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My field of research:

Formal methods

Probabilities l1oPology
Logic \ / Algorithmics
\ N L/
- | .
Semantics
Proof theory
Systems = f-----
Programs Model-checking
Protocols
Test
\_ _J

\ 4

Give guarantees (+ certificates) on functionalities or performances
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System Properties

@ Model-checking

@ = AG—crash A (P(Fszharr) > 0,9)

algorithm

Yes/No/Why?



Control or synthesis

System Properties

No/Yes/How?
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The talkin one slide

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an
antagonistic environment

Performance w.r.t. objectives / Minimal information for deciding
payoffs / preference relations the next steps

When are simple strategies sufficient to play optimally?




Our general approach

[Tho95] On the synthesis of strategies in infinite games (STACS’95).

[Tho@2] Thomas. Infinite games and verification (CAV’Q2).

[GU@8] Gradel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives
in Games and Interactions, 2008).

[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).
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Our general approach

» Use graph-based game models (state machines) to represent the
system and its evolution

» Use game theory concepts to express admissible situations
« Winning strategies
« (Pareto-)Optimal strategies
« Nash equilibria
« Subgame-pertect equilibria

[Tho95] On the synthesis of strategies in infinite games (STACS’95).

[Tho@2] Thomas. Infinite games and verification (CAV’Q2).

[GU@8] Gradel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives
in Games and Interactions, 2008).

[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).
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Games
A broader sense

Interaction Ingredients

» Several decision makers (players)
» Possibly each with different goals

» The decision of each player impacts
the outcome of all

» Model and analyze (using math.
tools) situations of interactive
decision making

Wide range of applicability

« [...] it IS a context-free mathematical toolbox. »
Soclal science: e.g. soclal choice theory

Theoretical economics: e.g2. models of markets, auctions
Political science: e.g. fair division

Biology: e.g. evolutionary biology + Computer science

[MSZ13] Maschler, Solan, Zamir. Game theory (2013). 10
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(O : player P,
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1. P, chooses the edge (8¢, 5;)
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Turn-based games on

States Edges

\ /
Cg — (Sa S()a Sla Sza E) 1 . 2
- player P, @ | S4 %

S0—>51—>S4—>52—>@

P, chooses the edge (sg, 1)
P, chooses the edge (51, S,)
P, chooses the edge (s, $5)
P, chooses the edge (s, O)
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Turn-based games on

States Edges
\ /
Cg — (S, S(), SI’SZ’ E) %0 1 %2
(O : player P,

player P, @ | 54 %

S0—>51—>S4—>52—>@

1. P, chooses the edge (8¢, 5;)

2. P, chooses the edge (s, $4) Players use strategies to play.

3. P, chooses the edge (sy, $5) A strategy for Pis 0; : §*5; — E
3

P, chooses the edge (s,, @)

11
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Objectives for the players

Zero-sum assumption

a,bl set of colors
X CXS

N |
LA ——

b
Winning objective for P; W, C C* eg W, = C* - b - C?

Payoff function: p;: C* — R, e.g. mean-payoff P+ py =

Preference relation: &; € C* X C? _ :1—1
(total preorder)

12



Objectives for the players

We focus on winning objectives, and write W for W,

12
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» Play p = 5p815,... Iscompatible with o; whenever s; € S;implies
(87 S541) = ai(SOsl . .Sj). We write Out(o;).
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» Strategy o @/ @

» Out(o) has two plays, U

which are both winning
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Outcomes of a strategy

:

» Strategy

15



Outcomes of a strategy

» Strategy IR

) Out(o) has infinitely many plays, | U U

some of them are not winning
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What does it mean to win a

game?

» Play p = 5p815,... Iscompatible with o; whenever s; € S;implies
(87 S541) = ai(SOsl . .Sj). We write Out(o;).

» 0;is winning if all plays compatible with o; belong to W,
o; Is optimal if it is winning or if the initial state Is losing

[Mar?5] Martin. Borel determinacy (Annals of Mathematics). 16



What does it mean to win a

game?

» Play p = 5p815,... Iscompatible with o; whenever s; € S;implies
(87 S541) = Ui(Sosl . .Sj). We write Out(o;).

