

The true colors of memory: A tour of chromatic-memory strategies in zero-sum games on graphs

Patricia Bouyer

Laboratoire Méthodes Formelles Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Line of works developed together with Mickael Randour and Pierre Vandenhove. Some works are co-authored with other people: Antonio Casares, Nathanaël Fijalkow, Stéphane Le Roux, Youssouf Oualhadj.

Chromatic-memory strategies in zero-sum games on graphs

Patricia Bouyer

Laboratoire Méthodes Formelles Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Line of works developed together with Mickael Randour and Pierre Vandenhove.

Some works are co-authored with other people: Antonio Casares,

Nathanaël Fijalkow, Stéphane Le Roux, Youssouf Oualhadj.

école — — — normale — — supérieure — — paris — saclay — —

Motivation — The setting

My field of research: Formal methods

Give guarantees (+ certificates) on functionalities or performances

System

System

Properties

System

Properties

System

Properties

System

Properties

System

Properties

$$\varphi = \mathbf{AG} \operatorname{\neg crash} \wedge \left(\mathbb{P}(\mathbf{F}_{\leq 2\mathsf{h}} \mathrm{arr}) \geq 0.9 \right)$$

System

Model-checking algorithm

$$\varphi = \mathbf{AG} \operatorname{\neg crash} \wedge \left(\mathbb{P}(\mathbf{F}_{\leq 2\mathsf{h}} \mathrm{arr}) \geq 0.9 \right)$$

System

Properties

Control or synthesis

Control/synthesis algorithm

No/Yes/How?

 $\varphi = \mathbf{AG} \operatorname{\neg crash} \wedge \left(\mathbb{P}(\mathbf{F}_{\leq 2\mathsf{h}} \mathrm{arr}) \geq 0.9 \right)$

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

When are simple strategies sufficient to play optimally?

Our general approach

[[]Tho95] On the synthesis of strategies in infinite games (STACS'95).

[[]Tho02] Thomas. Infinite games and verification (CAV'02).

[[]GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[[]BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Our general approach

 Use graph-based game models (state machines) to represent the system and its evolution

[[]Tho95] On the synthesis of strategies in infinite games (STACS'95).

[[]Tho02] Thomas. Infinite games and verification (CAV'02).

[[]GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[[]BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Our general approach

- Use graph-based game models (state machines) to represent the system and its evolution
- Use game theory concepts to express admissible situations
 - Winning strategies
 - (Pareto-)Optimal strategies
 - Nash equilibria
 - Subgame-perfect equilibria
 - •

```
[Tho95] On the synthesis of strategies in infinite games (STACS'95).
```

[[]Tho02] Thomas. Infinite games and verification (CAV'02).

[[]GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[[]BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Games What they often are

Goal

Interaction

 Model and analyze (using math. tools) situations of interactive decision making

Goal

 Model and analyze (using math. tools) situations of interactive decision making

Interaction

Ingredients

- ▶ Several decision makers (players)
- ▶ Possibly each with different goals
- ▶ The decision of each player impacts the outcome of all

Goal

 Model and analyze (using math. tools) situations of interactive decision making

Interaction

Ingredients

- Several decision makers (players)
- ▶ Possibly each with different goals
- ▶ The decision of each player impacts the outcome of all

Wide range of applicability

« [...] it is a context-free mathematical toolbox. »

- ▶ Social science: e.g. social choice theory
- ▶ Theoretical economics: e.g. models of markets, auctions
- ▶ Political science: e.g. fair division
- ▶ Biology: e.g. evolutionary biology

...

Goal

 Model and analyze (using math. tools) situations of interactive decision making

Interaction

Ingredients

- Several decision makers (players)
- ▶ Possibly each with different goals
- ▶ The decision of each player impacts the outcome of all

Wide range of applicability

« [...] it is a context-free mathematical toolbox. »

- ▶ Social science: e.g. social choice theory
- ▶ Theoretical economics: e.g. models of markets, auctions
- ▶ Political science: e.g. fair division
- ▶ Biology: e.g. evolutionary biology

+ Computer science

...

 $lue{}$: player P_2

- \bigcirc : player P_1
- $lue{}$: player P_2

 S_0

$$s_0 \rightarrow s_1$$

1. P_1 chooses the edge (s_0, s_1)

$$\mathcal{G} = (S, s_0, S_1, S_2, E)$$

$$\bigcirc: \operatorname{player} P_1$$

$$\boxed{\quad : \operatorname{player} P_2 \quad }$$

$$s_0 \rightarrow s_1 \rightarrow s_4$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)

$$\mathcal{G} = (S, s_0, S_1, S_2, E)$$

$$\bigcirc : \mathsf{player}\, P_1$$

$$\bigcirc : \mathsf{player}\, P_2$$

$$s_0 \rightarrow s_1 \rightarrow s_4 \rightarrow s_2$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)

States Edges
$$\mathcal{G} = (S, s_0, S_1, S_2, E)$$

$$\bigcirc : \mathsf{player}\, P_1$$

$$\boxed{} : \mathsf{player}\, P_2$$

$$s_0 \to s_1 \to s_4 \to s_2 \to \bigcirc$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

States Edges
$$\mathcal{G} = (S, s_0, S_1, S_2, E)$$

 \bigcirc : player P_1

 $lue{}$: player P_2

$$s_0 \rightarrow s_1 \rightarrow s_4 \rightarrow s_2 \rightarrow \bigcirc$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

Players use **strategies** to play.

A strategy for P_i is $\sigma_i: S^*S_i \to E$

$$C = \{a, b\}$$
 set of colors $E \subseteq S \times C \times S$

$$C = \{a, b\}$$
 set of colors $E \subseteq S \times C \times S$

ullet Winning objective for P_i : $W_i\subseteq C^\omega$, e.g. $W_1=C^*\cdot b\cdot C^\omega$

$$C = \{a, b\}$$
 set of colors $E \subseteq S \times C \times S$

- ullet Winning objective for P_i : $W_i\subseteq C^\omega$, e.g. $W_1=C^*\cdot b\cdot C^\omega$
- Payoff function: $p_i \colon C^{\omega} \to \mathbb{R}$, e.g. mean-payoff

$$C = \{a, b\}$$
 set of colors $E \subseteq S \times C \times S$

- ullet Winning objective for P_i : $W_i\subseteq C^\omega$, e.g. $W_1=C^*\cdot b\cdot C^\omega$
- Payoff function: $p_i \colon C^{\omega} \to \mathbb{R}$, e.g. mean-payoff
- Preference relation: $\sqsubseteq_i \subseteq C^\omega \times C^\omega$ (total preorder)

Objectives for the players

Zero-sum assumption

$$C = \{a, b\}$$
 set of colors $E \subseteq S \times C \times S$

 $\blacktriangleright \quad \text{Winning objective for } P_i : W_i \subseteq C^\omega \text{, e.g. } W_1 = C^* \cdot b \cdot C^\omega$

$$W_2 = W_1^c$$

ightharpoonup Payoff function: $p_i\colon C^\omega \to \mathbb{R}$, e.g. mean-payoff

$$p_1 + p_2 = 0$$

• Preference relation: $\sqsubseteq_i \subseteq C^\omega \times C^\omega$ (total preorder)

$$\sqsubseteq_2 = \sqsubseteq_1^{-1}$$

Objectives for the players

Zero-sum assumption

$$C = \{a, b\}$$
 set of colors $E \subseteq S \times C \times S$

Winning objective for P_i : $W_i \subseteq C^{\omega}$, e.g. $W_1 = C^* \cdot b \cdot C^{\omega}$

$$W_2 = W_1^c$$

We focus on winning objectives, and write W for W_1

 $\sqsubseteq_2 = \sqsubseteq_1^{-1}$

Preference relation: $\sqsubseteq_i \subseteq C^{\omega} \times C^{\omega}$ (total preorder)

What does it mean to win a game?

What does it mean to win a game?

Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $\mathrm{Out}(\sigma_i)$.

▶ Strategy σ

- ▶ Strategy *o*
- $ightharpoonup Out(\sigma)$ has two plays, which are both winning

▶ Strategy σ

 S_4

15

What does it mean to win a game?

- Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i \big(s_0 s_1 \dots s_j \big)$. We write $\mathrm{Out}(\sigma_i)$.
- $m{\sigma}_i$ is **winning** if all plays compatible with $m{\sigma}_i$ belong to W_i $m{\sigma}_i$ is **optimal** if it is winning or if the initial state is losing

What does it mean to win a game?

- Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $\operatorname{Out}(\sigma_i)$.
- $m{\sigma}_i$ is **winning** if all plays compatible with $m{\sigma}_i$ belong to W_i $m{\sigma}_i$ is **optimal** if it is winning or if the initial state is losing

Martin's determinacy theorem

Turn-based zero-sum games are determined for Borel winning objectives: in every game, either P_1 or P_2 has a winning strategy.

$$\varphi = \operatorname{Reach}(\bigcirc)$$

$$\varphi = \text{Reach}(\bigcirc)$$

lacktriangle Can P_1 win the game, i.e. does P_1 have a winning strategy?

$$\varphi = \text{Reach}(\bigcirc)$$

- lacktriangle Can P_1 win the game, i.e. does P_1 have a winning strategy?
- ▶ Is there an effective (efficient) way of winning?

$$\varphi = \text{Reach}(\bigcirc)$$

- lacktriangle Can P_1 win the game, i.e. does P_1 have a winning strategy?
- Is there an effective (efficient) way of winning?
- ▶ How complex is it to win?

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

P_1 wins

- from all $\equiv 1$ or $2 \mod 3$
- from all $\equiv 0 \mod 3$

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

P_1 wins $\equiv 1 \text{ or } 2 \mod 3$ from all $\equiv 0 \mod 3$

All states are winning for P_1

One state is not winning for P_1 It is winning for P_2

- This generalizes to:
 - Any game on graph with a reachability objective
 - Similar ideas can be used for more involved winning objectives

One state is not winning for P_1 It is winning for P_2

[[]Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

Zermelo's Theorem

In chess either white can force a win, or black can force a win, or both can force at least a draw.

[[]Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

Zermelo's Theorem

In chess either white can force a win, or black can force a win, or both can force at least a draw.

 We don't know what is the case for the initial position, and no winning strategy (for either of the players) is known

Zermelo's Theorem

In chess either white can force a win, or black can force a win, or both can force at least a draw.

- We don't know what is the case for the initial position, and no winning strategy (for either of the players) is known
- \blacktriangleright According to Claude Shannon, there are 10^{43} legit positions in chess

[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

Limits — Hex game

Limits — Hex game

Solving the Hex game

First player has always a winning strategy.

Limits — Hex game

Solving the Hex game

First player has always a winning strategy.

Determinacy results (no tie is possible) + strategy stealing argument

Limits — Hex game

Solving the Hex game

First player has always a winning strategy.

- Determinacy results (no tie is possible) + strategy stealing argument
- \blacktriangleright A winning strategy is not known yet (for boards of size ≥ 13)

What we do not consider

- Concurrent games
- Stochastic games and stochastic strategies
 - Values
 - Determinacy of Blackwell games
- Partial information

école — normale — supérieure — paris — saclay — ...

Families of strategies

école — normale — supérieure — paris — saclay — ...

Families of strategies

General strategies

$$\sigma_i: S^*S_i \to E$$

- May use any information of the past execution
- Information used is therefore potentially infinite
- Not adequate if one targets implementation

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

From
$$\sigma_i: S^*S_i \to E$$
 to $\sigma_i: S_i \to E$

Positional = memoryless

From
$$\sigma_i: S^*S_i \to E$$
 to $\sigma_i: S_i \to E$

- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ...
 - \rightarrow positional strategies are sufficient to win

From
$$\sigma_i: S^*S_i \to E$$
 to $\sigma_i: S_i \to E$

- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ...
 - → positional strategies are sufficient to win

 $ightharpoonup P_1$ maximizes $\overline{\mathrm{MP}}$, P_2 minimizes $\overline{\mathrm{MP}}$

$$\overline{MP} = \limsup_{n} \frac{\sum_{i \neq n} c_i}{n}$$

- $ightharpoonup P_1$ maximizes $\overline{\rm MP}$, P_2 minimizes $\overline{\rm MP}$
- Positional strategies are sufficient to win

$$\overline{MP} = \limsup_{n} \frac{\sum_{i \neq n} c_i}{n}$$

- $ightharpoonup P_1$ maximizes $\overline{\rm MP}$, P_2 minimizes $\overline{\rm MP}$
- Positional strategies are sufficient to win

$$\overline{MP} = \limsup_{n} \frac{\sum_{i \neq n} c_i}{n}$$

$$W = (\overline{MP} \ge 0)$$

- $ightharpoonup P_1$ maximizes $\overline{\rm MP}$, P_2 minimizes $\overline{\rm MP}$
- Positional strategies are sufficient to win

$$\overline{MP} = \limsup_{n} \frac{\sum_{i \neq n} c_i}{n}$$

$$W = (\overline{MP} \ge 0)$$

Do we need more?

« See infinitely often both a and b » Büchi(a) \wedge Büchi(b)

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

« See infinitely often both a and b » Büchi(a) \wedge Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

« Reach the target with energy level 0 » \mathbf{FG} (EL = 0)

« See infinitely often both a and b » Büchi(a) \land Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

« Reach the target with energy level 0 »

$$\mathbf{FG}$$
 (EL = 0)

Winning strategy

- ightharpoonup Loop five times in s_0
- Then go to the target
- Generates the sequence of colors

$$1\ 1\ 1\ 1\ 1\ -5\ 0\ 0\ 0...$$

« See infinitely often both a and b » Büchi(a) \wedge Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- lacktriangle Generates the sequence $(acbc)^\omega$

$$\mathbf{FG}$$
 (EL = 0)

Winning strategy

- ightharpoonup Loop five times in s_0
- Then go to the target
- Generates the sequence of colors

$$1\ 1\ 1\ 1\ 1\ -5\ 0\ 0\ 0...$$

These two strategies require only **finite** memory

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Winning strategy

- lacksquare After k-th switch between s_1 and s_2 , loop 2k-1 times and then switch back
- Generates the sequence

```
(-1,-1)(-1,+1)(-1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)

(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,-1)

(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)...
```

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Winning strategy

- lacksquare After k-th switch between s_1 and s_2 , loop 2k-1 times and then switch back
- Generates the sequence

$$(-1,-1)(-1,+1)(-1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)$$

 $(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,-1)$
 $(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)...$

This strategy requires **infinite** memory, and this is unavoidable

We focus on finite memory!

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy!

$$\sigma_i: S^*S_i \to E$$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy!

$$\sigma_i: S^*S_i \to E$$

Strategy with memory ${\mathscr M}$

Additional next-move function $\alpha_{\text{next}}: M \times S_i \to E$

 $(\mathcal{M}, \alpha_{\mathsf{next}})$ defines a strategy!

Memory skeleton

 $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy!

 $\sigma_i: S^*S_i \to E$

Strategy with memory ${\mathscr M}$

Additional next-move function $\alpha_{\text{next}}: M \times S_i \to E$ $(\mathcal{M}, \alpha_{\text{next}})$ defines a strategy!

Remark: memoryless strategies are $\mathcal{M}_{\mathrm{triv}}$ -strategies, where $\mathcal{M}_{\mathrm{triv}}$ is

Memory skeleton

$$\mathcal{M} = (M, m_{\mathsf{init}}, \alpha_{\mathsf{upd}})$$
 with $m_{\mathsf{init}} \in M$ and $\alpha_{\mathsf{upd}} : M \times S \to M$

Not yet a strategy!

 $\sigma_i: S^*S_i \to E$

Chaotic* memory

Strategy with memory ${\mathscr M}$

Additional next-move function $\alpha_{\text{next}}: M \times S_i \to E$ $(\mathcal{M}, \alpha_{\text{next}}) \text{ defines a strategy!}$

Remark: memoryless strategies are $\mathcal{M}_{\mathrm{triv}}$ -strategies, where $\mathcal{M}_{\mathrm{triv}}$ is

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, b, s_2)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

 (m_1, s_1)

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, b, s_2)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

$$(m_1, s_1) \xrightarrow{c} (m_1, s_2)$$

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, b, s_2)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

$$(m_1, s_1) \xrightarrow{c} (m_1, s_2) \xrightarrow{b} (m_2, s_2)$$

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, b, s_2)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

$$(m_1, s_1) \xrightarrow{c} (m_1, s_2) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\mathsf{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, b, s_2)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

$$(m_1, s_1) \xrightarrow{c} (m_1, s_2) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

$$(m_1, s_1)$$

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, b, s_2)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

$$(m_1, s_1) \xrightarrow{c} (m_1, s_2) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

$$(m_1, s_1) \xrightarrow{b} (m_2, s_2)$$

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, b, s_2)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

$$(m_1, s_1) \xrightarrow{c} (m_1, s_2) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

$$(m_1, s_1) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, b, s_2)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

$$(m_1, s_1) \xrightarrow{c} (m_1, s_2) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

$$(m_1, s_1) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

$$(m_1, s_2) \mapsto (s_2, c, s_3)$$

$$(m_2, s_2) \mapsto (s_2, a, s_1)$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

$$(m_1, s_1) \xrightarrow{c} (m_1, s_2) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

$$(m_1, s_1) \xrightarrow{b} (m_2, s_2) \xrightarrow{a} (m_1, s_1)$$

This skeleton is sufficient for winning

$$W = \text{B\"{u}chi}(a) \land \text{B\"{u}chi}(b)$$
 (in any arena)

Example

$$lpha_{ ext{next}}$$
 :

$$\alpha_{\text{next}}: M \times S_1 \rightarrow E$$

Playing with memory \mathcal{M} is like playing memoryless in the product arena

$$(m_{\star}, s_3)$$

$$\mapsto$$

$$(m_{\star}, s_3) \mapsto (s_3, b, s_1)$$

Let W be an objective and $i \in \{1,2\}$

- Let W be an objective and $i \in \{1,2\}$
- A skeleton \mathcal{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathcal{M} in any game (\mathcal{A},W) (resp. (\mathcal{A},W^c))

^{*} That is, it is winning whenever it is possible to win

Let W be an objective and $i \in \{1,2\}$

- in finite arenas in one-player arenas
- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A},W) (resp. (\mathscr{A},W^c))

finite one-player

^{*} That is, it is winning whenever it is possible to win

Let W be an objective and $i \in \{1,2\}$

- in finite arenas in one-player arenas
- A skeleton \mathcal{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathcal{M} in any game (\mathcal{A},W) (resp. (\mathcal{A},W^c)) finite one-player
- lacktriangledown W is ${\mathscr M}$ -determined if ${\mathscr M}$ suffices to win for both players for W

^{*} That is, it is winning whenever it is possible to win

Let W be an objective and $i \in \{1,2\}$

- in finite arenas in one-player arenas
- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A},W) (resp. (\mathscr{A},W^c))
- $lacksymbol{W}$ is ${\mathscr M}$ -determined if ${\mathscr M}$ suffices to win for both players for W
- Memoryless determined = \mathcal{M}_{triv} -determined

one-player

^{*} That is, it is winning whenever it is possible to win

Let W be an objective and $i \in \{1,2\}$

- in finite arenas in one-player arenas
- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A},W) (resp. (\mathscr{A},W^c))
- lacksquare W is \mathscr{M} -determined if \mathscr{M} suffices to win for both players for W
- Memoryless determined = \mathcal{M}_{triv} -determined
- Finite-memory determined = $\exists \mathcal{M}$ s.t. \mathcal{M} -determined

one-player

^{*} That is, it is winning whenever it is possible to win

Let W be an objective and $i \in \{1,2\}$

- in finite arenas in one-player arenas
- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A},W) (resp. (\mathscr{A},W^c))

finite one-player

- lacktriangledown W is ${\mathscr M}$ -determined if ${\mathscr M}$ suffices to win for both players for W
- Memoryless determined = \mathcal{M}_{triv} -determined
- Finite-memory determined = $\exists \mathcal{M}$ s.t. \mathcal{M} -determined
- lacksquare W is half-positional = $\mathscr{M}_{\mathsf{triv}}$ suffices to play optimally for P_1 for W

^{*} That is, it is winning whenever it is possible to win

Warning

\mathscr{M} -determinacy requires

- Chromatic memory: the skeleton is based on colors
- Arena-independent memory: the same memory skeleton is used in all arenas (of the designed class)

Examples

« See infinitely often both a and b » Büchi(a) \land Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- lacktriangle Generates the sequence $(acbc)^\omega$

« Reach the target with energy level 0 »

$$\mathbf{FG}$$
 (EL = 0)

Winning strategy

- lacksquare Loop five times in s_0
- Then go to the target
- Generates the sequence of colors

$$1\ 1\ 1\ 1\ 1\ -5\ 0\ 0\ 0...$$

These two strategies require only **finite** memory

Examples

« See infinitely often both a and b » Büchi(a) \wedge Büchi(b)

Winning strategy

« Reach the target with energy level 0 » \mathbf{FG} (EL = 0)

Winning strategy

The memory has to be arenadependent

These two strategies require only **finite** memory

Ourgoal

Understand well low-memory specifications

Ourgoal

Understand well low-memory specifications

Memoryless / finite-memory determinacy

Is it the case that memoryless (resp. finite-memory) strategies suffice to win when winning strategies exist?

Ourgoal

Understand well low-memory specifications

Memoryless / finite-memory determinacy

Is it the case that memoryless (resp. finite-memory) strategies suffice to win when winning strategies exist?

Our goal

Understand well low-memory specifications

Memoryless / finite-memory determinacy

Is it the case that memoryless (resp. finite-memory) strategies suffice to win when winning strategies exist?

Finite vs infinite games

école — normale — supérieure — paris — saclay — ...

Characterizing positional and chromatic finite-memory determinacy in finite games

A fundamental reference:

[GZ05]

Sufficient conditions

- Sufficient conditions to guarantee memoryless optimal strategies for both players [GZØ4, AR17]
- Sufficient conditions to guarantee half-positional optimal strategies
 [Kop06, Gim07, GK14]

A fundamental reference:

[GZ05]

Sufficient conditions

- Sufficient conditions to guarantee memoryless optimal strategies for both players [GZØ4, AR17]
- Sufficient conditions to guarantee half-positional optimal strategies [Kop06, Gim07, GK14]

- Characterization of winning objectives ensuring memoryless determinacy in finite games
- Fundamental reference: [GZØ5]

lacktriangle Let $W \subseteq C^{\omega}$ be an objective

- Let $W \subseteq C^{\omega}$ be an objective
- $lackbox{}{W}$ is **monotone** whenever:

- Let $W \subseteq C^{\omega}$ be an objective
- $lackbox{}W$ is **monotone** whenever:

and
$$\not\in W$$
 \Rightarrow or $\not\in W$ $\in W$

lacktriangleright W is **selective** whenever:

Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite arenas;
- 2. Both W and W^c are monotone and selective.

Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite arenas;
- 2. Both W and W^c are monotone and selective.

Characterization - One-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite P_1 -arenas;
- 2. W is monotone and selective.

Assume all P_1 -games have optimal memoryless strategies.

 $oldsymbol{W}$ is selective

Assume W is monotone and selective.

Assume W is monotone and selective.

The case of one-player arenas

Assume W is monotone and selective.

The case of one-player arenas

Assume W is monotone and selective.

The case of one-player arenas

Assume W is monotone and selective.

The case of one-player arenas

one best choice between and wonotony)
t no reason to swap at t (selectivity)

Assume W is monotone and selective.

The case of one-player arenas

one best choice between and wonotony)
t no reason to swap at t (selectivity)

No memory required at *t*!

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite arenas;
- 2. Both W and W^c are monotone and selective.

Characterization - One-player games

- 1. W is memoryless-determined in finite P_1 -arenas;
- 2. W is monotone and selective.

Applications

Lifting theorem

Memoryless strategies suffice for W for P_i (i=1,2) in finite P_i -arenas

 $oldsymbol{W}$ is memoryless-determined in finite arenas

Applications

Lifting theorem

Memoryless strategies suffice for W for P_i (i=1,2) in finite P_i -arenas

 $oldsymbol{W}$ is memoryless-determined in finite arenas

Very powerful and extremely useful in practice

- Easy to analyse the one-player case (graph reasoning)
 - Mean-payoff, average-energy [BMRLL15]
- Lift to two-player games via the theorem

Discussion of examples

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone
 - Selective
- Average-energy games [BMRLL15]
 - Lifting theorem!!

No, in general

- No, in general
- Consider the objective W defined by $\lim_{n} \inf \sum_{i=1}^{n} c_i = +\infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$

- No, in general
- Consider the objective W defined by $\lim_{n} \inf \sum_{i=1}^{n} c_i = +\infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$
 - Optimal finite-memory strategies in one-player games

- No, in general

$$\lim_{n} \inf \sum_{i=1}^{n} c_i = + \infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!

- No, in general
- lacktriangleright Consider the objective W defined by

$$\lim_{n} \inf \sum_{i=1}^{n} c_i = + \infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!

$$-1$$
 $+1$
 $+1$

- No, in general
- lacktriangleright Consider the objective W defined by

$$\lim_{n} \inf \sum_{i=1}^{n} c_i = + \infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!

$$-1$$
 $+1$

 P_1 wins but requires infinite memory

Chromatic memory

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy!

 $\sigma_i: S^*S_i \to E$

Strategy with memory ${\mathscr M}$

Additional next-move function $\alpha_{\text{next}}: M \times S_i \to E$ $(\mathcal{M}, \alpha_{\text{next}})$ defines a strategy!

Remark: memoryless strategies are $\mathcal{M}_{\mathrm{triv}}$ -strategies, where $\mathcal{M}_{\mathrm{triv}}$ is

lacksquare Let W be a winning objective and ${\mathscr M}$ be a memory skeleton

- lacksquare Let W be a winning objective and ${\mathscr M}$ be a memory skeleton
- $lackbox{}W$ is \mathscr{M} -monotone whenever:

- lacksquare Let W be a winning objective and ${\mathscr M}$ be a memory skeleton
- W is \mathscr{M} -monotone whenever:

lack W is $\mathcal M$ -selective whenever:

Let W be a winning objective and \mathscr{M} be a memory skeleton

Characterization - Two-player games

- 1. W is \mathcal{M} -determined in finite arenas;
- 2. Both W and W^c are \mathcal{M} -monotone and \mathcal{M} -selective.

Let W be a winning objective and \mathscr{M} be a memory skeleton

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is \mathscr{M} -determined in finite arenas;
- 2. Both W and W^c are \mathscr{M} -monotone and \mathscr{M} -selective.

Characterization - One-player games

- 1. W is \mathscr{M} -determined in finite P_1 -arenas;
- 2. W is \mathcal{M} -monotone and \mathcal{M} -selective.

Let W be a winning objective and \mathscr{M} be a memory skeleton

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is \mathcal{M} -determined in finite arenas;
- 2. Both W and W^c are \mathscr{M} -monotone and \mathscr{M} -selective.

Characterization - One-player games

- 1. W is \mathscr{M} -determined in finite P_1 -arenas;
- 2. W is \mathcal{M} -monotone and \mathcal{M} -selective.

If the arena has enough information from \mathcal{M} , then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

If the arena has enough information from \mathcal{M} , then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

If the arena has enough information from \mathcal{M} , then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

Hence one can apply a [GZ05]-like reasoning to \mathcal{M} -covered arenas

Applications

Lifting theorem

Strategies based on \mathcal{M}_i suffice for W for P_i in finite P_i -arenas

W is $(\mathcal{M}_1 \otimes \mathcal{M}_2)$ -determined in finite arenas

Applications

Lifting theorem

Strategies based on \mathcal{M}_i suffice for W for P_i in finite P_i -arenas

W is $(\mathcal{M}_1 \otimes \mathcal{M}_2)$ -determined in finite arenas

Very powerful and extremely useful in practice

- Easy to analyse the one-player case (graph analysis)
 - Conjunction of ω -regular objectives
- Lift to two-player games via the theorem

 $W = \text{Reach}(a) \land \text{Reach}(b)$

$$W = \text{Reach}(a) \land \text{Reach}(b)$$

• W is not $\mathscr{M}_{\mathsf{triv}}$ -monotone

$$W = \text{Reach}(a) \land \text{Reach}(b)$$

- ullet W is not ${\mathscr M}_{\mathsf{triv}}$ -monotone
- W is \mathcal{M} -monotone but not \mathcal{M} -selective

$$W = \text{Reach}(a) \land \text{Reach}(b)$$

- W is not $\mathscr{M}_{\mathsf{triv}}$ -monotone
- W is \mathcal{M} -monotone but not \mathcal{M} -selective
- lack W is \mathscr{M}' -selective

 $W = \text{Reach}(a) \land \text{Reach}(b)$

- W is not $\mathscr{M}_{\mathsf{triv}}$ -monotone
- $lackbox{}{W}$ is ${\mathscr M}$ -monotone but not ${\mathscr M}$ -selective
- lacksquare W is \mathscr{M}' -selective

- W is \mathscr{M} -monotone and \mathscr{M}' -selective
- ullet W^c is \mathscr{M} -monotone and $\mathscr{M}_{ ext{triv}}$ -selective

 $W = \text{Reach}(a) \land \text{Reach}(b)$

- W is not $\mathscr{M}_{\mathsf{triv}}$ -monotone
- W is \mathcal{M} -monotone but not \mathcal{M} -selective
- lack W is \mathscr{M}' -selective

- $lackbox{}W$ is \mathscr{M} -monotone and \mathscr{M}' -selective
- ullet W^c is ${\mathscr M}$ -monotone and ${\mathscr M}_{ ext{triv}}$ -selective

 \rightarrow Memory $\mathcal{M} \otimes \mathcal{M}'$ is sufficient for both players in all finite games

Finite games

Finite games

 Complete characterization of winning objectives (and even preference relations) that ensure (chromatic) finite-memory determinacy (for both players)

Finite games

- Complete characterization of winning objectives (and even preference relations) that ensure (chromatic) finite-memory determinacy (for both players)
- One-to-two-player lifts
 (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

école — normale — supérieure — paris — saclay — ...

Characterizing positional and chromatic finite-memory determinacy in infinite games

The case of mean-payoff

- lacktriangle Objective for P_1 : get non-negative (limsup) mean-payoff
- In finite games: memoryless strategies are sufficient to win
- ▶ In infinite games: **infinite memory** is required to win

A first insight [CN06]

lacktriangle Let W be a prefix-independent objective.

A first insight [CN06]

lacktriangle Let W be a prefix-independent objective.

Characterization - Two-player games

The two following assertions are equivalent:

- 1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;
- 2. W is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma: C \to \{0,1,\ldots,n\}$ such that $W = \{c_1c_2\ldots\in C^\omega\mid \limsup_i \gamma(c_i) \text{ is even}\}$

A first insight [CN06]

lacktriangle Let W be a prefix-independent objective.

Limitations

Characterization - Two-player games

The two following assertions are equivalent:

- 1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;
- 2. W is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma: C \to \{0,1,\ldots,n\}$ such that $W = \{c_1c_2\ldots\in C^\omega \mid \limsup_i \gamma(c_i) \text{ is even}\}$

Some language theory (1)

Let $L \subseteq C^*$ be a language of finite words

Right congruence

Given
$$x, y \in C^*$$
,
$$x \sim_L y \Leftrightarrow \forall z \in C^*, \left(x \cdot z \in L \Leftrightarrow y \cdot z \in L\right)$$

Some language theory (1)

Let $L \subseteq C^*$ be a language of finite words

Right congruence

• Given $x, y \in C^*$,

$$x \sim_L y \Leftrightarrow \forall z \in C^*, (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$$

Myhill-Nerode Theorem

- ullet L is regular if and only if \sim_L has finite index;
 - There is an automaton whose states are classes of \sim_L , which recognizes L.

Some language theory (2)

Let $W \subseteq C^{\omega}$ be a language of infinite words

Right congruence

Given
$$x, y \in C^*$$
,
$$x \sim_W y \Leftrightarrow \forall z \in C^\omega, \left(x \cdot z \in W \Leftrightarrow y \cdot z \in W \right)$$

Some language theory (2)

Let $W \subseteq C^{\omega}$ be a language of infinite words

Right congruence

• Given $x, y \in C^*$,

$$x \sim_W y \Leftrightarrow \forall z \in C^{\omega}, \left(x \cdot z \in W \Leftrightarrow y \cdot z \in W \right)$$

Link with ω -regularity?

- lacktriangledown If W is ω -regular, then $extstyle _{W}$ has finite index;
 - The automaton \mathcal{M}_W based on \sim_W is a **prefix-classifier**;
- The converse does not hold (e.g. all prefix-independent languages are such that \sim_W has only one element).

Let $W \subseteq C^{\omega}$ be an objective.

[[]CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science).
[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs (STACS'22).

[[]EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS'91).

[[]Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite Trees (TCS)

Let $W \subseteq C^{\omega}$ be an objective.

Characterization - Two-player games

W is finite-memory-determined if and only if W is ω -regular. Moreover, if \mathscr{M} is an adapted memory skeleton for W, then W is recognized by a deterministic parity automaton built on top of $\mathscr{M} \otimes \mathscr{M}_W$.

[[]CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science).
[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs (STACS'22).

[[]EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS'91).

[[]Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite Trees (TCS)

Let $W \subseteq C^{\omega}$ be an objective.

Characterization - Two-player games

W is finite-memory-determined if and only if W is ω -regular. Moreover, if \mathscr{M} is an adapted memory skeleton for W, then W is recognized by a deterministic parity automaton built on top of $\mathscr{M} \otimes \mathscr{M}_{W}$.

ightarrow Generalizes [CN06] where both \mathscr{M} and \mathscr{M}_W are trivial

[[]CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science).
[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs (STACS'22).

[[]EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS'91).

[[]Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite Trees (TCS)

Let $W \subseteq C^{\omega}$ be an objective.

Characterization - Two-player games

W is finite-memory-determined if and only if W is ω -regular. Moreover, if \mathscr{M} is an adapted memory skeleton for W, then W is recognized by a deterministic parity automaton built on top of $\mathscr{M} \otimes \mathscr{M}_W$.

- ightarrow Generalizes [CN06] where both \mathscr{M} and \mathscr{M}_W are trivial
- ▶ The proof of \Leftarrow is given by [EJ91, Zie98]

```
[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science).
[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs (STACS'22).
```

[[]EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS'91).

[[]Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite Trees (TCS)

Proof idea for \Rightarrow

Assume W is \mathcal{M} -determined. Then:

- ullet \mathcal{M}_W is finite (which implies that W is \mathcal{M}_W -prefix-independent);
- W is \mathcal{M} -cycle-consistent: after a finite word u, if $(w_i)_i$ are winning cycles of \mathcal{M} (after u), then $uw_1w_2w_3\cdots$ is winning; Idem for losing cycles
- o W is $(\mathscr{M} \otimes \mathscr{M}_W)$ -prefix-independent and $(\mathscr{M} \otimes \mathscr{M}_W)$ -cycle-consistent
- \rightarrow Hence W can be recognized by a DPA built on top of $\mathcal{M} \otimes \mathcal{M}_W$ (relies on ordering cycles according to how good they are for winning)

Difficult part of the proof

Objective W

Prefix classifier \mathcal{M}_W

Memory ${\mathscr M}$

$$\rightarrow \bigcirc C$$

$$\rightarrow \bigcirc C$$

$$C = \{a, b\}$$

$$W = b*ab*aC^{\omega}$$

$$\Rightarrow \bigotimes^{b} \xrightarrow{a} \bigotimes^{a} C$$

$$\rightarrow \bigcirc \bigcirc C$$

$$C = \{a, b\}$$
$$W = C^*(ab)^{\omega}$$

$$\rightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

Objective W

Prefix classifier \mathcal{M}_W

Memory ${\mathscr M}$

$$\rightarrow \bigcirc C$$

$$\rightarrow \bigcirc C \mapsto \{0,1,\ldots,n\}$$

$$C = \{a, b\}$$

$$W = b*ab*aC^{\omega}$$

$$\Rightarrow \bigotimes^{b} \xrightarrow{a} \bigotimes^{a} \bigcirc C$$

$$\rightarrow \bigcirc \bigcirc C$$

$$C = \{a, b\}$$
$$W = C^*(ab)^{\omega}$$

$$\rightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

Objective W

Prefix classifier \mathcal{M}_W

Memory \mathcal{M}

$$\rightarrow \bigcirc C$$

$$\rightarrow C \mapsto \{0,1,\ldots,n\}$$

$$C = \{a, b\}$$

$$W = b*ab*aC^{\omega}$$

$$\xrightarrow{b} \xrightarrow{1} \xrightarrow{b} \xrightarrow{1} \xrightarrow{a} C \xrightarrow{2}$$

$$\rightarrow \bigcirc \bigcirc C$$

$$C = \{a, b\}$$
$$W = C^*(ab)^{\omega}$$

$$\rightarrow \bigcirc C$$

Objective W

Prefix classifier \mathcal{M}_W

Memory \mathcal{M}

$$\rightarrow \bigcirc C$$

$$\rightarrow C \mapsto \{0,1,\ldots,n\}$$

$$C = \{a, b\}$$

$$W = b*ab*aC^{\omega}$$

$$\xrightarrow{b} \xrightarrow{1} \xrightarrow{b} \xrightarrow{1} \xrightarrow{a} C 2$$

$$\rightarrow \bigcirc \bigcirc C$$

$$C = \{a, b\}$$
$$W = C^*(ab)^{\omega}$$

$$\rightarrow \bigcirc \bigcirc C$$

$$\begin{array}{c|c}
 & a & 0 \\
 & & \\
 & b & 0
\end{array}$$

Corollary

Lifting theorem

If W and W^c are finite-memory-determined in one-player infinite games, then W and W^c are finite-memory-determined in two-player infinite games.

Corollary

Lifting theorem

If W and W^c are finite-memory-determined in one-player infinite games, then W and W^c are finite-memory-determined in two-player infinite games.

Very powerful and extremely useful in practice

- Easier to analyse the one-player case (graph reasoning)
- Lift to two-player games via the theorem

• Mean-payoff ≥ 0 is not ω -regular (even though it is memoryless determined in finite games)

- Mean-payoff ≥ 0 is not ω -regular (even though it is memoryless determined in finite games)
- Some discounted objectives are ω -regular: The set of infinite words over $C = \{-2, -1, 0, 1, 2\}$ satisfying $\mathsf{DS}^{\geq 0}_{\frac{1}{2}}$ is the set of infinite words accepted by the DBA below:

- Mean-payoff ≥ 0 is not ω -regular (even though it is memoryless determined in finite games)
- Some discounted objectives are ω -regular: The set of infinite words over $C = \{-2, -1, 0, 1, 2\}$ satisfying $\mathsf{DS}^{\geq 0}_{\frac{1}{2}}$ is the set of infinite words accepted by the DBA below:

Infinite games

Infinite games

• Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular

Infinite games

- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular
- One-to-two-player lift
 (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

Infinite games

- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular
- One-to-two-player lift
 (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)
- Further questions:
 - Different results when assuming finite branching?

école — — — normale — — supérieure — — paris — saclay — —

Going further?

▶ So far, nice general characterizations

- ▶ So far, nice general characterizations
- ▶ However:
 - Memory bounds are not tight in general
 - Makes assumptions on the memory for the two players

What more?

- ▶ So far, nice general characterizations
- ▶ However:
 - Memory bounds are not tight in general
 - Makes assumptions on the memory for the two players
- ightharpoonup Precise memory of the two players for ω -regular objectives? (we will see it is non-trivial in general)

$$W=(b^*a)^\omega \cup C^*aaC^\omega$$

$$W = (b*a)^{\omega} \cup C*aaC^{\omega}$$

- Smallest DBA \mathscr{A}_W recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

$$W = (b*a)^\omega \cup C*aaC^\omega$$

- Smallest DBA \mathscr{A}_W recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

 \blacktriangleright The two players can play optimally with a memory structure based on \mathscr{A}_W

$$W = (b*a)^{\omega} \cup C*aaC^{\omega}$$

- ullet Smallest DBA ${\mathscr A}_W$ recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

- \blacktriangleright The two players can play optimally with a memory structure based on \mathscr{A}_W
- ▶ The memory required stands between one state (memoryless) and three states, for both players

$$W = (b*a)^{\omega} \cup C*aaC^{\omega}$$

- ullet Smallest DBA ${\mathscr A}_W$ recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

- \blacktriangleright The two players can play optimally with a memory structure based on \mathscr{A}_W
- ▶ The memory required stands between one state (memoryless) and three states, for both players
 - ullet W is half-positional: P_1 requires only memoryless strategies to win W

 $W = (b*a)^{\omega} \cup C*aaC^{\omega}$

- ullet Smallest DBA ${\mathscr A}_W$ recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

- \blacktriangleright The two players can play optimally with a memory structure based on \mathscr{A}_W
- ▶ The memory required stands between one state (memoryless) and three states, for both players
 - ullet W is half-positional: P_1 requires only memoryless strategies to win W
 - ullet P_2 requires just two states of memory: q_{ϵ} and q_a

lacktriangle W given by a DBA (= Deterministic Büchi automaton)

- W given by a DBA (= Deterministic Büchi automaton)
- Only their half-positionality has been fully characterized

- W given by a DBA (= Deterministic Büchi automaton)
- Only their half-positionality has been fully characterized

Half-positionality of W can be decided in PTIME

An objective W defined by a DBA is half-positional if and only if:

- 1. W is monotone;
- 2. W is progress consistent: if w_2 is a progress after w_1 , then $w_1w_2^{\omega}$ is winning;
- 3. $\it W$ is recognized by a DBA built on top of its prefix classifier

W = avoid the rightmost state

W = avoid the rightmost state

a, b, d

a, b, c

a, c, d

W = avoid the rightmost state

Tightest memory to win $oldsymbol{W}$

Tightest memory to win $oldsymbol{W}$

W = avoid the rightmost state

It is NP-complete to decide whether there is a memory structure of size k that is sufficient to win a regular safety/reachability objective.

Double lift

lacktriangledown Let $W\subseteq C^{\omega}$ be a regular reachability or safety objective

Double lift

Let $W \subseteq C^{\omega}$ be a regular reachability or safety objective

The double-lift theorem

If ${\mathcal M}$ suffices to win for W in finite P_1 -arenas, then ${\mathcal M}$ suffices to win for W for P_1 in (infinite) two-player arenas.

Double lift

Let $W \subseteq C^{\omega}$ be a regular reachability or safety objective

The double-lift theorem

If ${\mathcal M}$ suffices to win for W in finite P_1 -arenas, then ${\mathcal M}$ suffices to win for W for P_1 in (infinite) two-player arenas.

Very powerful and extremely useful in practice

- Easy to analyse the one-player finite case (finite graph reasoning)
- Lift to infinite two-player games via the theorem

What about chaotic memory?

- Chaotic memory is more difficult to grasp
- In the previous example, only two memory states are sufficient (size of the largest antichain) [CFH14]

école — — — normale — — supérieure — — paris — saclay — —

Conclusion

 Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- ▶ These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use **low memory**!
 - ... even though low memory does not mean it is easy...

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- ▶ These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- ▶ These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives
- Many one-to-two-player lifts

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives
- Many one-to-two-player lifts
- Fine tune the memory requirements for ω -regular objectives
 - Preliminary results, but no general understanding
 - Half-positionality

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- ▶ These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Many one-to-two-player lifts
- lacktriangle Fine tune the memory requirements for ω -regular objectives
 - Preliminary results, but no general understanding
 - Half-positionality

A recent work by Casares, Ohlmann

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- ▶ These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Many one-to-two-player lifts
- Fine tune the memory requirements for ω -regular objectives
 - Preliminary results, but no general understanding
 - Half-positionality

A recent work by Casares, Ohlmann

- Chaotic memory
 - Link with good-for-game automata [CCL22]
 - Universal graphs [0h122]

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Many one-to-two-player lifts
- Fine tune the memory requirements for ω -regular objectives
 - Preliminary results, but no general understanding
 - Half-positionality

A recent work by Casares, Ohlmann

- Chaotic memory
 - Link with good-for-game automata [CCL22]
 - Universal graphs [0h122]

Quite active area of research

[CCL22] Casares, Colcombet, Lehtinen.On the size of good-for-game Rabin automata and its link with the memory in Muller games (ICALP'22)

[Oh122] Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs (LICS'22)