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1 Introduction

1.1 The growing importance of computerized systems and their verification

In thirty years computerized systems have widely spread in our society, from ubiquitous
electronic appliances (communication devices, automotive equipment, etc), to internet
transactions (e-banking, e-business, etc), to new technologies (like wireless communica-
tions), and to critical systems (medical devices, industrial plants, etc). Due to their rapid
development, such systems have become more and more complex, and unfortunately this
development has come with many bugs, from arithmetic overflow (which caused the crash
of the Ariane 5 rocket in 1996) to race conditions (which caused the lethal dysfunction of
the Therac-25 radiotherapy machine in the late 80’s) or infinite loops (for instance the leap-
year bug turning all Zune MP3 devices off on 31 December 2008, see Algorithm 1). Many
of those bugs could have been avoided if implemented softwares had been formally verified
prior to their use. The need for formal methods for verifying and certifying computer-driven
systems is therefore blatant.

Algorithm 1: Zune3.0 leap-year code

1 begin
2 year = ORIGINYEAR ; /* = 1980 */

3 while ( days > 365) do
4 if ( IsLeapYear(year)) then
5 if ( days > 366) then
6 days -= 366;
7 year += 1;

8 end

9 else
10 days -= 365;
11 year += 1;

12 end

13 end

14 end

1.2 The model-checking approach to verification

As part of the effort that has been made for the development of reliable computerized
systems, several verification approaches have been developed, among which the so-called



model-checking technique. Model-checking is a model-based approach to verification, which
goes back to the late 70’s [Pnu77,CE82,QS82]. It has been successfully applied to numerous
industrial cases, see the webpages of tools like SPIN [Spi], PRISM [Pri] or UPPAAL [Upp].
This approach to verification has been distinguished by two Turing awards: Amir Pnueli
received the award in 1996 for “seminal work introducing temporal logic into computing
science and for outstanding contributions to program and system verification”,1 and Ed-
mund M. Clarke, E. Allen Emerson and Joseph Sifakis jointly received the award in 2007
for making model-checking “a highly effective verification technology”.2

Given a system S and a property P , the model-checking approach consists in con-
structing a mathematical modelMS for the system and a mathematical model φP for the
property, for which we will be able to automatically check that MS satisfies φP . If the
models MS and φP are accurate enough with respect to S and P respectively, we will
deduce with confidence that the system S satisfies the property P . This approach requires
the development of expressive modelling formalisms (to increase faithfulness of models)
and efficient algorithms.

There are several books on model-checking: [CGP99,SBB+01,AILS08,BK08].

1.3 Expressive classes of models

Basic models for verification are finite-state systems. Those might not be expressive enough.
These last twenty years a huge effort has been made to design expressive models for rep-
resenting computerized systems. As part of this effort the model of timed automata has
been proposed in the early nineties [AD94] by Alur and Dill, as a suitable model for repre-
senting systems with real-time constraints.3 Numerous works have focused on that model,
and it has received an important tool support, with for instance the development of tools
like UPPAAL, KRONOS, RED or IF. The success of timed-automata-based technology
is witnessed not only by numerous success stories but also by the award given in 20084

by the computer-aided verification community to Alur and Dill for their “fundamental
contributions to the theory of real-time systems verification”.

Given the success of the timed-automata-based technology for verifying real-time sys-
tems tremendously many extensions have been proposed, with the aim of representing the
systems more faithfully. They include timed games, which can model control problems,
priced timed automata, which can e.g. model energy consumption, stochastic extensions
of timed automata, which can model randomized aspects of systems and uncertainties.

1 http://awards.acm.org/citation.cfm?id=4725172&srt=year&year=1996&aw=140&ao=AMTURING&yr=1996
2 http://www.acm.org/press-room/news-releases/turing-award-07/
3 Time naturally appears in real systems (autonomous systems, GPS, communication protocols, processors, sched-
ulers, etc) and in properties (e.g. bounded-response time).

4 http://www.princeton.edu/cav2008/cav_award_announce.html
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1.4 Discrete vs dense time

How can we add time information to behaviours? An untimed behaviour is a finite
or infinite sequence of events:

(ab)n or (ab)ω with a, b ∈ Σ (finite alphabet)

Time can be integrated as:

– explicit delays, that is as an alternating sequence of events and delays:

1.5 a 2 b 3.6 a · · · with a, b, c ∈ Σ

– durations of events/atomic propositions:

a b a

– events with dates:
(a, 1.5)(b, 3.6)(a, 4.8)

We will choose this last formalism.

There are also several possible semantics for the time: the time domain can either be
discrete (like N) or dense (like Q+ or R+).

Why will we consider dense time [Alu91]? Dense time is more general than dis-
crete time. But can we not always discretize? We will discuss this issue in the context of
asynchronous circuits [BS91].

Example 1. We consider the following circuit:

Intervals labelling gates represent sets of possible delays before stabilization of the gate.
For instance, if x = 0 and y1 = 1 (which is a stable configuration), when x is set to 1, gate
y1 will be updated to 0, but this will take a delay from 1 up to 3 time units.

We start with input x = 0. The corresponding stable configuration is y = [101]. The
input x changes to 1. The corresponding stable configuration is y = [011]. One of the
possible behaviours to reach that stable configuration is (values represent absolut time):

[101]
y2−→
1.2

[111]
y3−→
2.5

[110]
y1−→
2.8

[010]
y3−→
4.5

[011]
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(an underlined value is not correct)
In this circuit, the set of reachable configurations is

{[101], [111], [110], [010], [011], [001]}

⌟

Example 2. Consider now the following circuit:

We will see that this circuit is not 1-discretizable.
We assume that initially, x = 0, and y = [11100000] (stable configuration). The input

x is set to 1.

– In dense time, the following behaviour is possible:

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−−−→
2

[00001000]
y5,y7−−−→
3

[00000010]
y7,y8−−−→
4

[00000001]

– In discrete time (granularity 1), the possible behaviours are (up to permutation):

• [11100000]
y1,y2,y3−−−−→

1
[00000000]

• [11100000]
y1−→
1

[01100000]
y2,y3,y4,y5−−−−−−→

2
[00011000]

y4,y5−−−→
3

[01111000]
y2,y3,y4,y5−−−−−−→

2
[00000000]

• [11100000]
y1,y2−−−→
1

[00100000]
y3,y5,y6−−−−→

2
[00001100]

y5,y6−−−→
3

[00000000]

• [11100000]
y1,y3−−−→
1

[01010100]
y2,y4,y6−−−−→

2
[00000000]

Thus, the state [00000001] is not reachable in discrete time.

We will admit the following theorem.

Theorem 1 ([BS91]). For every k ≥ 1, there exists a digital circuit such that the reach-
ability set of states in dense-time is strictly larger than the one in discrete time with gran-
ularity 1

k
.

Claim. Finding a correct granularity is as difficult as analysing the system in dense time.

We will now define one of the most prominent models for real-time systems, the model
of timed automata. There exist other models, like time(d) Petri nets.
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2 The timed automaton model

2.1 Preliminary notations

If Z is a set, let Z∗ be the set of finite sequences of elements in Z. We consider as time
domain T the set Q+ of non-negative rationals or the set R+ of non-negative reals and
Σ as a finite set of actions. A time sequence over T is a finite non-decreasing sequence
τ = (ti)1≤i≤p ∈ T∗. A timed word w = (ai, ti)1≤i≤p is an element of (Σ × T)∗, also written
as a pair w = (σ, τ), where σ = (ai)1≤i≤p is a word in Σ∗ and τ = (ti)1≤i≤p a time sequence
in T∗ of same length. In the following, we denote by Untime(w) the finite word σ over the
alphabet Σ.

Clock valuations, operations on clocks. We consider a finite set X of variables, called
clocks. A (clock) valuation over X is a mapping v : X → T which assigns to each clock
a time value. The set of all clock valuations over X is denoted TX , and 0X denotes the
valuation assigning 0 to every clock x ∈ X.

Let v ∈ TX be a valuation and t ∈ T, the valuation v+t is defined by (v+t)(x) = v(x)+t
for every x ∈ X. For a subset Y of X, we denote by [Y ← 0]v the valuation such that for
every x ∈ Y , ([Y ← 0]v)(x) = 0 and for every x ∈ X \ Y , ([Y ← 0]v)(x) = v(x).

Clock constraints. Given a finite set of clocks X, we introduce two sets of clock con-
straints over X. The most general one, denoted C(X), is defined by the grammar:

g ::= x ▷◁ c | x− y ▷◁ c | g ∧ g | true

where x, y ∈ X, c ∈ Z and ▷◁ ∈ {<,≤,=,≥, >}.

Remark 1. We could allow rational constants in clock constraints (i.e., have c ∈ Q in the
above grammar), everything that follows would still hold, but developments would then be
a bit more technical.

A clock constraint of the form x − y ▷◁ c is said diagonal. Next we also use the proper
subset of diagonal-free clock constraints where the diagonal constraints are not allowed.
This set, denoted Cdf(X), is defined by the grammar:

g ::= x ▷◁ c | g ∧ g | true

where x ∈ X, c ∈ Z and ▷◁ ∈ {<,≤,=,≥, >}.

A k-bounded clock constraint is a clock constraint which involves only (integral) con-
stants c between −k and +k. The set of k-bounded (resp. k-bounded diagonal-free) clock
constraints is denoted Ck(X) (resp. Ckdf(X)).

If v ∈ TX is a clock valuation, we write v |= g when v satisfies the clock constraint g,
and we say that v satisfies x ▷◁ c (resp. x−y ▷◁ c) whenever v(x) ▷◁ c (resp. v(x)−v(y) ▷◁ c).
If g is a clock constraint, we write JgKX the set of clock valuations {v ∈ TX | v |= g}.

Example 3. The valuation v over {x, y} such that v(x) = 4.1 and v(y) = 0 satisfies the
constraint (x ≤ 5) ∧ (x− y > 3). ⌟
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2.2 The model of timed automata

A timed automaton over T is a tuple A = (L,L0, LF , X,Σ, T ), where L is a finite set of
locations, L0 ⊆ L is the set of initial locations, LF ⊆ L is the set of final locations, X is
a finite set of clocks, Σ is a finite alphabet of actions, and T ⊆ L × C(X) × Σ × 2X × L
is a finite set of transitions.5 If all constraints appearing in A are diagonal-free (i.e. are in
Cdf(X)), we say that A is a diagonal-free timed automaton.

For modelling purpose some definitions assume invariants in the model. Invariants are
clock constraints assigned to locations which have to be satisfied while the system is in the
location: they restrict time elapsing and may enforce the system be live. A timed automaton
with invariants is a tuple A = (L,L0, LF , X,Σ, T, Inv) where (L,L0, LF , X,Σ, T ) is a timed
automaton in the previous sense, and Inv : L → Cdf(X), the invariant, assigns a clock
constraint to every location. A timed automaton as defined initially is a special case of a
timed automaton with invariants where the invariant assigns true to every location. In the
sequel when we speak of timed automata we will equivalently mean timed automata with
or without invariants.

