ are not adjacent

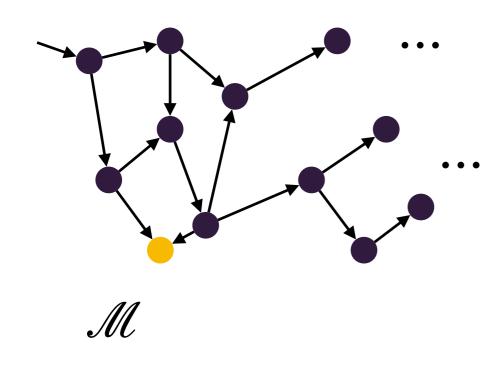


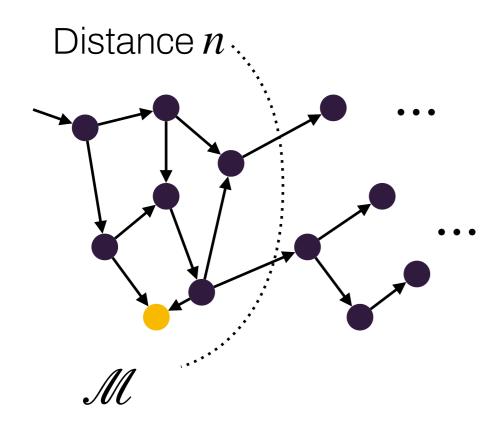
- It is inf-decisive
- ▶ It is univ-decisive
- ▶ It is **not** sup-decisive

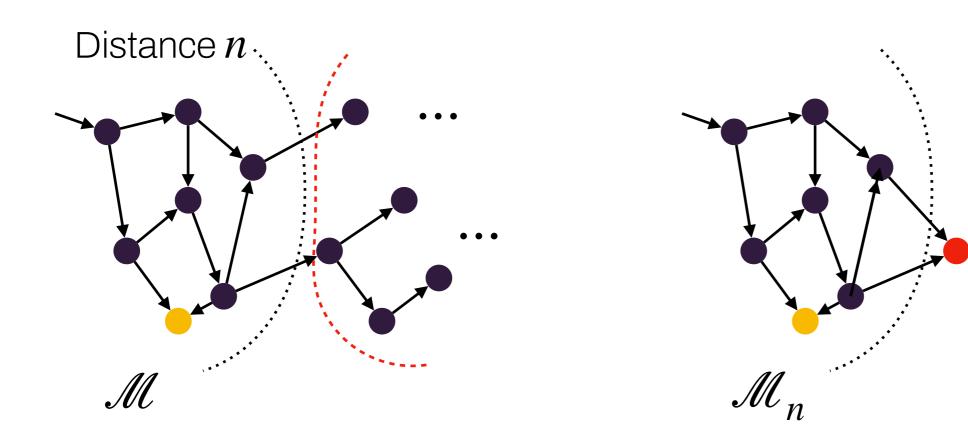


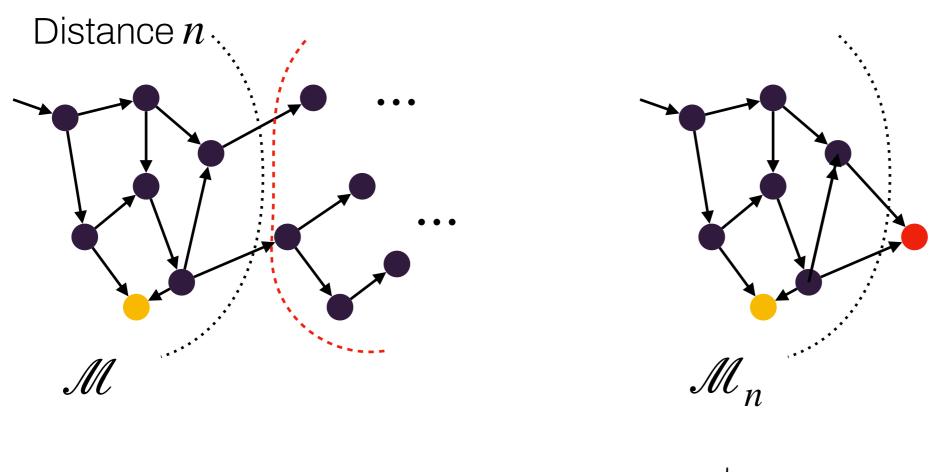
The two sequences $(p_n^{\text{SUP},-})_n$ and $(p_n^{\text{SUP},+})_n$ are not adjacent

Approx^{Sup} is not converging, even for finite MDPs!

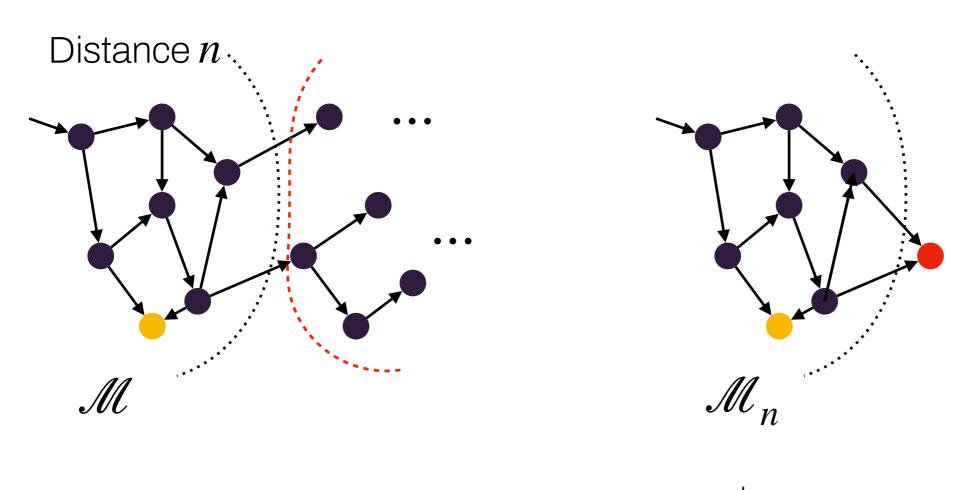








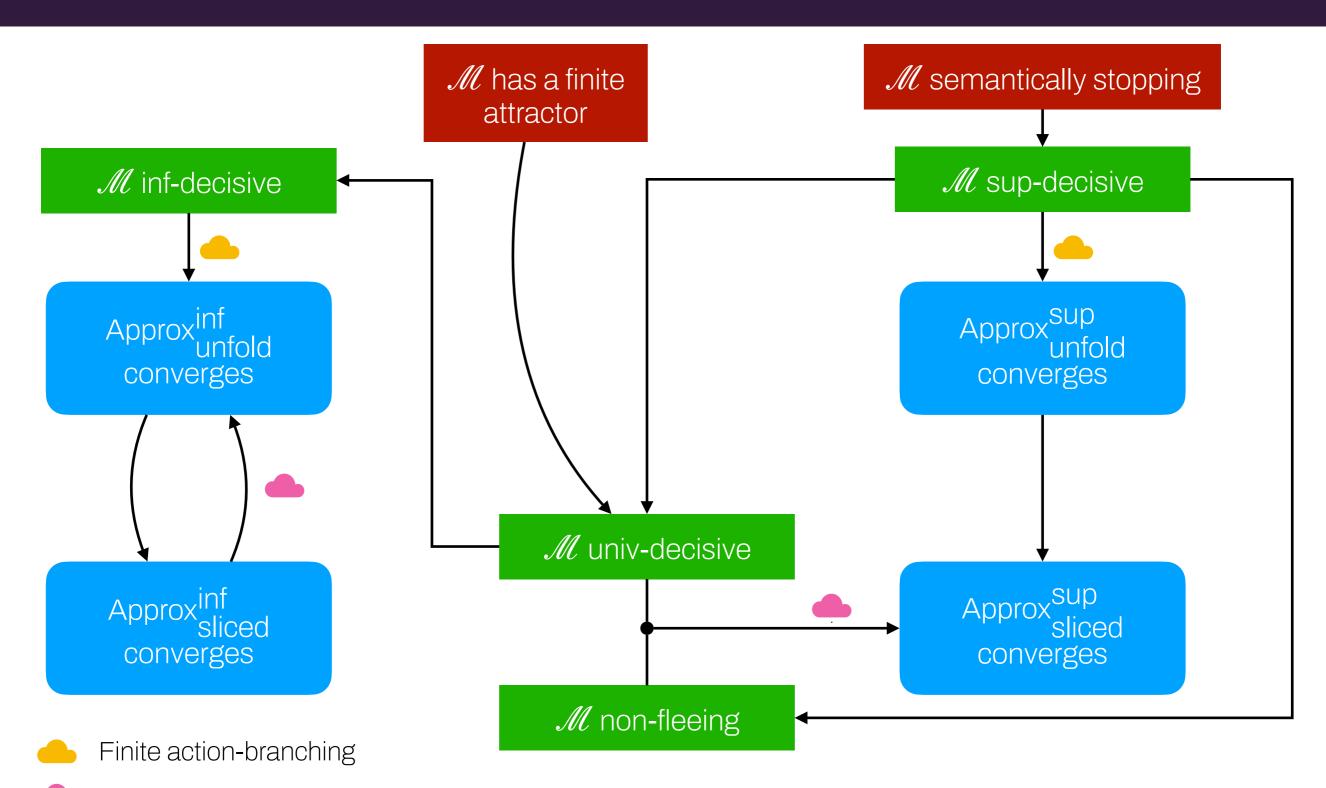
Scheme Approx opt sliced



Scheme Approx opt sliced

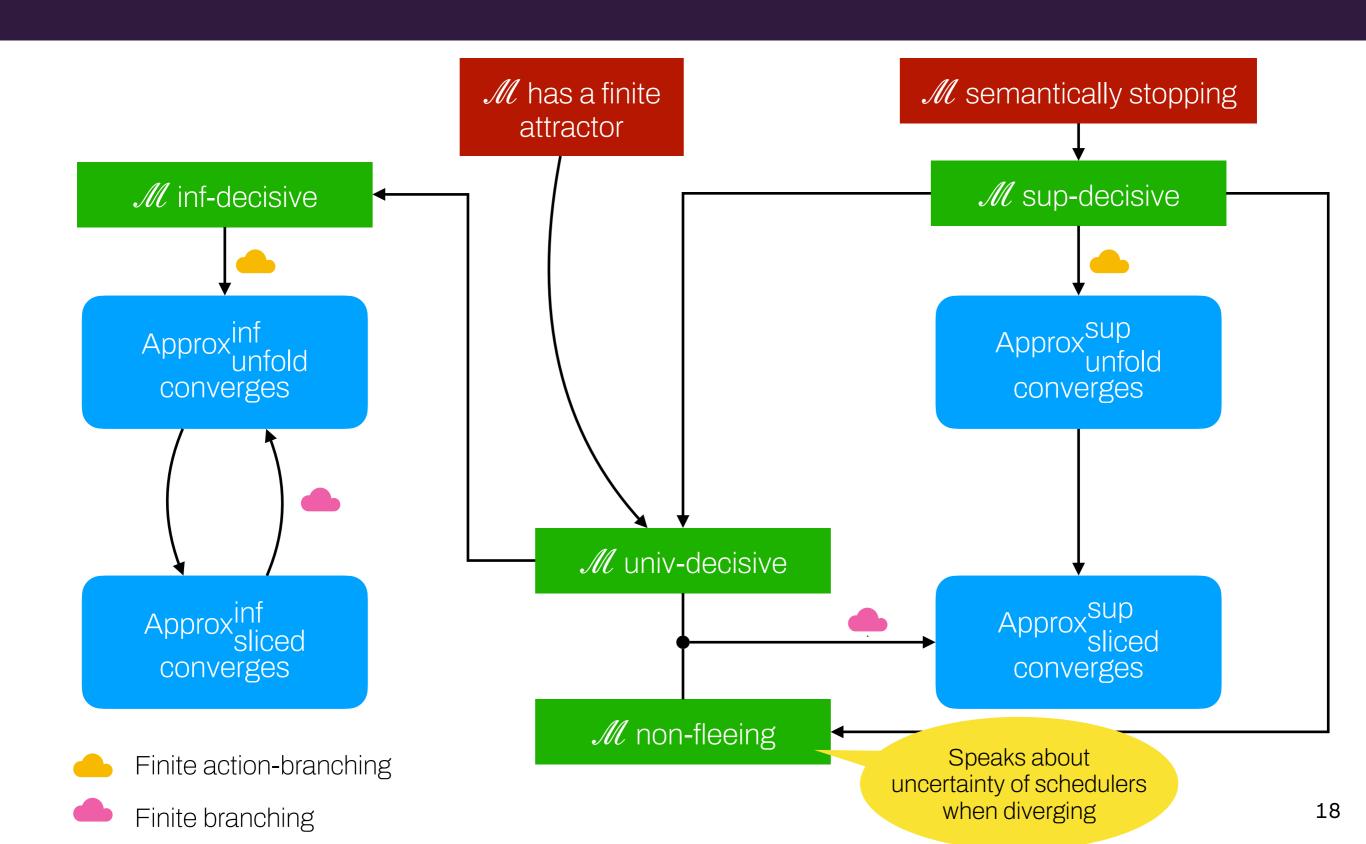
Converges over all finite MDPs...

Results — Summary



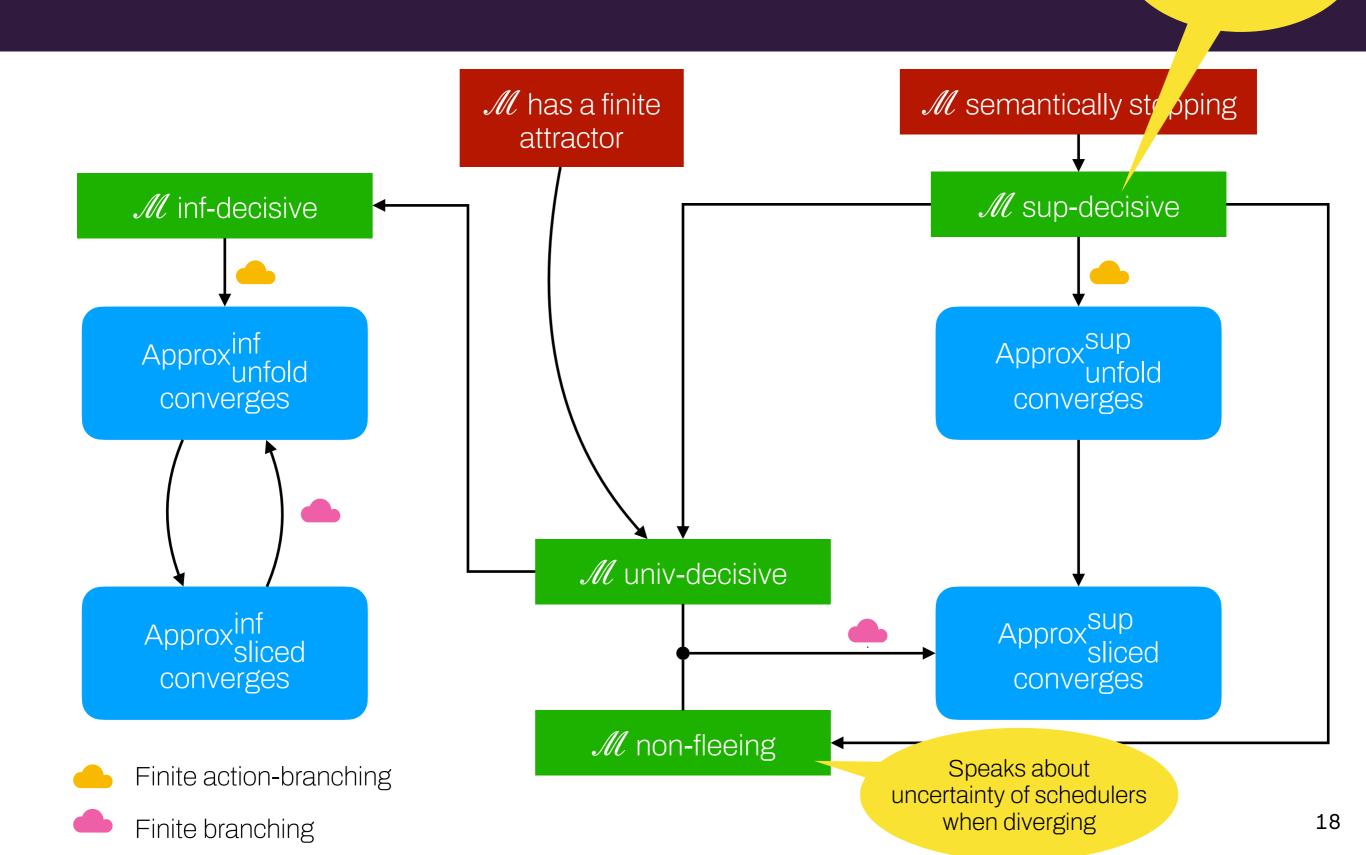
Finite branching

Results — Summary



Results — Summary

In finite MDPs, characterized by endcomponents



école — — — normale — — supérieure — — paris — saclay — —

Applications

Two families of models Christel has worked on

► NPLCS = non-deterministic and probabilistic lossy channel systems

Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties CHRISTEL BAIER

Universität Bonn, Institut für Informatik I

NATHALIE BERTRAND and PHILIPPE SCHNOEBELEN Lab. Specification & Verification, CNRS & ENS de Cachan

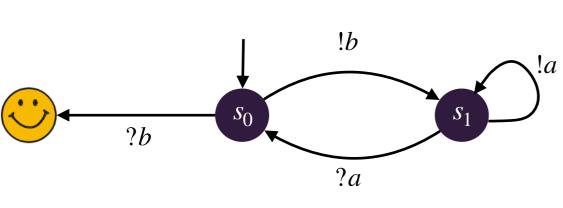
NPLCS = non-deterministic and probabilistic lossy channel systems

Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties CHRISTEL BAIER

Universität Bonn, Institut für Informatik I

NATHALIE BERTRAND and PHILIPPE SCHNOEBELEN Lab. Specification & Verification, CNRS & ENS de Cachan

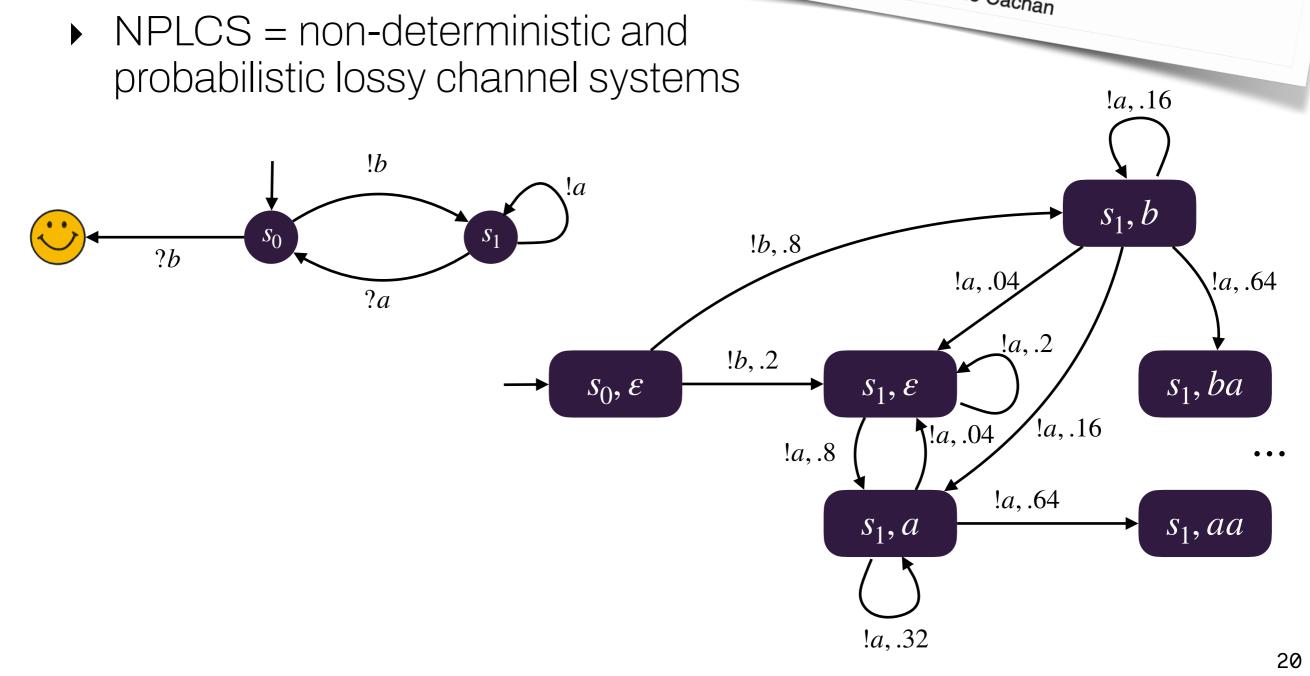
NPLCS = non-deterministic and probabilistic lossy channel systems



Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties CHRISTEL BAIER

Universität Bonn, Institut für Informatik I

NATHALIE BERTRAND and PHILIPPE SCHNOEBELEN Lab. Specification & Verification, CNRS & ENS de Cachan



- The set of configurations with an empty channel is an attractor for an NPLCS [BBS07]
- Any NPLCS is univ-decisive:
 - The « inf schemes » can be applied
 - Under nonfleeingness, Approx Sliced will converge as well
- . Checking $\mathbb{P}^{\operatorname{SUP}}_{\mathcal{M},s_0}\!\!\left(\mathbf{F}\ \odot\right)=1$ is undecidable

▶ POMDPs = partially observable MDPs

Probabilistic ω-Automata

CHRISTEL BAIER and MARCUS GRÖSSER, Technise
BERTRAND, INRIA Rennes Bretagne Atlantique

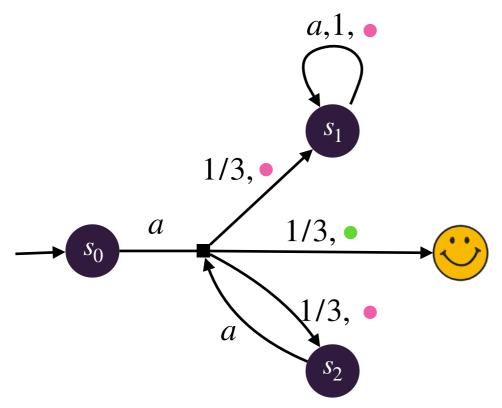
▶ POMDPs = partially observable MDPs

Probabilistic ω-Automata

CHRISTEL BAIER and MARCUS GRÖSSER, Technise

BERTRAND, INRIA Rennes Bretagne Atlantique

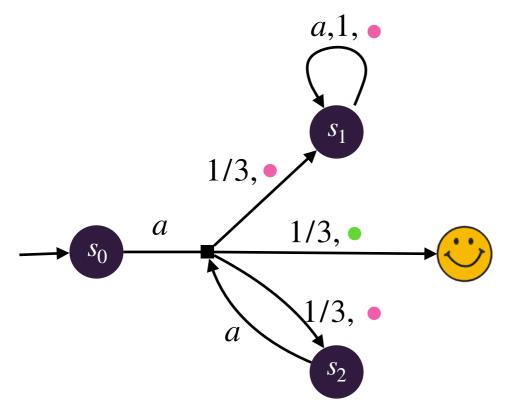
POMDPs = partially observable MDPs



Probabilistic ω-Automata

CHRISTEL BAIER and MARCUS GRÖSSER, Technise
BERTRAND, INRIA Rennes Bretagne Atlantique

POMDPs = partially observable MDPs



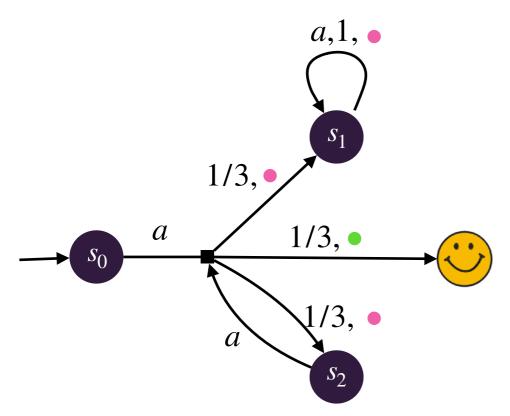
Schedulers only depend on colors

Probabilistic ω-Automata

CHRISTEL BAIER and MARCUS GRÖSSER, Technise

BERTRAND, INRIA Rennes Bretagne Atlantique

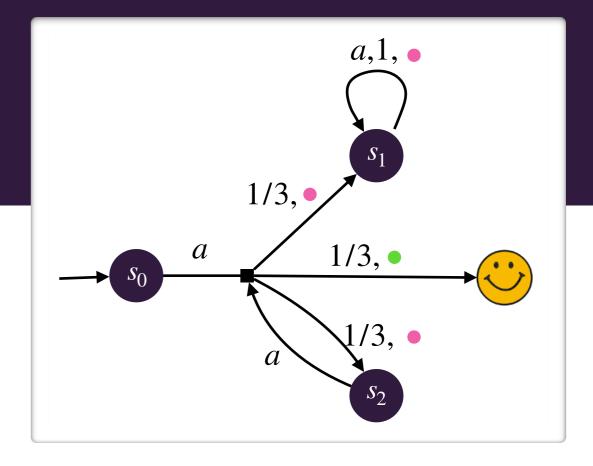
POMDPs = partially observable MDPs



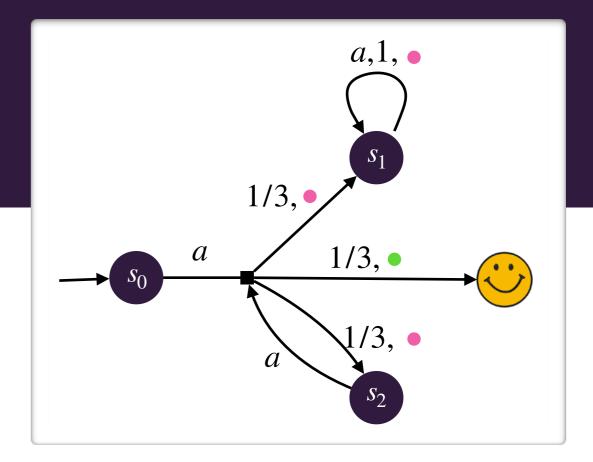
Schedulers only depend on colors

- Checking $\mathbb{P}^{\sup}_{\mathcal{M},s_0}(\mathbf{F} \bigcirc) = 1$ is undecidable [GO10]

 There is no approximation algorithm for \mathbb{P}^{\sup} (reach) in POMDPs [MHCS99]
- What can we do for \mathbb{P}^{\inf} (reach)?

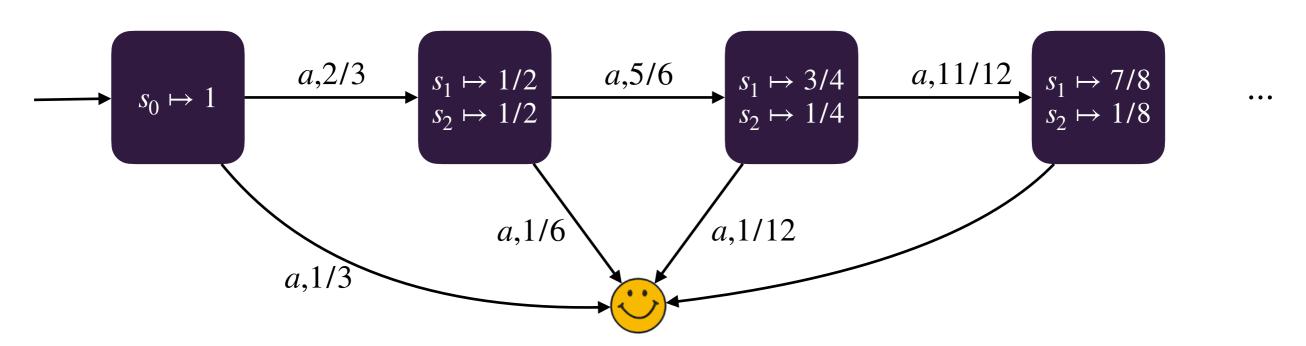


The belief MDP [KLC98]



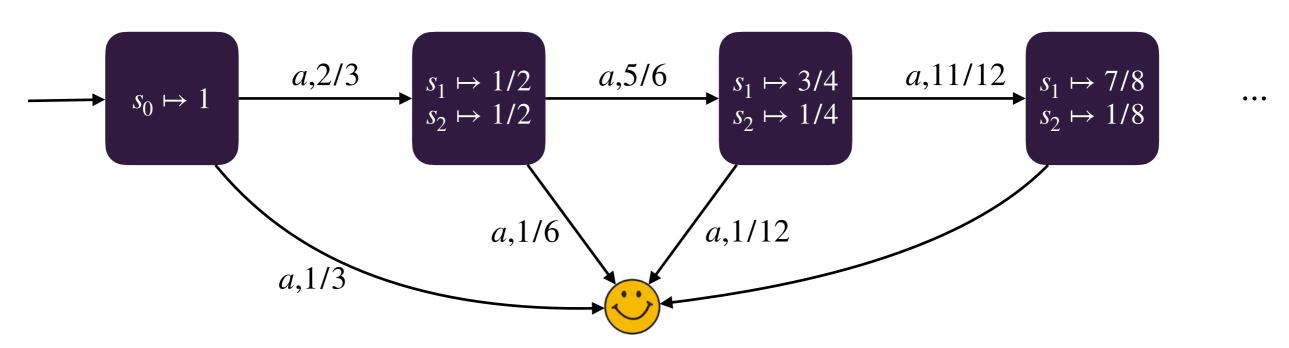
 $a,1, \bullet$ $1/3, \bullet$ $a = 1/3, \bullet$

The belief MDP [KLC98]



 $a,1, \bullet$ $1/3, \bullet$ $1/3, \bullet$ $1/3, \bullet$ $1/3, \bullet$ s_2

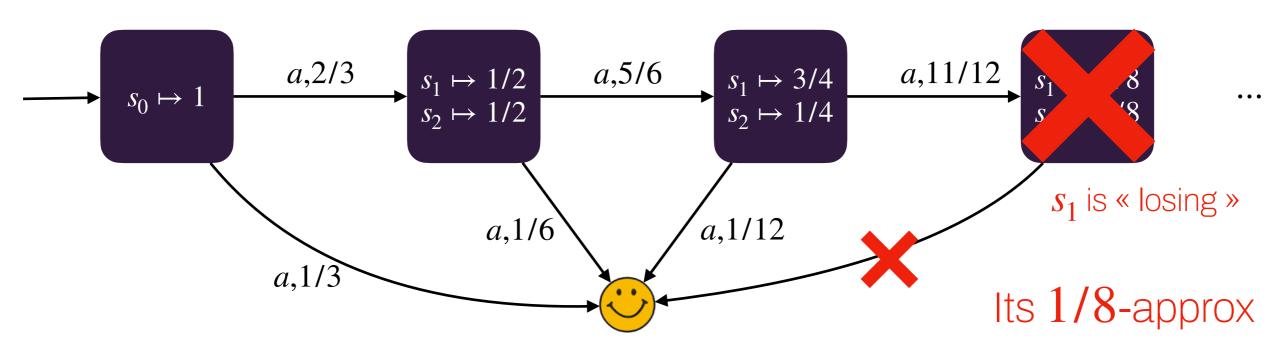
The belief MDP [KLC98]



This MDP is not inf-decisive!

 $a,1, \bullet$ $1/3, \bullet$ a $1/3, \bullet$ a $1/3, \bullet$ a $1/3, \bullet$ s_2

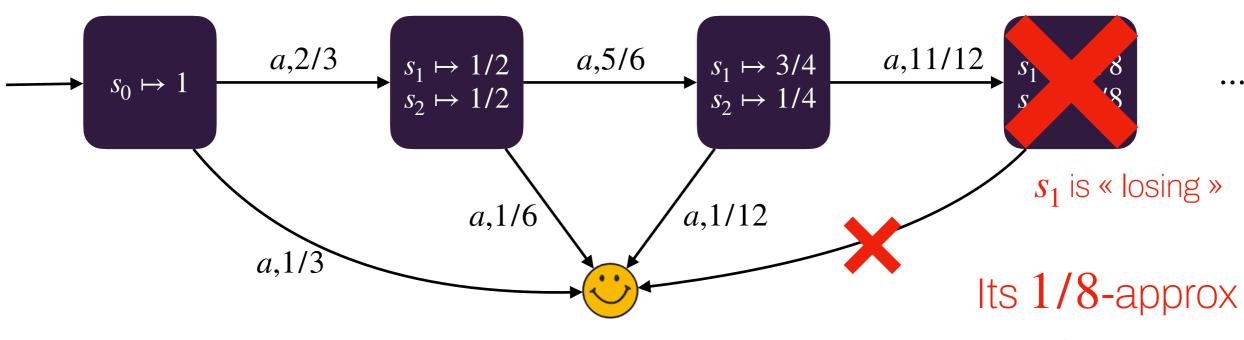
The belief MDP [KLC98]



This MDP is not inf-decisive!

 $a,1, \bullet$ $1/3, \bullet$ $1/3, \bullet$ $1/3, \bullet$ s_2 $1/3, \bullet$

The belief MDP [KLC98]

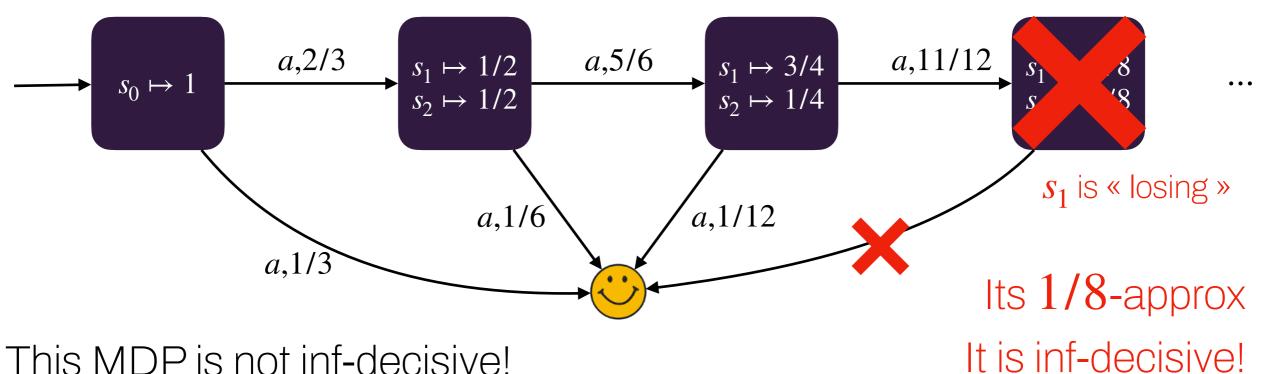


This MDP is not inf-decisive!

It is inf-decisive!

a,1, • 1/3, 1/3, \boldsymbol{a} 1/3,

The belief MDP [KLC98]



This MDP is not inf-decisive!

The « inf schemes » can be applied

école — — — normale — — supérieure — — paris — saclay — —

Conclusion

- Notions of decisiveness lifted to the setting of MDPs
- Inf-decisiveness very relevant: two classes of systems satisfy this property
- Sup-decisiveness less interesting, alternatives need to be worked out
- Further work: more expressive properties, more classes, refined notions for specific classes, ...