» 0;is winning if all plays compatible with o; belong to W,
o; Is optimal if it is winning or if the initial state Is losing

Martin’s determinacy theorem

Turn-based zero-sum games are determined for Borel winning objectives:
in every game, either Py or P, has a winning strategy.

[Mar?5] Martin. Borel determinacy (Annals of Mathematics). 16



Relevant questions
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Relevant questions

¢ = Reach(©)

» Can P winthe game, i.e. does P have a winning strategy?

» IS there an effective (efficient) way of winning?

» How complex is it to win?

17
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» Players alternate
» Each player can take one or two sticks
» The player who takes the last one wins

» P, starts
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Example: the Nim game

» Players alternate

» Each player can take one or two sticks
» The player who takes the last one wins
>

P starts

0 e Q Q @ P, wins
NARLRL R RK KX
XSS

Y r
7 6 5 4 3 2 1 0| P;wins
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Example: the Nim game

» Players alternate
» Each player can take one or two sticks
» The player who takes the last one wins

» P, starts

a 0 Q Q P, wins

6 3 0| P;wins

» from aIIO =0 mod 3

» from all =1or2 mod3

> fromallo =1 or2 mod 3

» from all =0 mod 3

18
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Computation of winning
states in the running example

All states are winning for P,
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Computation of winning
states in the running example

One state is not winning for P,
Itis winning for P,
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Computation of winning
states in the running example

» This generalizes to:
e Any game on graph with a reachability objective

e Similarideas can be used for more involved winning objectives

One state is not winning for P,
Itis winning for P,

19
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Mathematicians, 1912).
[Au89] Aumann. Lectures on Game Theory (1989). 20



Limits — Chess game

Zermelo’s Theorem

IN chess either white can force a win, or black can force a win, or both can
force at least a draw.

[Zer13] Zermelo. Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress
Mathematicians, 1912).
[Au89] Aumann. Lectures on Game Theory (1989). 20



Limits — Chess game

Zermelo’s Theorem

IN chess either white can force a win, or black can force a win, or both can
force at least a draw.

» We don’t know what is the case for the initial position,
and no winning strategy (for either of the players) is known

[Zer13] Zermelo. Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress
Mathematicians, 1912).
[Au89] Aumann. Lectures on Game Theory (1989). 20



Limits — Chess game

Zermelo’s Theorem

IN chess either white can force a win, or black can force a win, or both can
force at least a draw.

» We don’t know what is the case for the initial position,
and no winning strategy (for either of the players) is known

»  According to Claude Shannon, there are 10%3 legit positions in chess

[Zer13] Zermelo. Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress
Mathematicians, 1912).
[Au89] Aumann. Lectures on Game Theory (1989). 20
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First player has always a winning strategy.
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Limits — Hex game

Solving the Hex game

First player has always a winning strategy.

» Determinacy results (no tie is possible) + strategy stealing argument

» A winning strategy is not known yet (for boards of size > 13)

21



What we do not consider

» Concurrent games

» Stochastic games and stochastic strategies
« Values

« Determinacy of Blackwell games

» Partial information

22
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General strategies

c;: 5*S;, —> E

» May use any information of the past execution

» Information used is therefore potentially infinite

» Not adequate Iif one targets implementation

24



On the simplest side:

positional strategies

Fromo; : $*S; — Etoo; : S, = E
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» P maximizes MP, P, minimizes MP . 2 Ci
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Example: mean-payoff

» P maximizes MP, P, minimizes MP . 2 Ci
" , - , MP = lim sup
» Positional strategies are sufficient to win . n
1 0 W= ( P> O)

Losing for P, Winning for P,
Winning for P, :

[Oh121] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis). 26
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« See infinitely often both @ and b »
Blchi(a) A Buchi(b)
Winning strategy

» Ateach visitto sy, loop once in sy and
then go to s,

» Ateach visitto s,, loop once in §, and
then go to $4

» Generates the sequence (acbc)®

8-§

« Reach the target with energy level () »

FG (EL=0)

Winning strategy

» Loop five times in 8,

» Then go to the target
» Generates the sequence of colors

11111

—-5000...
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1 0
%
HGORBO L s
C %0

« See infinitely often both @ and b »

Bichi(a) A Blchi(b) « Reach the target with energy level 0 »
FG (EL = 0)
Winning strategy

Winning strategy
» Ateach visitto sy, loop once in sy and

then go to s, » Loop five times in 8,

- . » Then go to the target
» Ateach visitto s,, loop once in §, and & .

then go to $4

» Generates the sequence of colors

11111 —-5000...
» Generates the sequence (acbc)®

These two strategies require only finite memory

28
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mean-payoft
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So-called multi-dimensional mean-payoff
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Example: multi-dimensional

mean-payoft

—1,—1)
(+1, = 1) « Have a (limsup) mean-payoff > 0
’ @ @ (=1, +1) on both dimensions »

So-called multi-dimensional mean-payoff
—-1,—-1)

Winning strategy

» After k-th switch between s, and s,, loop 2k — 1 times and then switch back
» Generates the sequence
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1L+ DL+ DL+ DL+ D(EL+1) (-1, =-1)
+1,- D1, - D1, - D1, - D+, - D+, - D+, -1 (=1, = 1)..
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Example: multi-dimensional

mean-payoft

(-1,-1)
(+1, = 1) « Have a (limsup) mean-payoff > 0
’ @ @ (=1, +1) on both dimensions »

So-called multi-dimensional mean-payoff
(-1, - 1)

Winning strategy

» After k-th switch between s, and s,, loop 2k — 1 times and then switch back
» Generates the sequence

-L-DEL+D)(1L, =D)L, =D+, =D+, =-1)(=1,—-1)
1L+ DL+ DL+ DL+ D(EL+1) (-1, =-1)
+1,- D1, - D1, - D1, - D+, - D+, - D+, -1 (=1, = 1)..

This strategy requires infinite memory, and this is unavoidable

29



We focus on finite memory!
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omat . memory

Not yet a strategy! @@igtle]ileagalclasle]sY
c;: 8*S, - E

Strategy with memory

Additional next-move function &peyt : M X §; = E

(M, onext) defines a strategy!

Remark: memoryless strategies are M +yj~Strategies, where M 1, is CCé

" Terminology by Kopczynski 31
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Example of chiromat

memory

a
b
% a@é@@@ b (mla 51) —C> (mp Sz) — (m29 Sz) i (mla 51)
C
C

b
b (mla S]) — (mz, S2) _a) (mla Sl)

This skeleton is sufficient for winning
W = Blchi(a) A Bichi(b) (inany arena)
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Example of chiromat

memory

c b a
(mla S]) — (mla S2) — (m27 S2) — (mla S])

N\
5
5

b
b (mla S]) — (mz, S2) _a) (mla Sl)

This skeleton is sufficient for winning
W = Blchi(a) A Bichi(b) (inany arena)
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Example of chiromat

memory

C b a
(mp 51) — (mp Sz) — (mza Sz) — (mla 51)

N\
5
5

b
b (mp 51) — (mza Sz) —a> (mp 51)

This skeleton is sufficient for winning
W = Blchi(a) A Bichi(b) (inany arena)

Playing with memory . is like playing memoryless
In the product arena

32
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] in finite arenas 1
L : % inone-playerarenas 4
» Let Whe anobjectiveandi € {1,2} =
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A zoology of notions

] in finite arenas 1
% Inone-playerarenas J#

» Let Whbe an objectiveandi € {1,2}

» A skeleton A suffices to win for Py (resp. P,) for W P, (resp. P,)

has an optimal® strategy based on J inany game (&, W) (resp.
(A, WE)) i s

e flmte Ty
M ONe- player

y Wis M -determined if /% suffices to win for both players for W

» Memoryless determined = A y,-determined
» Finite-memory determined = 3. s.t. #/-determined

»  Wishalf-positional = A 1, suffices to play optimally for P, for W

" Thatis, it is winning whenever it Is possible to win 33



Wwarning

M -determinacy requires

» Chromatic memory: the skeleton is based on colors

» Arena-independent memory: the same memory skeleton is used in all
arenas (of the designed class)

34



1 0
%
HGORBO L s
C %0

« See infinitely often both @ and b »

Bichi(a) A Blchi(b) « Reach the target with energy level 0 »
FG (EL = 0)
Winning strategy

Winning strategy
» Ateach visitto sy, loop once in sy and

then go to s, » Loop five times in 8,

- . » Then go to the target
» Ateach visitto s,, loop once in §, and & .

then go to $4

» Generates the sequence of colors

11111 —-5000...
» Generates the sequence (acbc)®

These two strategies require only finite memory
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1 0
%
HGORBO L s
C %0

« See infinitely often both @ and b »

Buchi(a) A Blchi(b) « Reach the target with energy level O »
FG (EL=0)
There is an arena-independent The memory has to be arena-
memory based on a skeleton dependent

These two strategies require only finite memory
35
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Understand well low-memory specifications
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Our goal

Understand well low-memory specifications

Memoryless / finite-memory determinacy

S it the case that memoryless (resp. finite-memory) strategies suffice
to win when winning strategies exist?

» Finite vs infinite games

36
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PARIS-SACLAY

Characterizing positional and
chrom tic finite-memory determinacy
In finite games
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A fundamental reference:
[ GZO5 ]

Sufficient conditions

ficlent conditions to guarantee memoryless optimal strategies
noth players

fficient conditions to guarantee half-positional optimal strategies
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A fundamental reference:
[ GZO5 ]

Sufficient conditions

ficlent conditions to guarantee memoryless optimal strategies
noth players

fficient conditions to guarantee half-positional optimal strategies

» Characterization of winning objectives ensuring memoryless
determinacy in finite games

» Fundamental reference:

38
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Monotony and selectivity

» Let W C C% be an objective
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» Let W C C% be an objective

» Wis monotone whenever:
& W
cW
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Monotony and selectivity

» Let W C C% be an objective

» Wis monotone whenever:

W
e W e = = n e W

» Wis selective whenever:

~N\ N\
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Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:

1. Wis memoryless-determined in finite arenas;

2. Both Wand W€ are monotone and selective.
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Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:
1. Wis memoryless-determined in finite arenas;

2. Both Wand W€ are monotone and selective.

Characterization - One-player games

The two following assertions are equivalent:

1. Wis memoryless-determined in finite P;-arenas;

2. Wis monotone and selective.

40



Why? Proof hint (1)

Assume all P{-games have optimal
memoryless strategies.
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Assume all P{-games have optimal
memoryless strategies.

f

IS winning
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Why? Proof hint (1)

% C A T A

N IS winning
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Why? Proof hint (1)

Thenone of ~</ V \/°

T IS winning W is selective
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Why? Proof hint (2)

Assume W is monotone
and selective.
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Why? Proof hint (2)

. The case of one-player
Assume W is monotone arenas
and selective.
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Why? Proof hint (2)

. The case of one-player
Assume W is monotone arenas
and selective.

-
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Why? Proof hint (2)

. The case of one-player
Assume W is monotone arenas
and selective.

one borsk charca bedween 7 and (menetuny )
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Why? Proof hint (2)

. The case of one-player
Assume W is monotone arenas
and selective.

é Nne l’)—'&‘: J[\Al.& l?Q.“‘u/-e?m / ﬂV\A (W\°/\o+ona,>
“,' nNo v&easo0AN o sw o p a\-E -L (SKQLQ"\U\'LJ:)
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Why? Proof hint (2)

. The case of one-player
Assume W is monotone arenas
and selective.

é Nne l’)—'&‘: J[\Al.& l?b“‘u/-e?m / ﬂV\A (W\°/\o+ona,>
“,' nNo v&easo0AN o sw o p a\-E -L (SKQLQ"\U\'LJ:)

No memory required at !

42



Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:
1. Wis memoryless-determined in finite arenas;

2. Both Wand W€ are monotone and selective.

Characterization - One-player games

The two following assertions are equivalent:

1. Wis memoryless-determined in finite P;-arenas;

2. Wis monotone and selective.
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Applications

Lifting theorem

Memoryless strategies suffice for Wfor P; (i = 1,2) in finite P;-arenas

U

W is memoryless-determined in finite arenas
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Applications

Lifting theorem

Memoryless strategies suffice for Wfor P; (i = 1,2) in finite P;-arenas

U

W is memoryless-determined in finite arenas

Very powerful and extremely useful in practice

» Easy to analyse the one-player case (graph reasoning)
e Mean-payoff, average-energy [ BMRLL15]
» Lift to two-player games via the theorem

[BMRLL15] Bouyer, Markey, Randour, Larsen, Laursen. Average-energy games (GandALF’'15). L



Discussion of examples

» Reachability, safety: Monotony
« Monotone (though not prefix-independent)
« Selective Tand  EW L o T EV
T T ew T W
» Parity, mean-payof:
« Prefix-independent hence monotone
« Selective Selectivity
» Average-energy games [ BMRLL15] AR f\/g:\/v\ W
« Lifting theorem!! S - Ewu eWEW

[BMRLL15] Bouyer, Markey, Randour, Larsen, Laursen. Average-energy games (GandALF’'15). 45
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memory?

» NO, In general
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memory?

» NO, In general

» Consider the objective W defined by
n

n
liminf )" ¢;=+oco0or I®n st ) =0
n
=1 =1
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« Optimal finite-memory strategies in one-player games
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Canwelift [GZ05] to finite

memory?

» NO, In general

» Consider the objective W defined by
n

n
liminf )" ¢;=+oco0or I®n st ) =0
n . .
=1 =1
« Optimal finite-memory strategies in one-player games
« Butnotin two-player games!!

Heomu

+1
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Canwelift [GZ05] to finite

memory?

» NO, In general

» Consider the objective W defined by
n

n
liminf )" ¢;=+oco0or I®n st ) =0
n . .
=1 =1
« Optimal finite-memory strategies in one-player games
But not in two-player games!!

~1
~1 C(EC Q +1 P wins but requires infinite memory

+1

46



Not yet a strategy!
‘(3
@.@ b c,: S*S, > E

Strategy with memory

Additional next-move function &peyt : M X §; = E

(M, onext) defines a strategy!

Remark: memoryless strategies are M +yj~Strategies, where M 1, is CCé

47
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Adding memory

» Let Wbe a winning objective and 4 be a memory skeleton
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Adding memory

» Let Wbe a winning objective and 4 be a memory skeleton

» Wis //-monotone whenever:

48



Adding memory

» Let Wbe a winning objective and 4 be a memory skeleton

y Wis //-monotone whenever:

e W S < | 4

48



Two characterizations

Let W be a winning objective and 4 be a memory skeleton
Characterization - Two-player games

The two following assertions are equivalent:

1. Wis A -determined in finite arenas:
2. Both Wand W€ are /4 -monotone and A -selective.
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The two following assertions are equivalent:
1. Wis M -determined in finite arenas;

2. Both Wand W€ are /4 -monotone and A -selective.

Characterization - One-player games

The two following assertions are equivalent:

1. Wis A -determined in finite P;-arenas;

2. Wis M -monotone and A -selective.
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Two characterizations

Let W be a winning objective and 4 be a memory skeleton
Characterization - Two-player games

The two following assertions are equivalent:
1. Wis M -determined in finite arenas;

2. Both Wand W€ are /4 -monotone and A -selective.

Characterization - One-player games

The two following assertions are equivalent:

1. Wis A -determined in finite P;-arenas;

2. Wis M -monotone and A -selective.

— We recover [GZ05] with M = M+, 49



Technical tool:

Memory-covered arenas
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f the arena has enough information from
then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas
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Technical tool:

Memory-covered arenas

f the arena has enough information from
then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

Hence one can apply a -like
reasoning to J# -covered arenas

50



Applications

Lifting theorem

Strategies based on J ; suffice for W for P; in finite P-arenas

U

Wis (M| @ M ,)-determined in finite arenas
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Applications

Lifting theorem

Strategies based on J ; suffice for W for P; in finite P-arenas

U

Wis (M| @ M ,)-determined in finite arenas

Very powerful and extremely useful in practice

» Easy to analyse the one-player case (graph analysis)

e (Conjunction of w-regular objectives
» Lift to two-player games via the theorem

51



Example of application

W = Reach(a) A Reach(b)
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Example of application

W = Reach(a) A Reach(b)

»  Wisnot Myi,-monotone Y/A C\{a}( :éml a >@QC
»  Wis A-monotone
M C\la.b} Km? “’b>@:>
: C

but not A -selective

y Wis M '-selective

52



Example of application

W = Reach(a) A Reach(b)

Wis not M - t (ié
» S not L +j,-mMonotone /A C\{a) o a >@QC

»  Wis A[-monotone
but not A -selective

M’ C\la.b)( :émi a,b
Wis A -selective )@Q ¢

W is A -monotone and J "-selective

W¢is J-monotone and A ii\,~-selective
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Example of application

W = Reach(a) A Reach(b)

Wis not M - t (ié
S not L +j,-mMonotone /A C\{a) o a >@QC

Wis A -monotone
but not A -selective

M’ C\la.b)( :émi a,b
Wis A -selective )@Q ¢

W is A -monotone and J "-selective

W¢is J-monotone and A ii\,~-selective

— Memory A @ A is sufficient for both players in all finite games
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Partial conclusion
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Partial conclusion

» Complete characterization of winning objectives (and even preference
relations) that ensure (chrom tic) finite-memory determinacy (for both
players)
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Partial conclusion

Finite games

» Complete characterization of winning objectives (and even preference
relations) that ensure (chrom tic) finite-memory determinacy (for both
players)

»  One-to-two-player lifts
(requires chrom  tic finite memory determinacy in one-player games for both players;
ensures chrom tic finite memory determinacy in two-players games for both players)

53
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Characterizing positional and
chrom tic finite-memory determinacy
In infinite games
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The case of mean-payoff

» Objective for P;: get non-negative (Iimsup) mean-payoff
» Infinite games: memoryless strategies are sufficient to win

» Ininfinite games: infinite memory is required to win

1 | 1

—1 p) 3 l

e Hope N

55



A first insight [ CNO6 ]

» Let W be a prefix-independent objective.

[CN@6] Colcombet and Niwinski. On the positional determinacy of edge-labeled games (ICALP’'Q6).
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees

(TCS) . 56



A first insight [CNO6 ]

» Let W be a prefix-independent objective.

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for Win all (infinite) games
for both players;

2. Wis a parity condition
Thatis, therearen € Nandy : C — {0,1,...,n} suchthat
W= {cic,... € C? | im sup y(c;) iseven}

l
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A first insight [ CNO6 ]

» Let W be affd@EibélaleElecialeElatobiective. Limitations

Characterization - Two-player games

The two following assertions are equivalent:

1. optimal strategies are sufficient for Win all (infinite) games
for both players;

2. Wis a parity condition
Thatis, therearen € Nandy : C — {0,1,...,n} suchthat
W= {cc,... € C” | lim sup y(c,) iseven}

l

[CN@6] Colcombet and Niwinski. On the positional determinacy of edge-labeled games (ICALP’'Q6).
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees

(TCS). 56



Some language theory (1)

» Let L C C* be alanguage of finite words

Right congruence

» Givenx,y € C*,

x~Ly®Vz€C*,<x-zeL®y-z€L>
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Some language theory (1)

» Let L C C* be alanguage of finite words

Right congruence

» Givenx,y € C*,
xNLy©Vz€C*,<x-zEL®y-z€L>

Myhill-Nerode Theorem

» L is regular if and only if ~; has finite index;

- There Is an automaton whose states are classes of ~;, which
recognizes L.

57



Some language theory (2)

» Let W C C% be alanguage of infinite words

Right congruence

» Givenx,y € C*,

x~Wy®VzECw,<x°ZEW®y-ZEW)
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Some language theory (2)

» Let W C C% be alanguage of infinite words

Right congruence

» Givenx,y € C*,
xNWyc}‘v’zeCw,(x-zeW@y-zeW)

Link with w-regularity?

» If Wis w-regular, then ~y; has finite index;

- The automaton v, based on ~y, is a prefix-classifier;

» The converse does not hold (e.g. all prefix-independent languages are
such that ~y, has only one element).

58



Characterization

» Let W C C?% be an objective.

[CNO6] Colcombet, Niwinski. On the positional determinacy of edge-labeled games (Theor. Comp. Science).

[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy
of Games on Infinite Graphs (STACS’'22).

[EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS’91).

[Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite 59
Trees (TCS)



Characterization [BRV22 1

» Let W C C?% be an objective.

Characterization - Two-player games

W is finite-mnemory-determined if and only if Wis w-regular. Moreover, if A is an

adapted memory skeleton for W, then W is recognized by a deterministic parity
automaton built on top of A @ M .
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Characterization - Two-player games

W is finite-mnemory-determined if and only if Wis w-regular. Moreover, if A is an

adapted memory skeleton for W, then W is recognized by a deterministic parity
automaton built on top of A @ M .
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Characterization [BRV22 1

» Let W C C?% be an objective.

Characterization - Two-player games

W is finite-mnemory-determined if and only if Wis w-regular. Moreover, if A is an

adapted memory skeleton for W, then W is recognized by a deterministic parity
automaton built on top of A @ M .

— Generalizes where both J and A y, are trivial

» The proof of <= is given by

[CNO6] Colcombet, Niwinski. On the positional determinacy of edge-labeled games (Theor. Comp. Science).

[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy
of Games on Infinite Graphs (STACS’'22).

[EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS’91).

[Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite 59
Trees (TCS)



Proofidea for =

Assume Wis A -determined. Then:
» My is finite (which implies that Wis . y,-prefix-independent);

» Wis J-cycle-consistent: after a finite word u, if (w;). are winning cycles of
M (after u), then uwwyws-++ is winning; ldem for losing cycles

— Wis (M Q M yy)-prefix-independent and (M @ A y,)-cycle-consistent

— Hence W can be recognized by a DPA built on top of A @ M
(relies on ordering cycles according to how good they are for winning)

Difficult part of the proof

60



Objective W Prefix classifier ./ y, Memory .Z

Parity objective —><>3 C —><>3 C

b b

g/== {bcf‘:abb}*aC @ »&&Q@ C _)<>® -

C={a,b}

\
W = C*(ab) ¢ ‘coUB o
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Objective W

Prefix classifier ./ y,

Memory %

Parity objective

-0

—><>f) C ~ {01,...,n)

b b
C=1{ab}
W= bcfkab*aC“’ »&&Q@c _)<>®C
C={a,b} y “
W = CHaby" >0 XXX
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Objective W

Prefix classifier ./ y,

Memory %

Parity objective

-0

—><>f) C ~ {01,...,n)

b1 b

C = {a,b}

W= bcfkab*aC“’ 98%8%0 CH _)<>®C
C={ab) y A

W= Caby" ROOL ‘coUB o
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Objective W

Prefix classifier ./ y,

Memory %

Parity objective

-0

—><>f) C ~ {01,...,n)

b1l b1
C=1{a,b}
W= bcfkab*aC“’ 98%8%0 CH _)<>® ¢
C={a,b) y !
W = CHab)” ¢ reoWBo ok
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Corollary

Lifting theorem

if Wand W€ are finite-memory-determined in one-player infinite

games, then Wand W*¢ are finite-memory-determined in two-player
infinite games.
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Corollary

Lifting theorem

if Wand W€ are finite-memory-determined in one-player infinite

games, then Wand W*¢ are finite-memory-determined in two-player
infinite games.

Very powerful and extremely useful in practice

» Easier to analyse the one-player case (graph reasoning)
» Lift to two-player games via the theorem
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Some consequences

» Mean-payoff > 0is not w-regular (even though it is memoryless
determined in finite games)

»  Some discounted objectives are w-regular:
The set of infinite words over C = {—2, — 1,0,1,2} satisfying

DSlZO S the set of infinite words accepted by the DBA below:
7
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Partial conclusion

INfinite games

» Complete characterization of winning objectives that ensure chrom tic
finite-memory determinacy in infinite games = w-regular

» One-to-two-player lift
(requires chrom tic finite memory determinacy in one-player games for both players;
ensures chrom tic finite memory determinacy in two-players games for both players)
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Partial conclusion

INfinite games

» Complete characterization of winning objectives that ensure chrom tic
finite-memory determinacy in infinite games = w-regular

» One-to-two-player lift
(requires chrom tic finite memory determinacy in one-player games for both players;
ensures chrom tic finite memory determinacy in two-players games for both players)

» Further questions:
 Different results when assuming finite branching?
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Laboratoire @ école—
Méthodes universite IS
Formelles PARIS-SACLAY ARG

paris—saclay

Going further?

65






66



What more?

» SO far, nice general characterizations
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What more?

» SO far, nice general characterizations

OWeVver:
Memory bounds are not tight in general
Makes assumptions on the memory for the two players

— Precise memory of the two players for w-regular objectives”?
(we will see it is non-trivial in general)
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b 1
W = (b*a)” U C*aaC® () a2

pCEEB O CLE

b 1
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- Smallest DBA fy, recognizing W

W= (b*a)” U C*aaC?

- The prefix classifier v, has the same structure
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- The prefix classifier v, has the same structure

» The two players can play optimally with a memory structure based on ﬂW

» The memory required stands between one state (memoryless) and three
states, for both players
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b 1
W = (b*a)® U C*aaC® () a>
o
b 1
- Smallest DBA fy, recognizing W

- The prefix classifier v, has the same structure

» The two players can play optimally with a memory structure based on ﬂW

» The memory required stands between one state (memoryless) and three
states, for both players

- Wis half-positional: P; requires only memoryless strategies to win W
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b 1
W = (b*a)” U C*aaC® () a> 1
@O <
b 1
- Smallest DBA fy, recognizing W

- The prefix classifier v, has the same structure

» The two players can play optimally with a memory structure based on ﬂW

» The memory required stands between one state (memoryless) and three
states, for both players

- Wis half-positional: P; requires only memoryless strategies to win W

- P, requires just two states of memory: g. and g,

67
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The special case of objectives

given by DBA [BCRV22]

» W given by a DBA (= Deterministic Buchi automaton)
» Only their half-positionality has been tully characterized

Half-positionality of W can be decided in PTIME

An objective W defined by a DBA is half-positional if and only if;
1. Wis monotone;

2. Wis progress consistent: if wy is a progress after wy, then wyw,’ is
winning;

3. Wisrecognized by a DBA built on top of its prefix classifier

[BCRV22] Bouyer, Casares, Randour, Vandenhove. Half-positional objectives recognized by deterministic Biichi

automata (CONCUR'’22)
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Regular safety and reachability

objectives [BFRV22]

Tightest memory to win W
b,c,d a,b,d

W = avoid the rightmost state

It is NP-complete to decide whether there is a memory structure of size k

that is sufficient to win a regular safety/reachability objective.

[BFRV22] Bouyer, Fijalkow, Randour, Vandenhove. How to Play Optimally for Regular Objectives? (Submitted) 69
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Double lift

» Let W C C® be aregular reachability or safety objective

The double-lift theorem

It A suffices to win for Win finite Py-arenas, then J suffices to win
for Wor Py in (infinite) two-player arenas.

Very powerful and extremely useful in practice

» Easy to analyse the one-player finite case (finite graph reasoning)
» Lift to Infinite two-player games via the theorem
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What about chaotic

memory?

» Chaotic memory is more difficult to grasp

» Inthe previous example, only two memory states are sufficient (size of
the largest antichain)

[CFH14] Colcombet, Fijalkow, Horn. Playing safe (FSTTCS’14) 71
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[CCL22]

[Oh122]

What you can bring home

Use of models and concepts from game theory in formal methods (e.g. controller in reactive
systems)

These concepts (like winning strategies) require manipulating information
« Forsimpler strategies, use low memory!
« ...eventhough low memory does not mean it is easy...

Understand chrom  tic finite-memory determined objectives

Many one-to-two-player lifts

Fine tune the memory requirements for w-regular objectives
« Preliminary results, but no general understanding A recent work by Casares,
- Half-positionality OhlEn

Chaotic memory
* Link with good-for-game automata

Quite active area of research

* Universal graphs

Casares, Colcombet, Lehtinen.On the size of good-for-game Rabin automata and its link with the
memory in Muller games (ICALP’22)
Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs (LICS’22)
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