Several semantics can be given to timed automata. We first give an operational seman-
tics to timed automata, and then give a language-based semantics.

Semantics as a timed transition system. We first give an operational semantics as
a timed transition system. Let A = (L,L0, LF , X,Σ, T, Inv) be a timed automaton. Its
operational semantics is given as the timed transition system TA = (S, S0, SF ,→) over
alphabet Σ, where the set of states is S = {(ℓ, v) ∈ L× TX | v |= Inv(ℓ)}, the set of initial
states is S0 = {(ℓ0,0X) ∈ S | ℓ0 ∈ L0}, the set of final states is SF = S ∩ (LF × TX),6 and
→ ⊆ S × (T ∪Σ)× S is the set of moves defined as follows:

– delay moves : if (ℓ, v) ∈ S and d ∈ T, there is a move (ℓ, v)
d−→ (ℓ, v + d) whenever for

every 0 ≤ d′ ≤ d, (ℓ, v + d′) ∈ S (i.e. v + d′ |= Inv(ℓ));

– action moves : if (ℓ
g,a,Y−−−→ ℓ′) ∈ T and (ℓ, v) ∈ S, there is a move (ℓ, v)

a−→ (ℓ′, [Y ← 0]v)
whenever v |= g and ([Y ← 0]v) |= Inv(ℓ′). In that case we say that the action move is

associated with the transition ℓ
g,a,Y−−−→ ℓ′.

Next it will be more convenient to consider mixed moves, and hence to consider the timed
transition system T m

A = (S, S0,→) where S and S0 are defined as in TA, and → ⊆ S ×
(T × Σ) × S. In that case a move is composed of a delay move directly followed by an

action move: (ℓ, v)
d,a−→ (ℓ′, v′) is a mixed move if (ℓ, v)

d−→ (ℓ, v + d) is a delay move and
(ℓ, v + d)

a−→ (ℓ′, v′) is an action move.

Remark 2. We will later use this semantics for defining behavioural equivalences (and pre-
orders).

5 For more readability, a transition will often be written as ℓ
g,a,Y−−−→ ℓ′ or even as ℓ

g,a,Y :=0−−−−−−→ ℓ′ instead of simply
the tuple (ℓ, g, a, Y, ℓ′).

6 Note that SF is optional, but it will be useful to have it later.
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Semantics as a timed language. We now give a language-based semantics to a timed
automaton. Let A = (L,L0, LF , X,Σ, T, Inv) be a timed automaton. A path in A is a finite
sequence of consecutive transitions:

P = ℓ0
g1,a1,Y1−−−−→ ℓ1

g2,a2,Y2−−−−→ . . . ℓp−1
gp,ap,Yp−−−−→ ℓp

where ℓi−1
gi,ai,Yi−−−−→ ℓi ∈ T for every 1 ≤ i ≤ p. The path is said to be accepting if it starts in

an initial location (ℓ0 ∈ L0) and ends in a final location (ℓp ∈ LF ). A run of the automaton
along the path P is a sequence of the form:

ϱ = (ℓ0, v0)
d1,a1−−−→ (ℓ1, v1)

d2,a2−−−→ . . . (ℓp−1, vp−1)
dp,ap−−−→ (ℓp, vp)

where v0 |= Inv(ℓ0), and for each 1 ≤ i ≤ p, (ℓi−1, vi−1)
di,ai−−→ (ℓi, vi) is a mixed move of the

timed transition system T m
A (see Section 2.2) associated with the transition ℓi−1

gi,ai,Yi−−−−→ ℓi.
The run is accepting if the underlying path is accepting and if v0 = 0X .

The label of the run ϱ is the timed word w = (a1, t1) . . . (ap, tp) where for each 1 ≤ i ≤ p,

ti =
i∑

j=1

dj is the absolute time at which the i-th action ai occurs (we also say that run ϱ

reads the timed word w). If the run ϱ is accepting then the timed word w is said to be
accepted by A. The set of all timed words accepted by A is denoted L(A) and is the timed
language accepted (or equivalently recognized) by A.

Remark 3. In these notes, we mostly consider finite paths, finite runs and finite timed
words, but as for classical finite automata, one could consider infinite timed words and
ω-regular accepting conditions (Büchi, Muller, etc...), see [AD94].

2.3 An example of a timed automaton

We consider the (diagonal-free) timed automaton in Figure 1 with two clocks x and y and
over the alphabet {problem, delayed, repair, done}. It has four locations (‘safe’, ‘alarm’,
‘failsafe’, ‘repairing’), and location ‘safe’ is both initial and final. Transitions are depicted
in a standard way as labelled edges between locations. The transition between ‘alarm’ and
‘repairing’ has constraint x < 15, action label repair and resets clock y. A state of this
automaton is a location, and a valuation for the two clocks x and y. The following is a
sequence of delay and action moves in the timed transition system of the above timed
automaton (we write a state vertically, with the name of the location on top, then the
value of clock x and the value of clock y at the bottom):

safe
23−→ safe

problem−−−−→ alarm
15.6−−→ alarm

delayed−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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safe alarm

(x≤16)

repairing

failsafe

problem, {x}
x<

15
, r
ep
ai
r,

{y}

delayed, {y}

15≤x≤16

2≤y∧x≤56

repair, {y}

22≤y≤25, do
ne, ∅

Fig. 1: An example of a timed automaton

It corresponds to the following accepting run of the timed automaton (with the same
convention for the representation of states):

safe
23,problem−−−−−−→ alarm

15.6,delayed−−−−−−−→ failsafe
2.3,repair−−−−−−→ repairing

22.1,done−−−−−→ safe

x 0 0 15.6 17.9 40

y 0 23 0 0 22.1

This run reads (and accepts) the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9), (done, 63)

Exercise 1. Consider the following timed automata A:

ℓ0 ℓ1

ℓ2

ℓ3

x≤5,y≥2

a,y:=0

bx−y≥3,x≤5

y≥
1,x

<3

c

Do the timed words w = (a, 4.7)(b, 4.9) and w′ = (a, 2.1)(c, 3.1) belong to L(A)? Justify
your answer. ⌟

Exercise 2. Build a timed automaton which recognizes the following timed language over
the single-letter alphabet Σ = {a}

L = {(a, t1) . . . (a, tn) | n > 0 and ∃1 ≤ i < j ≤ n s.t. tj = ti + 1}

What do you think of the complement of this timed language? ⌟
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Exercise 3. Build a model for the computer mouse (click and double click), assuming dou-
ble click should happen within 5 time units. ⌟

A possible solution:

ℓ0 ℓ1 (x≤5)

ℓ2

press, x:=0

x<5, pressx=5, double click

x=5, simple click

2.4 Parallel composition of timed systems

Modelling a system with a unique timed automaton is not always convenient. A solution is
to define small components of the system, and show how they communicate and interact.
This is the role of the parallel composition.

Let (Ai)1≤i≤n be n timed automata, withAi = (Li, Li,0, Li,F , Xi, Σi, Ti, Invi). We assume
that all Xi’s are disjoint. If Σ is a new alphabet, given a (partial) synchronization function
f :
∏n

i=1 (Σi ∪ {•}) \ {(•, . . . , •)} → Σ, the synchronized product (or parallel composition)
(A1 ∥ · · · ∥ An)f is the timed automaton A = (L,L0, LF , X,Σ, T, Inv) where L = L1 ×
. . . Ln, L0 = L1,0 × . . . Ln,0, LF = L1,F × . . . Ln,F , for every (ℓ1, . . . , ℓn) ∈ L1 × . . . Ln,

Inv((ℓ1, . . . , ℓn)) =
n∧

i=1

Invi(ℓi), X =
⋃n

i=1Xi, and the set T is composed of the transitions

(ℓ1, . . . , ℓn)
g,a,Y−−−→ (ℓ′1, . . . , ℓ

′
n) such that there exists (a1, . . . , an) ∈ f−1(a) where:

– ai = • implies ℓi = ℓ′i;

– ai ̸= • implies that there exists ℓi
gi,ai,Yi−−−−→ ℓ′i in Ti;

– g =
∧
{gi | ai ̸= •} and Y =

⋃
{Yi | ai ̸= •};

Remark 4. For modelling purpose we may use finitely-valued variables, and use shared
variables. We however do not enter into more details here.

Example 4 (Fischer’s protocol). This involves n participants. Each participant wants to
access a shared resource. This is a mutual exclusion protocol, that is, no two participants
should access the shared resource at the same time. The protocol is described as Algo-
rithm 2.

We propose a first modelization using shared variable r (which is not allowed in our
syntax of timed automata).
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Algorithm 2: Fischer’s protocol

1 begin
2 r: shared variable;
3 repeat
4 repeat
5 await(r == 0) ; /* takes at most 2 time units */

6 r := i;
7 delay at least 2 time units;

8 until (r == i);
9 access the critical section;

10 r := 0;

11 until forever;

12 end

Process Pi idle req

(xi ≤ 2)

wait CS
r == 0, xi := 0 xi := 0, r := i xi > 2, r == i

r ̸= i

r := 0

The shared variable r can be replaced by an automaton representing the resource, which
communicates (via a synchronization function) with the processes.

Process Pi idle req

(xi ≤ 2)

wait CS
free, xi := 0 xi := 0, reqi xi > 2, takei

aborti

rel

r = 0

r = i r = j

free, aborti, abortj

takei, abortj takej, aborti

reqi rel reqjrel
reqj

reqi
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Exercise 4 (The train crossing example). A gate is controlled by a controller, which sends
signals (GoDown and GoUp) for closing or opening the barrier of the gate. Once such a
signal is received by the gate, 10 time units are required for processing the action. The
trains communicate with the controller. A train sends a signal Approach to the controller
when it is approaching the gate and Exit when it is exiting the gate. After having sent
signal Approach, the train will be on the gate within 20 and 30 time units. It will exit the
gate within 10 and 20 time units later.

The controller receives the Approach and Exit signals from the train, and sends the GoUp
and GoDown instructions to the gate. After having received signal Approach the controller
sends quickly (in no more than 10 time units) the signal GoDown, and whenever it receives
the signal Exit it sends instruction GoUp to the gate precisely 20 time units later.

Give a model of the system, with a single train.
Here are some properties that we could check on that model:

(Safety) is the gate closed when the train crosses the road?
(Liveness) is the gate always closed for less than 50 time units? ⌟

Exercise 5. Build a model for a 2-floor (or 3-floor!) lift as a product of several small au-
tomata. It will be made of the cabin, one door at each floor, one button at each floor (or
two directional buttons), 3 buttons in the cabin, and a controller. ⌟

Exercise 6. Four adventurers want to cross a damaged bridge in the middle of the night.
The bridge can only carry two of the adventurers at a time, and to find the way over the
bridge, the adventurers need to bring a torch. The adventurers need respectively 5, 10, 20
and 25 minutes (one-way) to cross the bridge. Does a schedule exist which allows the four
adventurers to get the four of them on the other side of the river, within 60 minutes?

Model this problem using (a product of) timed automata. ⌟

3 Reachability analysis, why and how?

For verification purposes, the most fundamental properties that one should be able to
verify on a model are reachability properties: basic safety properties (like ‘avoid some
bad states of the system’) can be expressed as (non-)reachability properties. Usually a
class of models is said decidable whenever checking reachability properties in this class
is decidable. Otherwise this class is said undecidable. For timed automata we will focus
on (location) reachability properties of the form: “Is the set of final locations of a timed
automaton A reachable from an initial state?” I.e., “is there a run starting in an initial
state leading to some final location ℓ?” There is no requirement as for the values of the
clocks when reaching location ℓ (note however that any clock constraint could be added
as a requirement). This problem is equivalent to the so-called emptiness problem (from a
language-theoretical perspective), where the question is whether the language accepted by
a timed automaton is empty or not.
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Several classes of systems are known to be decidable, and the simplest such class of
systems is that of finite automata, whose emptiness problem is known to be NLOGSPACE-
complete [HU79]. The case of timed automata is much harder as there are potentially
infinitely many states (recall that a state is a pair (ℓ, v) where ℓ is a location and v is a
valuation). Techniques used for finite automata can thus not be applied to timed automata,
and specific symbolic techniques and abstractions have to be developed.

In the next section we present the basic technics for solving the decidability of the
emptiness problem in timed automata. The idea will be to build a finite abstraction of the
timed automaton (actually a finite automaton), which preserves time-abstract properties
(and in particular reachability properties).

4 The region abstraction: A key for decidability

The region automaton construction is due to Rajeev Alur and David Dill [AD90,AD94]. It
is an abstraction of a timed automaton into a finite automaton which preserves many in-
teresting properties of the system. In this section we present a more abstract version of this
construction, which has been introduced in a wider context in [BDFP04]. This approach
decouples the main arguments from the technicalities. As we focus on reachability proper-
ties we assume w.l.o.g. that timed automata have no invariants (they can be transferred to
constraints on incoming and outgoing transitions while preserving reachability properties).

4.1 A tool: time-abstract bisimulation

Viewing the semantics of timed automata as timed transition systems allows to define
behavioural equivalence relations (or pre-orders).

Standard bisimulation on finite transition systems. We first recall the notion of
bisimulation. Let T = (S, S0, SF ,→) and T ′ = (S ′, S ′

0, S
′
F ,→′) be two finite transition

systems (corresponding eg to finite automata) over the same alphabet Σ (meaning that
→ ⊆ S ×Σ × S and →′ ⊆ S ′ ×Σ × S ′). Let R ⊆ S × S ′ be a relation. It is a bisimulation
relation whenever the following condition holds:

– if s1
a−→ s2 and (s1, s

′
1) ∈ R, then there exists s′2 ∈ S ′ such that s′1

a−→
′
s′2 and (s2, s

′
2) ∈ R;

– if s′1
a−→

′
s′2 and (s1, s

′
1) ∈ R, then there exists s2 ∈ S such that s1

a−→ s2 and (s2, s
′
2) ∈ R.

We can schematize the first condition as follows:

∀

s1 s2
a

s′1

R ⇒ ∃

s1 s2
a

s′1 s′2
a

R R
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Such a relation respects the final states whenever (s, s′) ∈ R implies (s ∈ SF iff s′ ∈ S ′
F ).

We say that the two transition systems T and T ′ are bisimilar whenever there exists a
bisimulation relation R such that for every s0 ∈ S0 there exists s′0 ∈ S ′

0 with (s0, s
′
0) ∈ R,

and vice-versa.

Lemma 1. If R is a bisimulation relation which respects the final states, such that for
every s0 ∈ S0, there exists s′0 ∈ S ′

0 with (s0, s
′
0) ∈ R and vice-versa, then L(T ) = L(T ′).

Exercise 7. Write the proof of the this lemma. ⌟

Exercise 8. Consider the four following automata. Which of these automata are bisimilar?
Justify.

p0

p1

p3

p2

p4

a

b

a

c

q0

q1

q2

q3

a

b

a

c

r0

r1

r2 r4

a

b c

s0

s1

s3

s2

s4

a

b

a

bc

⌟

Exercise 9. 1. Consider the three following automata. Which of these automata are bisim-
ilar? Justify.

p0

p1

p2

a

b

a

a

q0

q1

q2

a

b

a r0

r1

r2

r3a

b

a

a

a

a

2. How do the following transition systems relate (in a bisimulation sense) with the pre-
vious automata?

13



s0

s1

s2

s3

s4

a

a

b

b

a

a

a

t0

t1

t2

t′0

t′1

t′2

t′′0

t′′1

t′′2

. .
.

. .
.

a

a

a

b

b

a

b

a

⌟

Exercise 10. Consider a finite automaton A1, and its complete determinization obtained
by subset construction A2. Are A1 and A2 bisimilar?

Consider a deterministic complete finite automaton B1 and B2 its corresponding deter-
ministic minimal automaton. Are B1 and B2 bisimilar? ⌟

Strong timed bisimulation. We extend the previous notion in an obvious way to timed
transition systems. We choose to define it with mixed moves. Let T = (S, S0, SF ,→) and
T ′ = (S ′, S ′

0, S
′
F ,→′) be two timed transition systems with mixed moves over the same

alphabet Σ. A relation R ⊆ S × S ′ is a strong timed bisimulation whenever the following
properties hold:

– if (s1, s
′
1) ∈R and s1

d,a−→ s2 for some d ∈ T and some a ∈ Σ, then s′1
d,a−→

′
s′2 and

(s2, s
′
2) ∈R;

– vice-versa (swap mixed moves in T and in T ′).

This equivalence is really strong and will seldom be used.

Time-abstract bisimulation. Let T = (S, S0, SF ,→) and T ′ = (S ′, S ′
0, S

′
F ,→′) be

two timed transition systems with mixed moves over the same alphabet Σ. A relation
R ⊆ S × S ′ is a time-abstract bisimulation whenever the following properties hold:

– if (s1, s
′
1) ∈R and s1

d1,a−−→ s2 for some d ∈ T and some a ∈ Σ, then there exists d′ ∈ T
such that s′1

d′,a−−→
′
s′2 and (s2, s

′
2) ∈R;

– vice-versa (swap mixed moves in T and in T ′).

This relation is called time-abstract because it existentially quantifies over possible delays.
Unlike bisimulation, time-abstract bisimulation does not preserve languages, but it does

preserve emptiness of languages.

14



Lemma 2. If R is a time-abstract bisimulation relation which respects final states, such
that for every s0 ∈ S0, there exists s

′
0 ∈ S ′

0 with (s0, s
′
0) ∈ R and vice-versa, then L(T ) = ∅

iff L(T ′) = ∅.

4.2 The region automaton construction

The aim of this construction is to finitely abstract behaviours of timed automata, so that
checking a reachability property in a timed automaton reduces to checking a reachability
property in a finite automaton. The construction relies on the definition of an equiva-
lence relation over the set of valuations, which has finite index, and is called the region
equivalence.

The region equivalence. We fix a finite set of clocks X, and we let C be a finite set
of constraints over X. Let R be a partition of the set of (clock) valuations TX . We define
three compatibility conditions as follows:

➀ R is compatible with the set of constraints C if for every constraint g in C, for every R
in R, either R ⊆ JgKX or JgKX ∩R = ∅;

➁ R is compatible with the elapsing of time if for all R and R′ in R, if there exists some
v ∈ R and t ∈ T such that v + t ∈ R′, then for every v′ ∈ R, there exists some t′ ∈ T
such that v′ + t′ ∈ R′;

➂ R is compatible with the resets whenever for all R and R′ in R, for every subset Y ⊆ X,
if ([Y ← 0]R) ∩R′ ̸= ∅, then ([Y ← 0]R) ⊆ R′.7

If R is finite and satisfies these three conditions, we say that R is a set of regions for the
set of clocks X and the set of constraints C or simply a set of regions (if X and C are clear
in the context). An element R ∈ R is then called a region. The set R defines in a natural
way an equivalence relation ≡R over valuations:

v ≡R v′ iff (for each region R of R, v ∈ R⇔ v′ ∈ R)

If v is a valuation we note [v]R the (unique) region to which v belongs.

The intuition behind these conditions is the following: we want to finitely abstract
behaviours of timed automata. To that aim, we finitely abstract the (infinite) set of val-
uations (or equivalently the state space of the system): a valuation v will be abstracted
into the region [v]R (and a state (ℓ, v) will be abstracted into the pair (ℓ, [v]R)). In order
for the abstraction to preserve (at least) reachability properties, it must be the case that
if two states are equivalent, then future behaviours from those states should be more or
less the same. The three conditions above express this property: condition ➀ says that
two equivalent valuations satisfy the same clock constraints, condition ➁ says that time
elapsing does not distinguish between two equivalent valuations, whereas condition ➂ says
that resetting clocks does not distinguish between two equivalent valuations. Note that
condition ➁ is a time-abstract property: the precise values of delays needs not be the same

7 [Y ← 0]R is the set of valuations {[Y ← 0]v | v ∈ R}.
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from two equivalent valuations. This ‘abstraction of time’ is the main reason which will
make the region equivalence finite index for timed automata.

Example 5. Let us consider the partition of R{x,y}
+ made of five pieces

R = {R0, R1, R2, R3, R4}

which are defined by the following constraints:

R0Å
x ≥ 0
y = 0

ã R1Ñ
0 ≤ x < 1
0 ≤ y ≤ 1
x < y

é R2Ñ
x ≥ 0

0 < y ≤ 1
x ≥ y

é R3Ñ
x > 1
y > 1
x ≥ y

é R4Ñ
x ≥ 0
y > 1
x < y

é
This partition is represented below:

0 1

1
R1

R3

R2

R4

R0

y

x

x = y

y = 1

It is easy to verify that R is a set of regions for the set of clocks {x, y} and for the set of
constraints {y ≤ 1, y > 1, x ≥ y, x < y}. ⌟

The main property of the region equivalence is the following:

Proposition 1. Let A = (L,L0, LF , X,Σ, T ) be a timed automaton with set of constraints
C. Assume that R is a set of regions for X and C. Then the equivalence relation ∼=R defined
on configurations of A by:

(ℓ, v) ∼=R (ℓ′, v′) iff ℓ = ℓ′ and v ≡R v′

is a time-abstract bisimulation, which is called the region equivalence.

The proof of this proposition can be written as an exercise.

Exercise 11. Write the proof of the this proposition. ⌟

This property of the region equivalence will be used to construct a finite automaton,
which will somehow be the quotient of the original timed automaton with the region
equivalence. We start by constructing the region graph, which represents the (abstract)
evolution of time and clock valuations. Then we construct the region automaton, which is a
finite automaton, representing (in an abstract way) the behaviours of the timed automaton.
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The region graph. From a set of regions R as characterized in the previous paragraph,
one can define the so-called region graph, which represents the possible time evolutions
of the system: the region graph is a finite automaton whose set of states is R and whose
transitions are: ®

R
ε−→ R′ if R′ is a time successor of R, 8

R
Y−→ R′ if [Y ← 0]R ⊆ R′.

Intuitively, the region graph records possible evolutions of time in the system: there is a
transition R

ε−→ R′ if, from some (or equivalently every, by condition ➁) valuation of region

R, it is possible to let some time elapse and reach region R′. There is a transition R
Y−→ R′

if, from region R, the region R′ can be reached by resetting clocks in Y . Note that this
graph is closed by reflexivity and transitivity for ε-transitions, i.e., R

ε−→ R, and if R
ε−→ R′

and R′ ε−→ R′′, then R
ε−→ R′′.

Example 6. The region graph associated with the set of regions R mentioned in Example 5
is represented on Figure 2. Plain edges are

ε−→ transitions of the region graph, whereas

dashed (resp. dotted) edges are
{x}−−→ (resp.

{y}−−→) transitions. We have omitted transitions
{x,y}−−−→ (that reset both clocks) for readability reasons: there should be such a transition
from any state to region R0. ⌟

R0

x≥0

y=0

R1

0≤x<1

0≤y≤1

x<y

R2

x≥0

0<y≤1

x≥y

R3

x>1

y>1

x≥y

R4

x≥0

y>1

x<y

time elapsing

reset of clock x

reset of clock y

Fig. 2: A simple example of a region graph

7 R′ is a time successor of R whenever there is some v ∈ R and some t ∈ T such that v + t ∈ R′. Note that, due
to the compatibility condition ➁, if R′ is a time successor of R, then for every v ∈ R, there is some t ∈ T such
that v + t ∈ R′.
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The region automaton. LetA = (L,L0, LF , X,Σ, T ) be a timed automaton, and assume
that the set of constraints occurring in A is C. Let R be a finite set of regions for X
and C (i.e., a partition of TX satisfying conditions ➀, ➁ and ➂). The region automaton
ΓR(A) is the finite automaton (Q,Q0, QF , Σ, T

′) where Q = L × R is the set of states,
Q0 = L0 × {[0X ]R} is the set of initial states, QF = LF ×R is the set of final states, Σ is
the same alphabet as that of A, and T ′ is the set of transitions defined as follows: there
is a transition (ℓ, R)

a−→ (ℓ′, R′) in T ′ whenever there exists some region R′′ ∈ R and some

transition ℓ
g,a,Y−−−→ ℓ′ in A such that

R
ε−→ R′′ is a transition in the region graph,

R′′ ⊆ JgKX ,
R′′ Y−→ R′ is a transition in the region graph.

A transition of the region automaton abstracts a delay followed by an action in the original
timed automaton. More precisely, whenever in A we can delay some time and make an a,
then in ΓR(A), we can make some a, and vice-versa. This is formalized by the following
lemma, which can be derived from the definition of ΓR(A) and from Proposition 1:

Lemma 3. The three following sentences are equivalent:

(a) there is a transition (ℓ, R)
a−→ (ℓ′, R′) in ΓR(A);

(b) there exists v ∈ R, there exists d ∈ T and there exists v′ ∈ R′ such that (ℓ, v)
d,a−→ (ℓ′, v′)

is a mixed move in A;
(c) for every v ∈ R, there exists d ∈ T and there exists v′ ∈ R′ such that (ℓ, v)

d,a−→ (ℓ′, v′)
is a mixed move in A.

We are now ready to state the main language-related property of the region automaton
construction.

Proposition 2. Let A be a timed automaton with set of clocks X and set of constraints
C. We assume we can construct a set of regions R for X and C. Then,

Untime(L(A)) = L(ΓR(A))

where L(ΓR(A)) is the (untimed) language accepted by the finite automaton ΓR(A) and
Untime((a1, t1) . . . (ap, tp)) = a1 . . . ap assigns to a timed word (and by extension to a timed
language) a finite word (and by extension a classical language).

Proof. A standard induction on the length of runs allows to build runs in A and paths in

ΓR(A) which coincide in the following sense: there is a run (ℓ0, v0)
d1,a1−−−→ . . .

dp,ap−−−→ (ℓp, vp)

in A iff there is a path (ℓ0, [v0]R)
a1−→ . . .

ap−→ (ℓp, [vp]R). This implies the expected result. ⌟

Remark 5. In terms of behavioural equivalence, the finite automaton ΓR(A) is the quotient
of the timed transition system T m

A w.r.t. the time-abstract bisimulation ∼=R.
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Example 7. We consider the following small timed automaton, and we would like to know
whether location ℓ4 is reachable from the initial state (ℓ0,0{x,y}).

ℓ0 ℓ1 ℓ2

ℓ4 ℓ3

y>1,a,x:=0 y>1,b

x<y∧y≤1,e c,y:=0
d

A possible set of regions for that automaton has been given in Example 5, and the corre-
sponding region automaton is the following finite automaton.

ℓ0,R0 ℓ1,R4

ℓ1,R3

ℓ1,R2

ℓ1,R0

ℓ2,R4

ℓ2,R3

ℓ3,R0

ℓ4,R1

a b

c

d

d d

b

b

b
c

Applying Proposition 2, we have that location ℓ4 is reachable in the original timed au-
tomaton iff the state (ℓ4, R1) is reachable in the region automaton (actually it should be
iff any of the (ℓ4, Ri) is reachable, but due to the constraint labelling the transition from
ℓ1 to ℓ4, we can focus on (ℓ4, R1)). We see that it is not the case, and hence that there is
no run which starts in the initial state (ℓ0,0{x,y}) and ends in ℓ4. ⌟

For every timed automaton A for which we can effectively construct a finite set of
regions R (satisfying conditions ➀, ➁ and ➂), we can transfer the checking of reachability
properties in A to the finite automaton ΓR(A). It remains to see how we can effectively
build sets of regions for timed automata.

19



4.3 Effective construction of sets of regions

In the previous section, we have presented an abstract construction which allows to reduce
for instance the model-checking of reachability properties in timed automata to the model-
checking of reachability properties in finite automata (under the condition that there is a
finite set of regions for the set of constraints used in the timed automaton). However, we
did not explain how we construct a set of regions for timed automata, which is the basis
to the whole construction.

In this section, we fix a finite set of clocks X.

Regions for sets of diagonal-free constraints. Let M ∈ N be an integer. We define
a set of regions for X and the set of M -bounded diagonal-free clock constraints CMdf (X).
A natural partition would be to take the partition induced by the set of constraints itself,
see Figure 3(a) for an illustration with two clocks. But this is actually not fine enough
because compatibility condition ➂ is not satisfied (as illustrated on the figure by the two
gray valuations). A correct partition is then the one of Figure 3(b).

0
0

1

1

2

2

1

1

2

2

clock y

clock x

0
0

(a) Partition compatible with the 2-
bounded clock constraints and the re-
sets (conditions ➀ and ➂), but not with
time elapsing (condition ➁): the two
gray points are not equivalent

0
0

1

1

2

2

1

1

2

2

clock y

clock x

0
0

(b) Partition R2
df({x, y}) satisfying all

the compatibility constraints ➀, ➁ and
➂ for the set of constraints C2df({x, y})

Fig. 3: Region construction for set of diagonal-free constraints C2df({x, y})

We formalize this idea and we define the equivalence relation ≡X,M
df over TX . We will

give three different (equivalent) definitions.

(i) The first definition formalizes the 2-dimensional intuition that we have seen earlier.
Let v and v′ be two valuations of TX , we say that v ≡X,M

df v′ if all three following
conditions are satisfied:
(a) v(x) > M iff v′(x) > M for each x ∈ X,

(b) if v(x) ≤ M , then ⌊v(x)⌋ = ⌊v′(x)⌋ and
(
{v(x)} = 0 iff {v′(x)} = 0

)
for each

x ∈ X,9 and

9 ⌊·⌋ (resp. {·}) represents the integral (resp. fractional) part.
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(c) if v(x) ≤ M and v(y) ≤ M , then {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)} for all
x, y ∈ X.

The relation ≡X,M
df is an equivalence relation of finite index, and it naturally induces

a finite partition RM
df (X) of TX (defined as the set of equivalence classes of TX

/≡X,M
df

).

The construction for two clocks is precisely that illustrated on Figure 3(b).

(ii) We give a second description of the regions in RM
df (X). An interval of T with integral

bounds is saidM-simple if it is of one of the following forms: (c, c+1) with 0 ≤ c < M ,
or [c, c] with 0 ≤ c ≤ M , or (M,+∞). It is said bounded if it is one of the two
first forms, and singular in the second form. Each region of RM

df (X) can then be
characterized uniquely by:

– an M -simple interval Ix for every clock x ∈ X, and
– a preorder ≺ on the set of clocks

Z(Ix)x∈X
= {x ∈ X | Ix bounded and non-singular}.

Intuitively the interval Ix is the interval to which x belongs, and the preorder is given
by the preorder on the fractional parts of all clocks bounded by M with non-integral
values.
Assume that region R is given by (Ix)x∈X and ≺; then:

v ∈ R iff

ß
∀x ∈ X, v(x) ∈ Ix and
∀x, y ∈ Z(Ix)x∈X

, (x ≺ y ⇔ {v(x)} ≤ {v(y)})

(iii) We give a third description of the regions, which give an interesting one-dimensional
understanding of the regions. It reuses elements of the characterization above. Each
region of RM

df (X) can be characterized uniquely by:

– the set X∞ = {x ∈ X | Ix = (M,+∞)}
– the set X0 = {x ∈ X \X∞ | Ix = [c, c] for some c ≤M}
– a partition (Xi)1≤i≤p of X \ (X0 ∪X∞) such that:

• for every 1 ≤ i ≤ p, Xi ̸= ∅
• for x ∈ X \ (X0 ∪X∞), writing i(x) for the unique index such that x ∈ Xi(x),
for every x, y ∈ X \ (X0 ∪X∞)

x ≺ y ⇔ i(x) ≤ i(y)

That is: clocks in the same Xi have the same fractional part, whereas fractional
parts of clocks in two different Xi’s have their fractional parts ordered accordingly.

– for every x ∈ X \X∞, cx is an integer bounded by M , and if x /∈ X0, cx < M .

Note: sets X0 and X∞ can be empty (contrary to the other Xi’s).
The generic representation of such a region is as follows (it represents the interval
[0, 1) and shows the repartition of the clocks within that interval (according to their
fractional part)):
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1

X0

0

X1 X2 Xp· · ·
X∞

∀x ∈ X \X∞
x 7→ cx

Assume that region R is given by X0, (Xi)1≤i≤p, X∞ and (cx)x∈X\X∞ ; for every x ∈
X \X∞, write i(x) ∈ {0, 1, . . . , p} such that x ∈ Xi. Then:

v ∈ R iff ∃(γi)0≤i≤p ∈ [0, 1)p+1 s.t.

γ0 = 0, i < j ⇒ γi < γj
∀x ∈ X \X∞, v(x) = cx + γi(x)
∀x ∈ X∞, v(x) > M

For instance, the lightgray region depicted in Figure 3(b) has the following second
characterization: x ∈ (1, 2)

y ∈ (0, 1)
x ≺ y, y ̸≺ x (meaning {x} < {y})

and the following third characterization:X0 = X∞ = ∅
X1 = {x}, X2 = {y}
cx = 1, cy = 0

Exercise 12. Prove the equivalence of these definitions. ⌟

The following lemma states the correctness of the above partition.

Proposition 3. The partition RM
df (X) is a finite set of regions for clocks X and M-

bounded diagonal-free clock constraints CMdf (X).

Proof. Conditions ➀ and ➂ are rather easy to check, we thus omit the details. The case of
condition ➁ requires more careful developments.

We will base the proof on the third characterization of the regions, and first define
a “next successor” operation on the regions: the region r∞ defined by X∞ = X has no
next successor; given a region r characterized by (Xi)0≤i≤p,i=∞ and (cx)x∈X\X∞ , its next
successor succ(r), characterized by (X ′

i)0≤i≤p′,i=∞ and (c′x)x∈X\X′
∞ , is defined as follows:

– if X0 ̸= ∅ and {x ∈ X0 | cx < M} ≠ ∅,
X ′

0 = ∅
X ′

∞ = X∞ ∪ {x ∈ X0 | cx =M}
X ′

1 = {x ∈ X0 | cx < M}
X ′

i+1 = Xi, ∀1 ≤ i ≤ p
c′x = cx, ∀x ∈ X \X ′

∞
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– if X0 ̸= ∅ and {x ∈ X0 | cx < M} = ∅,
X ′

0 = ∅
X ′

∞ = X∞ ∪X0

X ′
i = Xi, ∀1 ≤ i ≤ p

c′x = cx, ∀x ∈ X \X ′
∞

– if X0 = ∅, 
X ′

∞ = X∞
X ′

0 = Xp

X ′
i = Xi, ∀1 ≤ i < p

c′x = cx, ∀x ∈
⋃

1≤i<pXi

c′x = cx + 1, ∀x ∈ X ′
0

Indeed, time elapsing on that representation is obtained by circular translation of the sets
of clocks, with an absorbing set X∞ when clocks go above the maximal constant.

Find below a (rough) representation of the two first cases, and then of the third case:

1

X0

0

X1 X2 Xp· · ·

X∞

∀x ∈ X \X∞
x 7→ cx

0

1

∅

0

X1 X2 Xp· · ·

X∞

∀x ∈ X \X∞
x 7→ cx

0

t

t

Formally:

Lemma 4. Let r ̸= r∞ be a region such that succ(r) is defined. For every v ∈ r, there
exists t ∈ T such that v + t ∈ succ(r), and for all 0 ≤ t′ ≤ t, v + t′ ∈ r ∪ succ(r).

Proof. Let v ∈ r, and let γi be the fractional part of the clocks in Xi, assuming γ0 = 0: for
every x ∈ X \X∞, v(x) = cx + γi(x).

If we are in one of the two first cases above, we let t = 1−γp
2

, and set v′ = v + t. It is
easy to check that v′ ∈ succ(r), and that is is also the case for all v + t′ with 0 < t′ ≤ t.
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Then, assume we are in the third case, and let t = 1− γp. Setting v′ = v+ t, we get the
expected result as well. ⌟

Let r be a region. We define succ0(r) = r, and succi+1(r) = succ(succi(r)) if it is defined.

Then succ∗(r) =
⋃
i≥0

succi(r) defined

succi(r). We then prove the following lemma:

Lemma 5. Let r be a region and let v ∈ r. For every t ∈ T, v + t ∈ succ∗(r).

Proof. We show the result by induction on the number of regions included in succ∗(r). The
basis case is when succ∗(r) only includes r, which can only happen when r = r∞: this is
obvious since for every v ∈ r∞, for every t ∈ T, v + r ∈ r∞.

Pick n ∈ N≥1, and assume we have proven the result for every region r such that
succ∗(r) contains at most n regions. Pick now a region r such that succ∗(r) contains n+ 1
regions. Towards a contradiction assume that the expected property does not hold for r,
and choose v ∈ r and t ∈ T such that v + t /∈ succ∗(r). Notice first that r ̸= r∞, hence
succ(r) is well-defined. Let t1 be such that v+ t1 ∈ succ(r). Because of the previous lemma,
it must be the case that t > t1. Letting r1 = succ(r) v1 = v + t1 ∈ r1, with delay t− t1, we
can apply the induction hypothesis, and obtain a contradiction. ⌟.

We are now ready to prove property ➁. Let r be a region. Applying Lemma 4, we show
by induction on i that for every i ∈ N, for every v ∈ r, there is ti such that v+ti ∈ succi(r).
Lemma 5 shows the completeness, since for every v ∈ r, for every t ∈ T, there is i such
that v + t ∈ succi(r).

Hence, condition ➁ is satisfied by the partition RM
df (X). ⌟

Lemma 6. The number of regions in RM
df (X) is bounded by (M + 1)|X|.|X|!.2|X|+2 where

|X| is the cardinal of X.

Proof. We use the third characterization of regions to get the expected upper bound. In
this representation, we can assume that cx =M whenever x ∈ X∞. The factor (M + 1)|X|

is then for the choice of each constant cx (for x ∈ X). Now, to understand the rest of the
formula, let us write down the list of the clocks by starting with X0, then X1, . . ., Xp and
finally X∞. There are |X|! such lists. Finally we distinguish all first elements of each set
(plus two Booleans for checking whether X0 or X∞ is empty or not), yielding the factor
2|X|+2.

Note: this bound is obviously not optimal; indeed, the order in which we list the various
sets Xi is not important. ⌟

Note that a tighter bound can be obtained, but the computation is much more involved,
see [Kop96].10

10 Thanks to Luca Aceto who pointed out this reference.
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Regions for sets of general constraints. LetM ∈ N be an integer. The aim is to define
a set of regions for X and the set ofM -bounded clock constraints CM(X). The partition we
have defined in the previous paragraph is no more compatible with the set of constraints
CM(X), we thus need to refine it.

We define an equivalence relation≡X,M over TX as follows: let v and v′ be two valuations
of TX , we say that v ≡X,M v′ if all two following conditions hold:

– v ≡X,M
df v′, and

– v |= (x− y ∼ c) iff v′ |= (x− y ∼ c) for every (x− y ∼ c) ∈ CM(X).

This equivalence relation refines ≡X,M
df in that two equivalent valuations satisfy in addition

the same diagonal constraints (bounded byM). This new partition is denoted RM(X) and
is illustrated for two clocks on Figure 4.

0
0

1

1

2

2

1

1

2

2

clock y

clock x

0
0

Fig. 4: Set of regions R2(X) for 2-bounded clock constraints with two clocks

We omit the proof of the following proposition, which states the correctness of the
refinement.

Proposition 4. The partition RM(X) is a set of regions for X and the set of M-bounded
clock constraints CM(X).

As previously, each region of RM(X) can be characterized by:

– an M -simple interval Ix for every clock x ∈ X, and
– an M -simple interval, or minus an M -simple interval, Jx,y for all clocks x, y ∈ X.

Intuitively the interval Ix gives the constraint on clock x, and Jx,y gives the constraint on
the difference x− y. The order between fractional parts of two clocks x and y can now be
infered from the intervals Ix, Iy and Jx,y.

As a direct consequence of this characterization, we get the following upper bound on
the number of regions.

Lemma 7. The number of regions in RM(X) is bounded by (4M +3)(|X|+1)2 where |X| is
the cardinal of X.

Remark 6. Note that RM(X) is also a set of regions for the set of constraints CMdf (X).
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Remark 7. Note that sets of regions we have described could be made smaller: there is
no need to have the same maximal constant for all clocks, one maximal constant for each
clock could be used. However, for the purpose of these notes, there is no need for such a
refinement.

4.4 An example of region automaton [AD94]

Consider the following timed automaton:

s0 s1

s2

s3
x>0,a

y:=0

y=1,b x<1,cx<1,c

y<1,a,y:=0

x>1,d

It has two clocks and maximal constant 1. The set of regions can be described as follows:

y

x

The corresponding region automaton is therefore:

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a
b

b b

c a
a a

d

d

d

d

d

d

d

d

a

Many things can be read on the region automaton... e.g. Zeno cycles.

4.5 Some exercices

Exercise 13. We assume we can update clocks with more involve operations than resets
to zero. For this exercise, we write U for a finite set of functions up : TX → TX . Those
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updates can be put on transitions in place of resets, and when firing the transition, the
valuation is updated according to this function.

How should we strengthen conditions ➀, ➁ and ➂ in the construction of a finite set of
regions to take into account those new updates?

Can you build a (finite) set of regions in the following cases? Explain.

– diagonal-free clock constraints, and updates

U = {x := 0, x := x+ 1 | x ∈ X}

where, writing up for ‘x := x + 1’ up(v) is the valuation assigning v(x) + 1 to x and
v(y) to y ̸= x;

– general clock constraints, and updates

U = {x := 0, x := x+ 1 | x ∈ X}

– diagonal-free clock constraints, and updates

U = {x := 0, x := x− 1 | x ∈ X}

– general clock constraints, and updates

U = {x := 0, x := x− 1 | x ∈ X}

⌟

Exercise 14. Prove that for any timed automaton A, we can construct a diagonal-free
timed automaton B that recognizes the same timed language. What is the size of B? Do
you think we can avoid that blowup? ⌟

Exercise 15. If we add linear constraints to the model, i.e., constraints of the form
∑

x∈X αxx ∼
c with αx ∈ Z for every x ∈ X and c ∈ Z, prove that the reachability problem becomes
undecidable. ⌟

5 Complexity issues

5.1 Application to the reachability problem

Let A be a timed automaton with set of clocks X. LetM be the maximal constant involved
in one of the constraints of A, the set RM(X) (or even RM

df (X) in case A is a diagonal-
free timed automaton) is a set of regions for A. Hence the region abstraction and all the
developments made in the previous section can be used. The following result, due to Alur
and Dill [AD90,AD94], is the core of the verification of timed systems.
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Theorem 2. The reachability problem is decidable for timed automata. It is a PSPACE-
complete problem (for both diagonal-free and general timed automata).

Although this theorem has been first stated in [AD90,AD94], the proof we present here
is taken from [AL02].

Proof. To prove PSPACE membership, we use the region automaton construction, and
check reachability properties in this finite abstraction (see Proposition 2). Applying Lem-
mas 6 and 7, we know that the size of this finite automaton is exponential in the size of
the original timed automaton (in both diagonal-free and general cases). Moreover, using
the characterizations of the regions we have given we know that each state of the finite au-
tomaton can be stored in polynomial space, and, given a state, we can guess a successor in
polynomial space. Hence, we apply the classical NLOGSPACE algorithm for checking reach-
ability properties in finite automata, and get a PSPACE algorithm for checking reachability
properties in the original timed automaton.

The PSPACE-hardness can be proved by reducing the termination of a (non-deterministic)
linearly bounded Turing machine (LBTM for short) on some given input to the reachability
problem in timed automata. We present the proof for general timed automata, and then
explain informally how it can be extended to diagonal-free timed automata. The complete
reduction can be found in the appendices of [AL02].

Let M be a LBTM and w0 an input for M. We write N for a (linear) bound on the
length of the tape which is used whenM executes on w0. We encode the behaviour ofM
on w0 as the behaviour of a timed automaton. The encoding is as follows: assuming the
alphabet of M is {a, b} (this can be done w.l.o.g.), and writing # for the blank symbol,
the content of cell Ci of the tape of the LBTM is encoded by a constraint on two clocks xi
and yi. Cell Ci contains a symbol a when the constraint xi = yj holds, and cell Cj contains
a symbol b when the constraint xj < yj holds. If the cell is empty (or equivalently contains
the blank symbol #), then the constraint xj > yj holds. Note that these three constraints
are invariant by time elapsing. This is illustrated on Figure 5.

maximal number of cells in use: N

tape ofM
cell Ci

a

xi = yi

cell Cj

b

xj < yj

cell Ck

#

xk > yk

Fig. 5: Encoding of the tape of the LBTMM

We assume that the set of states ofM is Q, its initial state is q0, and its halting state
is qF . We construct a timed automaton A = (L,L0, LF , X,Σ, T ) as follows:

– L =
(
Q× {1, . . . , N}

)
∪ {init};

– L0 = {init};
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– LF = {(qF , i) | i ∈ {1, . . . , N}};
– X = {xi, yi | i ∈ {1, . . . , N}} ∪ {u};
– Σ = {a};
– For every rule ofM, we will have several transitions in T . We define the constraint ga,i

by (u > 0 ∧ xi < yi), the constraint gb,i by (u > 0 ∧ xi = yi), and the constraint g#,i by
(u > 0∧xi > yi). Those constraints express that cell i contains an a, respectively a b and
a blank character. We define the resetting sets Ya,i = {u, xi, yi} and Yb,i = {u, xi}. Those
are sets of clocks to be reset for expressing the fact that we write an a, respectively a b,
in cell i.

• Consider a rule (q,Readα,Writeβ,Right, q
′) 11 in M. For every i ∈ {1, . . . , N − 1},

there is a transition (q, i)
gα,i,a,Yβ,i−−−−−→ (q′, i+ 1) in T .

• Consider a move (q,Readα,Writeβ, Left, q
′) inM. For every i ∈ {2, . . . , N}, there is

a transition (q, i)
gα,i,a,Yβ,i−−−−−→ (q′, i− 1) in T .

There is an extra transition from state init to initialize the input word w0 on the tape:

init
u>0,a,Yw0−−−−−−→ (q0, 1) where Yw0 = {u} ∪ {xi, yi | w0(i) = a} ∪ {xi | w0(i) = b} ∪ {yi | i >

|w0|} (w0(i) denotes the i-th letter of w0).

We claim that there is a halting computation inM iff L(A) ̸= ∅, and we let the careful
reader get convinced of this equivalence. As the halting problem for LBTMs is PSPACE-
hard, we get the expected lower bound.

See next exercise for the case of diagonal-free clock constraints. ⌟

Remark 8. In [CY92], a proof of PSPACE-hardness is given for diagonal-free timed au-
tomata with only three clocks, it is rather technical, hence we have chosen not to present
it here.

Exercise 16. Think of a PSPACE lower bound reduction for diagonal-free timed automata.
⌟

Proof (Solution to this exercise). We use a proof which is close to the previous one. We
can nevertheless not use diagonal constraints, which were very convenient for encoding the
content of the cells (since diagonal constraints are invariant by time elapsing).

Let N be the bound on the tape ofM when simulating on input word w0. We assume
the alphabet is {a, b} and we encode the content of j-th cell Cj using a clock xj with the
following convention: when we enter a module, cell Cj contains an a whenever xj < 1 and
it contains a b whenever xj > 2. The simulation of a transition (q,Readα,Writeβ,Right, q

′)
is given on the figure below (we assume i + 1 ≤ N , so that this transition is meaningful).
Guard ga,i is xi < 4, u < 3 whereas guard gb,i is xi > 4, u < 3. Set Ya,i is {xi} and set Yb,i
is ∅.

11 This rule reads as follows: from state q, if we read an α in the current cell of the tape, then we write a β onto
the current cell, move the head of the tape to the right and go to state q′.
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q,i ... ... q′,i+1
u:=0 2<u<3

x1<4,u<3

x1:=0

x1>4,u<3

x2<4,u<3

x2:=0

x2>4,u<3

gα,i,Yβ,i

xN<4,u<3

xN :=0

xN>4,u<3

The case of a transition (q,Readα,Writeβ,Right, q
′) is very similar, but requires i− 1 ≥ 0,

and then goes to (q′, i− 1) instead of (q′, i+ 1).

5.2 The case of ‘simply-timed’ timed automata

The previous complexity result holds for timed automata with three clocks or more (the
proof of three clocks is rather involved, though). For some simpler systems, for instance
for systems with a single clock, this result can be improved. Of course, the same set of
regions cannot be used, because even though the number of clocks is one, the number of
regions given in Lemma 6 remains exponential, due to the binary encoding of constants in
the timed automaton. However we can choose a smaller and rougher set of regions which
yields the following result, due to [LMS04].

Proposition 5. The reachability problem for single-clock timed automata is NLOGSPACE-
complete.

Proof. NLOGSPACE-hardness follows from that of reachability in finite graphs [HU79].
The NLOGSPACE membership can be obtained using a rougher set of regions than that

presented in Section 4.3. Given a finite set C of constraints over a single clock x, we define
the set of constants C = {c ∈ N | ∃(x ▷◁ c) ∈ C} ∪ {0}, and we assume that this set is
ordered: C = {c0 < c1 < c2 < · · · < cp}. We define the partition RC as the (finite) set of
intervals of one of the forms: (i) {ci} with 0 ≤ i ≤ p, or (ii) (ci, ci+1) with 0 ≤ i < p, or (iii)
(cp,+∞). This is not hard to prove that RC is a set of regions for {x} and C. The size of
RC is polynomial in the size of C, which yields a polynomial-size region automaton, hence
the expected result. ⌟

The case of two-clock timed automata has recently been solved in the literature [FJ15]
and proved to be PSPACE-complete. For a long time, this was known to be NP-hard only.
The proof is long and technical, therefore it is omitted here.

Exercise 17. Prove an NP lower bound for the reachability problem in two-clocks timed
automata. ⌟
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6 Timed logics

The region automaton abstraction is sound for verifying reachability properties. This is
due to the time-abstract bisimulation property which links the region automaton and the
original timed automaton. As a consequence, the region automaton abstraction can be used
to verify all properties that are invariant by time-abstract bisimulation. This is for instance
the case of safety properties, of ω-regular properties, or of untimed properties expressed
in LTL [Pnu77] or in CTL [CE81]. However, this construction cannot be directly used to
verify properties expressed in a timed temporal logic like TCTL [ACD90,ACD93] because a
property like “reaching a state in exactly 5 units of time” is not invariant by time-abstract
bisimulation. However we show that it can nevertheless be used.

6.1 Timed extensions of CTL

We let AP be a finite set of atomic propositions. In this section, timed automata are tuples
A = (L, ℓ0, X, T,L) such that (L, ℓ0, X, T ) is a standard timed automaton with a single
initial location, no final locations, no alphabet, and L : L→ 2AP is a labelling function.

Syntax and semantics. The branching-time logic TCTL,12 which extends the classical
untimed branching-time logic CTL with time constraints on modalities, has been defined

The syntax of TCTL is given by the following grammar:

TCTL ∋ ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | EϕUI ϕ | AϕUI ϕ

where a ∈ AP, and I is an interval of R+ with integral bounds.
There are two possible semantics for TCTL, one which is said ‘continuous’, and the

other one which is more discrete and is said ‘pointwise’. These two semantics share rules
for basic modalities, and only differ in the interpretation of the term ‘position’ :

(ℓ, v) |= a ⇔ a ∈ L(ℓ)
(ℓ, v) |= ¬ϕ ⇔ (ℓ, v) ̸|= ϕ

(ℓ, v) |= ϕ ∨ ψ ⇔ (ℓ, v) |= ϕ or (ℓ, v) |= ψ
(ℓ, v) |= EϕUI ψ ⇔ there is an infinite run ϱ in A

from (ℓ, v) such that ϱ |= ϕUIψ
(ℓ, v) |= AϕUI ψ ⇔ any infinite run ϱ in A from (ℓ, v)

is such that ϱ |= ϕUI ψ
ϱ |= ϕUI ψ ⇔ there exists a position π > 0 along ϱ such that

ϱ[π] |= ψ, for every position 0 < π′ < π,
ϱ[π′] |= ϕ, and duration(ϱ≤π) ∈ I

where ϱ[π] is the state of ρ at position π, ϱ≤π is the finite prefix of ϱ ending at position
π, and duration(ϱ≤π) is the sum of all delays along ϱ up to position π. The U-modality is
called the ‘Until’ operator.

12 TCTL stands for “Timed Computation Tree Logic” and has been defined in [ACD90].
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In the continuous semantics, a position in a run ρ is any state appearing along ρ.13 For
instance if there is a transition (ℓ, v)

τ,e−→ (ℓ′, v′) in ρ, then any state (ℓ, v+t) with 0 ≤ t ≤ τ
is a position of ρ, and obviously, so is (ℓ′, v′). This semantics is very strong because for ρ
to satisfy ϕU∼c ψ, all intermediary states of ρ need to satisfy ϕ before ψ holds.

In the pointwise semantics, a position in a run ρ = s0
τ1,e1−−→ s1

τ2,e2−−→ s2 · · · sn−1
τn,en−−−→

sn · · · is an integer i and the corresponding state si. In this semantics, formulas are checked
only right after a discrete action has been done. Sometimes, the pointwise semantics is
given in terms of actions and timed words, but it does not change anything. Later, we may
sometimes use the timed words terminology.

As usually in CTL, we define syntactic sugar to TCTL: tt ≡ a ∨ ¬a standing for true,
ff ≡ ¬tt standing for false, the implication φ → ψ ≡ (¬φ ∨ ψ), the eventuality operator
FI ϕ ≡ ttUI ϕ, and the globally operator GI ϕ ≡ ¬(FI ¬ϕ).

Example 8. In TCTL, we can write many kinds of properties, for instance, bounded-
response time properties like

AG(a→ AF≤56 b) (1)

expressing that each time a holds, along all possible runs, b has to hold within 56 time
units.

Remark 9. In [HNSY94], TCTL is given with external clock variables. That is, we can use
variables to express timing constraints. We will not give the precise grammar of that version
of TCTL, but just give the equivalent of formula (1) in this framework:

AG (a→ x.AF (b ∧ x ≤ 56))

The interpretation of that formula is the following: each time an a is encountered, we reset
a clock x, and check that along all possible runs, later, b holds and the value of the clock
x (which has increased at the same speed as the universal time) is not more than 56.

In [BCM05], it has been proved that TCTL with external clock variables is strictly more
expressive than TCTL with intervals constraining the modalities.

Decidability. The model-checking problem asks, given a timed automaton A and a TCTL
formula ϕ, whether A satisfies ϕ from its initial configuration (ℓ0,0X).

Theorem 3. For the two semantics, the model-checking problem for TCTL is PSPACE-
complete.

Proof. The hardness comes from the complexity of deciding reachability properties in timed
automata (which can be expressed using formula EF qf , where qf is an atomic proposition
labelling the final state).

For the upper bound, we fix a diagonal-free timed automaton A = (L, ℓ0, X, T,L), and
we consider its corresponding region equivalence, which we denote ≡. We do the proof
in the framework of the pointwise semantics, but it can be extended to the continuous
semantics. We show the following lemma:

13 That can be formalized, see for instance [BBBL05].
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Lemma 8. Let ϕ be a TCTL formula. For every ℓ ∈ L, for all v, v′ ∈ TX such that v ≡ v′,

(ℓ, v) |= ϕ ⇔ (ℓ, v′) |= ϕ

Proof. We do the proof by a structural induction on ϕ. We therefore assume that ϕ =
Eϕ1UIϕ2, where the ϕi’s are equally satisfied within a region.

We fix a constantM , which is larger than the finite bounds defining I. We define a new
set of clocks ‹X = X ∪{u}, where u is a fresh clock. This clock will be used to measure the
duration of the execution, which needs to lie in I.

We then consider the region equivalence over ‹X, denoted ‹≡, which refines ≡ by adding
clock u with maximal constant M . That is, if r is a region of ‹≡, then r|X is a region of ≡.

We now assume that (ℓ, v) |= Eϕ1UIϕ2. This means that there is an execution in A
ρ = (ℓ, v0)

d1,e1−−−→ (ℓ1, v1)
d2,e2−−−→ . . .

dk,ek−−−→ (ℓk, vk) → . . . such that v0 = v and ρ |= ϕ1UIϕ2.
There exists k such that (a) (ℓk, vk) |= ϕ2, (b) for every 1 ≤ j < k, (ℓj, vj) |= ϕ1, and (c)
duration(ρ≤k) ∈ I.

Expanding vi into ṽi over ‹X such that ṽi(x) = vi(x) for every x ∈ X and ṽi(u) =∑
j≤i dj, we get an execution ρ̃ = (ℓ, ṽ0)

d1,e1−−−→ (ℓ1, ṽ1)
d2,e2−−−→ . . .

dk,ek−−−→ (ℓk, ṽk) → . . . such
that ρ̃ |= ϕ1UIϕ2. Indeed the same k holds as a witness of the formula. Note furthermore
that duration(ρ≤k) = ṽk(u), hence ṽk(u) ∈ I (clock u is not constrained in A.

Pick v′ such that v ≡ v′, write v′0 = v′, and define ṽ′0 such that ṽ′0(x) = v′0(x) if x ∈ X
and ṽ′0(u) = 0. Then ṽ0‹≡ṽ′0. Hence one can build an execution ρ̃′ = (ℓ, ṽ′0)

d′1,e1−−−→ (ℓ1, ṽ
′
1)

d′2,e2−−−→
. . .

d′k,ek−−−→ (ℓk, ṽ
′
k)→ . . . such that for every i ≥ 0, ṽ′i‹≡ṽi. Define v′i the projection of ṽ′i over

X. Then, vi ≡ v′i. It holds that (ℓk, v
′
k) |= ϕ2, and for every 1 ≤ j < k, (ℓj, v

′
j) |= ϕ1. Now,

since ṽk‹≡ṽ′k, we also have that ṽ′k(u) ∈ I, which implies that ρ′ defined as the projection of
ρ̃′ over X, satisfies ϕ1UIϕ2. This implies the expected result that A, (ℓ, v′) |= Eϕ1UI ϕ2. ⌟

Using a labelling algorithm as for CTL, we can therefore decide the model-checking problem
for TCTL. By guessing and recomputing the truth for subformulas on-demand, we can
improve the algorithm and make it use polynomial space only (witness paths have at most
exponential length). This concludes the proof. ⌟

6.2 Timed extensions of LTL

Like classical temporal logics, linear-time property languages have also been studied in the
framework of timed systems. Two main temporal formalisms have been defined: (i) MTL14

is the counterpart of TCTL without external clock variables, and extends LTL [Pnu77]
by adding timing constraints on modalities; (ii) TPTL15 extends LTL by adding timing
constraints to specifications using external variables and constraints thereon.

14 MTL stands for “Metric Temporal Logic” and has been first proposed by Koymans [Koy90].
15 TPTL stands for “Timed Propositional Temporal Logic”, and has been first proposed by Alur and Hen-

zinger [AH89,AH94].
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Syntax and semantics of MTL. The syntax of MTL is given by the following grammar:

MTL ∋ ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕUI ϕ

where a ∈ AP, and I is an interval of R+ with integral bounds.

It will even be more important in the context of linear-time timed temporal logics:
as for TCTL, we distinguish between the two semantics, pointwise and continuous. Let
ρ = s0

τ1,e1−−→ s1
τ2,e2−−→ s2 · · · sn−1

τn,en−−−→ sn · · · with s0 = (ℓ0, v0) be a finite or infinite run.
Then:

ρ |= a ⇔ a ∈ L(ℓ0)
ρ |= ¬ϕ ⇔ ρ ̸|= ϕ

ρ |= ϕ ∨ ψ ⇔ ρ |= ϕ or ρ |= ψ
ρ |= ϕUI ψ ⇔ there exists a position π > 0 along ϱ s.t.

ϱ≥π |= ψ, for every position 0 < π′ < π,
ϱ≥π′ |= ϕ, and duration(ϱ≤π) ∈ I

with the same distinctions for the term ‘position’, depending on the choice of the semantics.

As for LTL, we define some syntactic sugar for MTL: tt ≡ (a ∨ ¬a) stands for true,
ff ≡ (¬tt) stands for false, (φ → ψ) ≡ (¬φ ∨ ψ), FI φ ≡ (ttUI φ) (eventually, φ will hold
within interval I from now), GIφ ≡ ¬(FI ¬φ) (for all positions within I, φ holds), and
XIφ ≡ (ffUI φ) (next position is within I from now and satisfies φ). Moreover, we use
pseudo-arithmetical espressions to represent intervals. For instance, ‘= 1’ stands for the
singleton interval [1, 1], and ‘≥ 2’ stands for the interval [2,+∞).

Example 9. Using MTL, we can write properties like

G (problem→ F≤56 alarm) (2)

expressing that each time a problem occurs, within 56 time units, an alarm rings.

We can also express more involved properties, like

G (problem→ (F≤15 repair ∨ F[12,15] alarm))

which expresses that each time a problem occurs, then either it is repaired in no more than
15 time units, or an alarm rings for 3 time units 12 time units after the problem. There is
no direct and obvious way to express this kind of property in TCTL.

Remark 10. The choice of the interpretation of MTL in terms of the pointwise or of the
continuous semantics has a large impact on the meaning of the formulas, and as we will see
later, also on their applicability in model-checking. The formula F=2 a expresses that an a
will happen two time units later. In the continuous semantics, this formula is equivalent to
F=1F=1 a (in one time unit, it will be the case that in one time unit, an a occurs). However,
it is not the case in the pointwise semantics, as there may be no action one time unit later,
hence any formula F=1 ψ would be evaluated as wrong from the initial point.
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Two extensions: TPTL and MTL+Past In the following, we will also consider two
extensions of MTL. First, as for TCTL, external clock variables can be used to express
timing constraints. For instance, property (2) can be written as

G (problem→ x.F(alarm ∧ x ≤ 56))

where x is a fresh variable which is reset when a problem occurs, and whose value is checked
to be within [0, 56] when the alarm rings. The value of x is supposed to evolve at the same
speed as the universal time (similar to a clock in a timed automaton). This logic with
external clock variables is called TPTL, and has been first proposed in [AH89]. We give
another example of formulas that can be expressed in TPTL:

G (problem→ x.F(alarm ∧ F(failsafe ∧ x ≤ 56))) (3)

This formula says that whenever a problem occurs, then within 56 time units, an alarm
rings and later (but still within 56 time units since the problem occurred), the system enters
a failsafe mode. It has been proved in [BCM05] that TPTL is strictly more expressive than
MTL. For the pointwise semantics, formula (3) is a witness to that expressiveness result,
meaning that formula (3) cannot be expressed in MTL. Surprisingly, this formula has an
equivalent formula inMTL,16 and a more involved formula has been proposed to distinguish
between MTL and TPTL.

Following the classical untimed framework [Kam68,LPZ85], we also extend MTL with
past-time modalities, i.e., with the ‘Since’ modality, somewhat the dual of the ‘Until’
modality: formula φSI ψ expresses that φ holds since ψ was true (within I in the past).
In the following, we will only use the simple formula F−1

I φ which is the dual of FI φ for
the past: it expresses that φ was true in the past, within a delay belonging to the interval
I. For instance, the formula

G (a→ F−1
=1b)

expresses that every a is preceded one time unit earlier by a b. This logic is denoted
MTL+Past.

6.3 The model-checking problem

The model-checking problem asks, given A a timed automaton and φ a formula, whether A
satisfies φ, written A |= φ, and meaning that all (accepting) runs of A satisfy the formula
φ. We then give hints for understanding the following (un)decidability results:

Theorem 4. Over finite runs, the model-checking problem for:

16 Indeed, we can prove (cf [BCM05]) that formula x.F(alarm ∧ F(failsafe ∧ x ≤ 56)) is equivalent to

F≤28alarm ∧ F[28,56]failsafe
∨ F≤28(alarm ∧ F≤28failsafe)
∨ F≤28(F≤28alarm ∧ F=28failsafe)
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– MTL under the pointwise semantics is decidable, and non-primitive recursive [OW07];
– MTL under the continuous semantics is undecidable [AFH96];
– MTL+Past under the pointwise or the continuous semantics is undecidable;
– TPTL under the pointwise or the continuous semantics is undecidable [AH94].

From these (un)decidability results, we learn that model-checking linear-time timed tem-
poral logic is hard! And much harder than branching-time timed temporal logic. This is
already the case in the untimed framework, but the gap dramatically increases in the timed
framework. We first explain why it is so hard to model-check linear-time timed temporal
logics. For that, we follow ideas developed in [Che07].

Model-checking linear-time timed properties is hard We first explain the non-
primitive recursive lower bound for the MTL model-checking problem, which relies on the
halting problem for channel machines with insertion errors. A channel machine is a finite
automaton which can write on a channel and read from it following a FIFO policy. We
note ‘a!’ for writing a at the tail of the channel and ‘a?’ for reading an a at the head of
the channel. A channel machine has insertion errors if any letter can be written at any
time anywhere in the channel. A channel machine without insertion errors is said perfect,
or insertion-free.

Example 10. Consider the channel machine depicted on the next figure:

s1 s2 s3 s4 s5

a! a?

b! a? b? c?

A configuration of this system is a pair (s, w) where s is a discrete state of the machine
and w is a word representing the content of the channel. We give an error-free computation
example for that machine:

(s1, ε)
a!−→ (s1, a)

a!−→ (s1, aa)
b!−→ (s2, aab)

a?−→ (s3, ab)
a?−→ (s3, b)

b?−→ (s4, ε)

We can see that no error-free computation allows to reach state s5 (because no c is written
on the channel). If we assume that this machine has insertion errors, then the following
move is allowed:

(s4, ε)
c?−→ (s5, ε)

(we assume implicitely that a c has been inserted on the channel, so that the last transition
labelled by ‘c?’ can now be fired).

Given a channel machine C with a distinguished final state, the halting problem asks
whether the machine C has an execution halting in the final state, with empty channel.
The hardness results stated in Theorem 4 will be proved by reduction to the following
problems about channel machines.
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Proposition 6. – The halting problem is undecidable for channel systems [BZ83].
– The halting problem with empty channel is non-primitive recursive for channel machines

with insertion errors [Sch02].17

We now explain how MTL (and variants) can capture the behaviours of channel machines.
The idea is to encode a computation of a channel machine as a timed word. In this encod-
ing, the underlying untimed word is the trace of the computation, that is, an alternating
sequence of states and actions. We use timing constraints to enforce the channel be FIFO:
we require that any write action ‘a!’ is followed one time unit later by a corresponding read
action ‘a?’. This is not difficult to be convinced that this enforces the channel be FIFO.
We illustrate this encoding on the next figure, which represents a timed word (actions and
time stamps).

=1 t.u.
=1 t. u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

2

The above timed word encodes the following computation of the channel machine:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

To properly encode a behaviour of a channel machine, a timed word must satisfy the
following constraints:

– states and actions alternate. This can be checked using an LTL formula.
– the untimed projection of the timed words follows the rules of the channel machine.

This can also be encoded with an LTL formula.
– the channel is FIFO: to do that we express that every write action is followed one time

unit later by a corresponding read action. This can be expressed in MTL using formulas
of the form:

G (a!→ F=1a?)

However, this formula does not encode the property that the channel behaves prop-
erly. Indeed, nothing prevents a read event ‘a?’ to happen, even though there is no
corresponding write event ‘a!’ one time unit earlier. For instance, consider the following
timed word:

=1 t.u.
=1 t. u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

17 Formally, in [Sch02], that’s the halting problem for lossy channel machines which is proved non-primitive recur-
sive, but this is indeed equivalent.
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This timed word satisfies the propagating formulas G (a!→ F=1a?) (for every letter
a), even though the event ‘c?’ is not preceded by any action one unit earlier. The above
formula hence only encodes the behaviour of a channel machine with insertion errors.
However, from that study, we already learn that the model-checking of MTL (over finite
words) is non-primitive recursive. To encode a perfect channel machine, we need to be
able to express the property that every ‘a?’ is preceded one time unit earlier by an ‘a!’.
We call this property the ‘backward matching property’.

We now discuss how we can express the backward matching property in timed temporal
logics. Indeed, we would like to know whether MTL can express or not the behaviour of
a perfect channel machine. We will present here natural ideas, which will happen to be
wrong for MTL, but sufficient to prove undecidability of several variants or extensions of
MTL.

– A first simple idea is to express this ‘backward matching property’ using the following
formula:

G ((F=1a?)→ a!)

which expresses the fact that if there is a read event ‘a?’ one time unit later, then there
must be right now a corresponding write event ‘a!’. It is not hard to see that in the
pointwise semantics, this does not express what we want. Indeed this formula is still
satisfied by the above-mentioned timed word, because there is no action one time unit
before the action ‘c?’. However, in the continuous semantics, this formula really enforces
a perfect behaviour of the FIFO channel. That is why MTL in the continuous semantics
has an undecidable model-checking problem.

– A second idea is to express this ‘backward matching property’ using a past-time modal-
ity (hence in MTL+Past). The formula

G (a?→ F1
=1a!)

precisely expresses that every read event ‘a?’ is preceded one time unit earlier by a
matching write event ‘a!’. That is why MTL+Past is undecidable, even in the pointwise
semantics.

– Finally, the ‘backward matching property’ can be expressed in TPTL using the following
more involved property:

¬
(
Fx ·X

(
y · F(x > 1 ∧ y < 1 ∧ a?)

))
Informally, this formula negates the fact that there are two consecutive positions (in the
pointwise sense) such that an a is read more than one time unit after the first position,
and less than time unit after the second position. This precisely negates the fact that
there is an ‘a?’ not preceded one time unit earlier by an action. This implies that TPTL
is undecidable, already in the pointwise semantics (when at least two clock variables
are used).
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From all these considerations, we get that in the pointwise semantics, over finite runs,
we can only express channel machines with insertion errors with MTL, whereas perfect
channel machines can be expressed either using MTL in the continuous semantics, or using
MTL+Past or TPTL in the pointwise semantics (both over finite words). This concludes
the hardness results stated in Theorem 4.

MTL model-checking over finite words is decidable We now explain how we can
prove the decidability of MTL over finite words in the pointwise semantics. We know that
LTL formulas can be transformed into alternating finite automata [MSS88,Var96]. In a
similar way, we can transform any formula of MTL into an alternating timed automa-

ton [LW05] with a single clock [OW05]. For instance, the formula G<2

(
a→ F=1b

)
can be

transformed into the following alternating timed automaton:

r s

b,c

a,c

x:=0

x<2;a
t

x=1;b

with the obvious interpretation that any time an a is done (within the two first time units),
we fork a new thread which will check that a b appears one time unit later. A behaviour
of this alternating timed automaton is an unbounded tree, and it is not obvious that it is
possible to check for emptiness of such a system. Indeed, checking emptiness of alternating
timed automata is decidable only for one clock over finite timed words, any slight extension
(infinite timed words, two clocks, silent moves18) leading to undecidability [LW08,OW07].

We explain how we can however understand the decidability of this model [OW05].
Consider the timed word (c, 0.6)(a, 0.7)(a, 1.5)(b, 1.7). The execution of the above alter-
nating timed automaton on that timed word can be depicted as the following tree, which
is not accepting as one of the branches (the second one on the picture) is not accepting
(accepting states are underlined).

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

c a a b

A configuration of the alternating timed automaton is a slice of the tree, for instance,
{(r, 1.5), (s, 0), (s, 0.8)} is a configuration. Because we consider finite words, there is no need
to consider the tree structure of the execution, but we can reason globally on configurations
of the automaton. There are infinitely many such configurations, but as for the region
automaton construction for timed automata [AD94], the precise values of the clocks is not

18 Or ε-transitions, if we follow the classical terminology in formal language theory.
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really relevant, and the things which are important in a configuration are the integral parts
of the clocks and the relative order of the fractional parts of the clocks. For instance, for
the above-mentioned configuration, we only need to know that there is a state (s, 0) with
fractional part 0, and two other states (s, 0) and (r, 1) such that the fractional part for
(s, 0) is greater than the fractional part for (r, 1). For all configurations with the same
abstraction, the possible future behaviours are the same, in a time-abstract bisimulation
sense [OW07,LW08]. Unfortunately, the set of abstractions of possible configurations of
the alternating timed automaton is also infinite. The most important property is then that
there is a well-quasi-order on the set of abstractions of configurations, and that we can use
it to provide an algorithm to decide emptiness [FS01]! This briefly sketches an algorithm
for deciding the MTL model-checking problem over finite timed words (in the pointwise
semantics).

Note that we can prove the decidability of TPTL with a single internal variable applying
the same method.

7 The language-theoretic perspective

In the previous section we have presented the region automaton abstraction, which can
be used to model-check several kinds of simple properties, like reachability properties.
From a language perspective, this means that the emptiness problem is decidable for timed
automata. In this section we study further language-theoretic properties of timed languages
accepted by timed automata, and show in particular some negative results.

7.1 Boolean operations

Closure under Boolean operations is a basic property which is interesting for modelling
and verification reasons.

Proposition 7. The class of timed languages accepted by timed automata is closed under
finite union and finite intersection.

Proof (Sketch of proof). Closure under finite union is rather straightforward by taking the
disjoint union of all timed automata.

The closure under finite intersection follows the lines of the standard product con-
struction used in the case of finite automata. Only clock constraints, invariants and resets
of clocks need be carefully handled. We illustrate the general construction with the intersec-
tion of two timed automataA1 = (L1, L1,0, L1,F , X1, Σ, T1, Inv1) andA2 = (L2, L2,0, L2,F , X2, Σ, T2, Inv2)
over a single alphabet Σ. We assume that the two sets of clocks X1 and X2 are disjoint
(otherwise we rename clocks so that it is actually the case). Then we define the timed
automaton A = (L,L0, LF , X,Σ, T, Inv) by:

– L = L1 × L2, L0 = L1,0 × L2,0, LF = L1,F × L2,F ;
– X = X1 ∪X2 (disjoint union);
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– the set T is composed of transitions of the form (ℓ1, ℓ2)
g,a,Y−−−→ (ℓ′1, ℓ

′
2) whenever there

exist two transitions ℓ1
g1,a,Y1−−−−→ ