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Motivation 
— 

The setting
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My field of research: 
Formal methods

Proof theory

Model-checking
Test …

Logic

Topology
Algorithmics

Probabilities

Semantics

Systems 
Programs 
Protocols 

…

Give guarantees (+ certificates) on functionalities or performances

…
Classical 

application 
domains
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Control or synthesis
System Properties

Control/synthesis 
algorithm φ = AG¬crash ∧ (ℙ(F≤2harr) ≥ 0,9)

No/Yes/How?

?
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Find good and simple controllers for systems interacting with an 
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The talk in one slide

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an 
antagonistic environment

Good?

Performance w.r.t. objectives / 
payoffs / preference relations

When are simple strategies sufficient to play optimally?

Simple?

Minimal information for deciding 
the next steps
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Our general approach

[Tho95] On the synthesis of strategies in infinite games (STACS’95). 
[Tho02] Thomas. Infinite games and verification (CAV’02). 
[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives 
       in Games and Interactions, 2008). 
[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).
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‣ Use graph-based game models (state machines) to represent the 
system and its evolution
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[Tho02] Thomas. Infinite games and verification (CAV’02). 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       in Games and Interactions, 2008). 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‣ Use graph-based game models (state machines) to represent the 
system and its evolution

‣ Use game theory concepts to express admissible situations

• Winning strategies

• (Pareto-)Optimal strategies

• Nash equilibria

• Subgame-perfect equilibria

• …

Our general approach

[Tho95] On the synthesis of strategies in infinite games (STACS’95). 
[Tho02] Thomas. Infinite games and verification (CAV’02). 
[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives 
       in Games and Interactions, 2008). 
[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).
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Games 
What they often are
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Games 
A broader sense

Goal

‣ Model and analyze (using math. 
tools) situations of interactive 
decision making

Ingredients
‣ Several decision makers (players)

‣ Possibly each with different goals

‣ The decision of each player impacts 

the outcome of all

Wide range of applicability

‣ Social science: e.g. social choice theory

‣ Theoretical economics: e.g. models of markets, auctions

‣ Political science: e.g. fair division

‣ Biology: e.g. evolutionary biology

‣ …

« […] it is a context-free mathematical toolbox. »

[MSZ13] Maschler, Solan, Zamir. Game theory (2013).

+ Computer science

Interaction
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Games on graphs

: player P1

: player P2

1.  chooses the edge P1 (s0, s1)
2.  chooses the edge P2 (s1, s4)
3.  chooses the edge P2 (s4, s2)
4.  chooses the edge P1 (s2, )

s0 → s1 → s4 → s2 →

Players use strategies to play. 
A strategy for  is Pi σi : S*Si → E

𝒢 = (S, s0, S1, S2, E)

s0 → s1 → s4 → s2s0 → s1 → s4s0 → s1s0

EdgesStates
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Objectives for the players

 C = { , }
E ⊆ S × C × S

b

a

aa

a

a

a

a

a

a a

a b
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‣ Winning objective for : , e.g. Pi Wi ⊆ Cω W1 = C* ⋅ b ⋅ Cω

‣ Payoff function: , e.g. mean-payofpi : Cω → ℝ

‣ Preference relation:  
(total preorder)

⊑i ⊆ Cω × Cω

Objectives for the players

 C = { , }
E ⊆ S × C × S

b

a

aa

a

a

a

a

a

a a

a b

Zero-sum hypothesis

W2 = Wc
1

p1 + p2 = 0

⊑2 = ⊑−1
1
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What does it mean to win a 
game?



12

‣ Play  is compatible with  whenever  implies 
. We write .

ρ = s0s1s2… σi sj ∈ Si
(sj, sj+1) = σi(s0s1…sj) Out(σi)

What does it mean to win a 
game?
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Outcomes of a strategy
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s0

s3

s2

s4

s1

Outcomes of a strategy

s0

s3

s4

s2‣ Strategy σ
‣  has two plays, 

which are both winning
Out(σ)
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s0

s3

s2

s4

s1

Outcomes of a strategy

s0

s4

s2

s1

s2s0

s1

s4

⋮

‣ Strategy σ
‣  has infinitely many plays, 

some of them are not winning
Out(σ)
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‣ Play  is compatible with  whenever  implies 
. We write . 


‣  is winning if all plays compatible with  belong to 

ρ = s0s1s2… σi sj ∈ Si
(sj, sj+1) = σi(s0s1…sj) Out(σi)

σi σi Wi

What does it mean to win a 
game?

[Mar75] Martin. Borel determinacy (Annals of Mathematics).
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‣ Play  is compatible with  whenever  implies 
. We write . 


‣  is winning if all plays compatible with  belong to 

ρ = s0s1s2… σi sj ∈ Si
(sj, sj+1) = σi(s0s1…sj) Out(σi)

σi σi Wi

What does it mean to win a 
game?

Martin’s determinacy theorem

Turn-based zero-sum games are determined for Borel winning objectives: 
in every game, either  or  has a winning strategy.P1 P2

[Mar75] Martin. Borel determinacy (Annals of Mathematics).
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Optimality of strategies
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Optimality of strategies
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Optimality of strategies
⊑

‣  is better than  whenever σ1 σ′￼1 Out(σ1)↑⊆Out(σ′￼1)↑

‣  is optimal whenever it is better than any other σ1 σ′￼1

Out(σ1)

Out(σ′￼1)
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Optimality of strategies

Remark

‣ Optimal strategies might not exist

‣ If  given by a payoff function, notion of -optimal strategies

‣ Optimality vs subgame-optimality

⊑ ε

⊑

‣  is better than  whenever σ1 σ′￼1 Out(σ1)↑⊆Out(σ′￼1)↑

‣  is optimal whenever it is better than any other σ1 σ′￼1

Out(σ1)

Out(σ′￼1)
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Relevant questions

φ = Reach( )

‣ Can  win the game, i.e. does  have a winning strategy? 
Can  play optimally?

P1 P1
P1

‣ Is there an effective (efficient) way of winning?

‣ How complex is it to win?

s0

s3

s2

s4

s1
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Example: the Nim game

‣ Players alternate

‣ Each player can take one or two sticks

‣ The player who takes the last one wins


‣  startsP1
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Example: the Nim game

‣ Players alternate

‣ Each player can take one or two sticks

‣ The player who takes the last one wins


‣  startsP1

8 7 6 5 4 3 2 1 0

01234567

‣ from all         


‣ from all          

≡ 1 or 2 mod 3
≡ 0 mod 3

 winsP1

‣ from all         


‣ from all          

≡ 0 mod 3
≡ 1 or 2 mod 3

 winsP2

 winsP1

 winsP2
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Computation of winning 
states in the running example
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Computation of winning 
states in the running example
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Computation of winning 
states in the running example

s0

s3

s2

s4

s1

One state is not winning for  
It is winning for 

P1
P2
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Chess game

[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress  
        Mathematicians, 1912). 
[Au89] Aumann. Lectures on Game Theory (1989).
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Chess game

Zermelo’s Theorem

From every position, either White can force a win, or Black can force a win, 
or both sides can force at least a draw.

[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress  
        Mathematicians, 1912). 
[Au89] Aumann. Lectures on Game Theory (1989).

‣ We don’t know what is the case for the initial position,  
and no winning strategy (for either of the players) is known

‣ According to Claude Shannon, there are  legit positions in chess1043
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Hex game
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Hex game

Solving the Hex game

First player has always a winning strategy.

‣ Determinacy results (no tie is possible) + strategy stealing argument

‣ A winning strategy is not known yet.
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‣ Concurrent games


‣ Stochastic games and strategies


‣ Partial information


‣ Values


‣ Determinacy of Blackwell games

What we do not consider
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Families of strategies
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Families of strategies
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General strategies

‣ May use any information of the past execution


‣ Information used is therefore potentially infinite


‣ Not adequate if one targets implementation

σi : S*Si → E
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On the simplest side: 
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From  to σi : S*Si → E σi : Si → E
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‣ Positional = memoryless

‣ Reachability, parity, mean-payoff, positive energy, … 
 positional strategies are sufficient to win→

On the simplest side: 
positional strategies

From  to σi : S*Si → E σi : Si → E
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Example: mean-payof

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).
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‣  maximizes,  minimizesP1 P2

Example: mean-payof

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

s1 s3 s5
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5

0
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2

8
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MP = lim sup
n

∑i≠n ci
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‣  maximizes,  minimizesP1 P2
‣ Positional strategies are sufficient to win

Example: mean-payof

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

s1 s3 s5

s4s2s0

-1

-1

-2
5

0

-2

-4

2
-1 -7

2

8

-4

Value 2Value -1 Value 0.5

MP = lim sup
n

∑i≠n ci

n
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Do we need more?
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Examples

s2s1

c

b

« See infinitely often both  and  » 
Büchi Büchi

a b
(a) ∧ (b)

Winning strategy

‣ At each visit to , loop once in  and 
then go to 


‣ At each visit to , loop once in  and 
then go to 


‣ Generates the sequence 

s1 s1
s2

s2 s2
s1

(acbc)ω

s0
−5

1 0

« Reach the target with energy level  » 0
FG (EL = 0)

Winning strategy

‣ Loop five times in 

‣ Then go to the target

‣ Generates the sequence of colors

s0

1 1 1 1 1 − 5 0 0 0...

a

c

These two strategies require only finite memory
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Example: multi-dimensional 
mean-payof

« Have a (limsup) mean-payoff  
on both dimensions » 

So-called multi-dimensional mean-payof

≥ 0
s2s1

(−1, − 1)

(−1, + 1)(+1, − 1)

(−1, − 1)
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Example: multi-dimensional 
mean-payof

« Have a (limsup) mean-payoff  
on both dimensions » 

So-called multi-dimensional mean-payof

≥ 0

Winning strategy

‣ After -th switch between  and , loop  times and then switch back

‣ Generates the sequence 

    
  

 …

k s1 s2 2k − 1

(−1, − 1) (−1, + 1) (−1, − 1)(+1, − 1)(+1, − 1)(+1, − 1) (−1, − 1)
(−1, + 1)(−1, + 1)(−1, + 1)(−1, + 1)(−1, + 1) (−1, − 1)
(+1, − 1)(+1, − 1)(+1, − 1)(+1, − 1)(+1, − 1)(+1, − 1)(+1, − 1) (−1, − 1)

s2s1

(−1, − 1)

(−1, + 1)(+1, − 1)

(−1, − 1)
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(−1, − 1) (−1, + 1) (−1, − 1)(+1, − 1)(+1, − 1)(+1, − 1) (−1, − 1)
(−1, + 1)(−1, + 1)(−1, + 1)(−1, + 1)(−1, + 1) (−1, − 1)
(+1, − 1)(+1, − 1)(+1, − 1)(+1, − 1)(+1, − 1)(+1, − 1)(+1, − 1) (−1, − 1)

s2s1

(−1, − 1)

(−1, + 1)(+1, − 1)

(−1, − 1)

This strategy requires infinite memory, and this is unavoidable
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We focus on finite memory!



 with  and ℳ = (M, minit, αupd) minit ∈ M αupd : M × C → M
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Chromatic* memory

Memory skeleton

m1a
b

a

b

m2

* Terminology by Kopczyński
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m1a
b
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Memory skeleton

m1a
b

a

b

m2

Strategy with memory ℳ

Additional next-move function 


 defines a strategy!

αnext : M × Si → E
(ℳ, αnext)

Not yet a strategy!
σi : S*Si → E

* Terminology by Kopczyński

Remark: positional strategies are -strategies, where  isℳtriv ℳtriv
m1C
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Chromatic* memory

Memory skeleton

m1a
b

a

b

m2

Strategy with memory ℳ

Additional next-move function 


 defines a strategy!

αnext : M × Si → E
(ℳ, αnext)

Not yet a strategy!
σi : S*Si → E

αupd : M × S → M

Chaotic* memory

* Terminology by Kopczyński

Remark: positional strategies are -strategies, where  isℳtriv ℳtriv
m1C
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Example of chromatic 
memory

m1
a

b

a

b

m2
ccℳ

This skeleton is sufficient for the winning condition 
Büchi Büchi(a) ∧ (b)
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a

b

a

b

m2
ccℳ

This skeleton is sufficient for the winning condition 
Büchi Büchi(a) ∧ (b)

That is, for every game, if there is a winning strategy, there is one based on this skeleton
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c

b
a
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a

b c
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Example of chromatic 
memory

m1
a

b

a

b

m2
ccℳ

This skeleton is sufficient for the winning condition 
Büchi Büchi(a) ∧ (b)

That is, for every game, if there is a winning strategy, there is one based on this skeleton

αnext : M × S1 → E
(m1, s2) ↦ (s2, b, s2)
(m2, s2) ↦ (s2, a, s1)
(m⋆, s3) ↦ (s3, b, s1)

s2

c

b
a

s3

s1

a

b c

b
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Example of chromatic 
memory

m1
a

b

a

b

m2
ccℳ

This skeleton is sufficient for the winning condition 
Büchi Büchi(a) ∧ (b)

That is, for every game, if there is a winning strategy, there is one based on this skeleton

s2

c

b
a

s3

s1

a

b c

b
αnext : M × S1 → E

(m1, s2) ↦ (s2, c, s3)
(m2, s2) ↦ (s2, a, s1)
(m⋆, s3) ↦ (s3, b, s1)
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Our goal

Understand well low-memory specifications
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Our goal

Positional / finite-memory determinacy

Is it the case that positional (resp. finite-memory) strategies suffice to 
win/be optimal when winning/optimal strategies exist?

Understand well low-memory specifications

‣ Finite vs infinite games
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Characterizing positional and 
chromatic finite-memory determinacy 

in finite games
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The approach

[GZ05] Gimbert, Zielonka. Games Where You Can Play Optimally Without Any Memory (CONCUR’05).
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‣ Characterize winning objectives ensuring memoryless determinacy, 
that is, the existence of positional winning strategies (for both players) 
in all finite games

The approach

[GZ05] Gimbert, Zielonka. Games Where You Can Play Optimally Without Any Memory (CONCUR’05).
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‣ Should apply to reachability/safety objectives, mean-payoff, parity, …
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‣ Characterize winning objectives ensuring memoryless determinacy, 
that is, the existence of positional winning strategies (for both players) 
in all finite games

‣ Should apply to reachability/safety objectives, mean-payoff, parity, …

‣ Fundamental reference: [GZ05]

The approach

[GZ05] Gimbert, Zielonka. Games Where You Can Play Optimally Without Any Memory (CONCUR’05).
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Properties of preference 
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‣ Let  be a preference relation (for ).⊑ P1

‣ Let  be a winning objective (for ).W ⊆ Cω P1

‣ It is said monotone whenever: 
 
 
 

‣ It is said selective whenever:

Properties of preference 
relations

If this is in W then one of those is in W
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Two characterizations

Characterization - Two-player games

The two following assertions are equivalent:

1. All finite games have positional optimal strategies for both players;

2. Both  and are monotone and selective.⊑ ⊑−1

Let  be a preference relation (for ).⊑ P1
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Two characterizations

Characterization - Two-player games

The two following assertions are equivalent:

1. All finite games have positional optimal strategies for both players;

2. Both  and are monotone and selective.⊑ ⊑−1

Characterization - One-player games

The two following assertions are equivalent:

1. All finite -games have positional optimal strategies;


2.  is monotone and selective.

P1
⊑

Let  be a preference relation (for ).⊑ P1
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Applications

Lifting theorem

 has positional optimal strategies in all finite -games


Both players have positional optimal strategies in all finite 2-player games.

Pi Pi⇒
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Applications

Lifting theorem

 has positional optimal strategies in all finite -games


Both players have positional optimal strategies in all finite 2-player games.

Pi Pi

Very powerful and extremely useful in practice 

‣ Easy to analyse the one-player case (graph analysis)

- Mean-payoff, average-energy [BMRLL15]

⇒

[BMRLL15] Bouyer, Markey, Randour, Larsen, Laursen. Average-energy games (GandALF’15).
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‣ Reachability, safety:

• Monotone (though not prefix-independent)

• Selective


‣ Parity, mean-payoff:

• Prefix-independent hence monotone

• Selective


‣ Average-energy games [BMRLL15]

• Lifting theorem!!

Discussion of examples

Monotony

Selectivity

[BMRLL15] Bouyer, Markey, Randour, Larsen, Laursen. Average-energy games (GandALF’15).
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‣ Let  be a preference relation (for ). 
Let  be a memory skeleton.


‣ It is said -monotone whenever: 
 
 
 

‣ It is said -selective whenever:

⊑ P1
ℳ

ℳ

ℳ

Properties of preference 
relations — Adding memory
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‣ It is said -selective whenever:

⊑ P1
ℳ

ℳ

ℳ

Properties of preference 
relations — Adding memory
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Two characterizations

Characterization - Two-player games

The two following assertions are equivalent:

1. All finite games have -based optimal strategies for both players;

2. Both  and are -monotone and -selective.

ℳ
⊑ ⊑−1 ℳ ℳ

Let  be a preference relation (for ) and  be a memory skeleton.⊑ P1 ℳ
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Two characterizations

Characterization - Two-player games

The two following assertions are equivalent:

1. All finite games have -based optimal strategies for both players;

2. Both  and are -monotone and -selective.

ℳ
⊑ ⊑−1 ℳ ℳ

Characterization - One-player games

The two following assertions are equivalent:

1. All finite -games have -based optimal strategies;


2.  is -monotone and -selective.

P1 ℳ
⊑ ℳ ℳ

Let  be a preference relation (for ) and  be a memory skeleton.⊑ P1 ℳ



41

Two characterizations

Characterization - Two-player games

The two following assertions are equivalent:

1. All finite games have -based optimal strategies for both players;

2. Both  and are -monotone and -selective.

ℳ
⊑ ⊑−1 ℳ ℳ

Characterization - One-player games

The two following assertions are equivalent:

1. All finite -games have -based optimal strategies;


2.  is -monotone and -selective.

P1 ℳ
⊑ ℳ ℳ

Let  be a preference relation (for ) and  be a memory skeleton.⊑ P1 ℳ

 We recover [GZ05] with → ℳ = ℳtriv
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Applications

Lifting theorem
 has -based optimal strategies in all finite -games


Both players have -based optimal strategies 
in all finite two-player games.

Pi ℳi Pi

(ℳ1 × ℳ2)

⇒
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Applications

Lifting theorem
 has -based optimal strategies in all finite -games


Both players have -based optimal strategies 
in all finite two-player games.

Pi ℳi Pi

(ℳ1 × ℳ2)

Very powerful and extremely useful in practice 
⇒

‣ Easy to analyse the one-player case (graph analysis)


- Conjunction of -regular objectivesω
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Example of application

ℳ1 Cm1a a m2C∖{ }

 = Reach( )  Reach( )W a ∧ b
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Example of application

ℳ1

ℳ2
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CC∖{ , } m1a a m2

m3

a

ab

b

C∖{ }
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but not -selective
⊑W ℳ1

ℳ1
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 is -selective⊑W ℳ2

‣  is -monotone and -selective
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Example of application

ℳ1

ℳ2

Cm1a a m2C∖{ }

CC∖{ , } m1a a m2

m3

a

ab

b

C∖{ }

 = Reach( )  Reach( )W a ∧ b

 is -monotone 
but not -selective
⊑W ℳ1

ℳ1

 is -selective⊑W ℳ2

‣  is -monotone and -selective


‣ is -monotone and -selective

⊑W ℳ1 ℳ2

⊑−1
W ℳ1 ℳtriv

 Memory  is sufficient for both players in all finite games→ ℳ2
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Finite games
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‣ Complete characterization of winning objectives (and even preference 
relations) that ensure chromatic finite-memory determinacy for both 
players

‣ One-to-two-player lifts 
(requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic 
finite memory determinacy in two-players games for both players)

‣ Further questions:

• Can we reduce/optimize the memory?

• What about chaotic finite memory?

• Can we focus on one player (so-called half-positionality)?

Partial conclusion

Finite games
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Characterizing positional and 
chromatic finite-memory determinacy 

in infinite games
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‣ Objective for : get non-negative (limsup) mean-payoff


‣ In finite games: positional strategies are sufficient to win


‣ In infinite games: infinite memory is required to win

P1

The case of mean-payof

s1 s3s2 si
… …−1 −1 −1 −1

−1 −
1
2

−
1
3

−
1
i
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‣ Let  be a prefix-independent objective.W

A first insight [CN06]

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP’06). 
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees 
        (TCS 1998).
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A first insight [CN06]

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP’06). 
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees 
        (TCS 1998).

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for  in all (infinite) games 

for both players;

2.  is a parity condition 

That is, there are  and  such that

W

W
n ∈ ℕ γ : C → {0,1,…, n}

W = {c1c2… ∈ Cω ∣ lim sup
i

γ(ci) is even}
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‣ Let  be a prefix-independent objective.W

A first insight [CN06]

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP’06). 
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees 
        (TCS 1998).

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for  in all (infinite) games 

for both players;

2.  is a parity condition 

That is, there are  and  such that

W

W
n ∈ ℕ γ : C → {0,1,…, n}

W = {c1c2… ∈ Cω ∣ lim sup
i

γ(ci) is even}

Limitationsprefix-independent

Positional
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‣ Let  be a language of finite wordsL ⊆ C*

Some language theory (1)

Right congruence

‣Given ,
x, y ∈ C*

x ∼L y ⇔ ∀z ∈ C*, (x ⋅ z ∈ L ⇔ y ⋅ z ∈ L)
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‣ Let  be a language of finite wordsL ⊆ C*

Some language theory (1)

Right congruence

‣Given ,
x, y ∈ C*

x ∼L y ⇔ ∀z ∈ C*, (x ⋅ z ∈ L ⇔ y ⋅ z ∈ L)
Myhill-Nerode Theorem

‣  is regular if and only if  has finite index;


• There is an automaton whose states are classes of , which 
recognizes .

L ∼L

∼L
L
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‣ Let  be a language of infinite wordsL ⊆ Cω

Some language theory (2)

Right congruence

‣Given ,
x, y ∈ C*

x ∼L y ⇔ ∀z ∈ Cω, (x ⋅ z ∈ L ⇔ y ⋅ z ∈ L)
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‣ Let  be a language of infinite wordsL ⊆ Cω

Some language theory (2)

Right congruence

‣Given ,
x, y ∈ C*

x ∼L y ⇔ ∀z ∈ Cω, (x ⋅ z ∈ L ⇔ y ⋅ z ∈ L)
Link with -regularity?ω

‣ If  is -regular, then  has finite index;


• The automaton based on  is a so-called prefix-classifier;

‣The converse does not hold (e.g. all prefix-independent languages are 

such that  has only one element).

L ω ∼L

∼L

∼L
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Four examples

C

C

C

b b

a a

C a

a

b

C

C

No finite automaton

Suffcient memoryPrefix classifier ℳ∼Objective

Parity objective

Mean-payoff ≥ 0

 C = {a, b}
W = b*ab*aCω

 C = {a, b}
W = C*(ab)ω b
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‣ Let  be a winning objective.W ⊆ Cω

Characterization

Characterization - Two-player games

If a finite memory structure  suffices to play optimally in one-player infinite arenas for 
both players, then the prefix-classifier  is finite and  is recognized by a parity 
automaton , with .

ℳ
ℳ∼ W

(ℳ∼ ⊗ ℳ, γ) γ : M × C → {0,1,…, n}

[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science). 
[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy 
        of Games on Infinite Graphs (STACS’22).

 Generalizes [CN06] where both  and  are trivial→ ℳ ℳ∼
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Four examples

C

C

C

b b

a a

C a

a

b

C

C

No finite automaton

Prefix classifier ℳ∼Objective

Parity objective

Mean-payoff ≥ 0

 C = {a, b}
W = b*ab*aCω

 C = {a, b}
W = C*(ab)ω

11

1 1
2

b 11

0

0

↦ {0,1,…, n}

One-player memory
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Corollaries

Lifting theorem

If  and  are finite-memory-determined in one-player infinite 
games, then  and  are finite-memory-determined in two-player 
infinite games.

W Wc

W Wc
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Corollaries

Lifting theorem

If  and  are finite-memory-determined in one-player infinite 
games, then  and  are finite-memory-determined in two-player 
infinite games.

W Wc

W Wc

Characterization

 is finite-memory-determined in (two-player) infinite games if and 
only if  is -regular.
W

W ω
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‣ Mean-payoff  is not -regular (even though it is positionally 
determined in finite games)


‣ Some discounted objectives are -regular: 
e.g. condition  (with , ) is 

-regular if and only if  or  for some 

≥ 0 ω

ω
𝖣𝖲≥0

λ λ ∈ (0,1) ∩ ℚ C = [−k, k] ∩ ℤ ω

k <
1
λ

− 1 λ =
1
n

n ∈ ℕ>0

Some consequences
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Partial conclusion

Infinite games
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‣ Complete characterization of winning objectives that ensure chromatic finite-memory 
determinacy in infinite games = -regularω

Partial conclusion

Infinite games
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‣ Complete characterization of winning objectives that ensure chromatic finite-memory 
determinacy in infinite games = -regularω

‣ One-to-two-player lift 
(requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory 
determinacy in two-players games for both players)

Partial conclusion

Infinite games
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‣ Complete characterization of winning objectives that ensure chromatic finite-memory 
determinacy in infinite games = -regularω

‣ One-to-two-player lift 
(requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory 
determinacy in two-players games for both players)

‣ Further questions:

• Can be reduce/optimize the memory? 

E.g. is  necessary in the memory for two players?

• What about chaotic finite memory?

• Can we focus on one player (so-called half-positionality)?

• What about finite branching?

ℳ∼

Partial conclusion

Infinite games
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Conclusion
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‣ Use of models and concepts from game theory in formal methods 
(e.g. controller in reactive systems)

‣ These concepts (like winning strategies) require manipulating information

• For simpler strategies, use low memory!

• … even though low memory does not mean it is easy…

‣ Understand chromatic finite-memory determined objectives

‣ Going further:

• Games under partial observation, e.g. players with their own 

knowledge (of the game, of the other’s choices, …)

• Half-positionality or half-finite-memory of objectives (preliminary result 

[BCRV22])

What you can bring home

[BCRV22] Bouyer, Casares, Randour, Vandenhove. Half-Positional Objectives Recognized by Deterministic 
         Büchi Automata (submitted).


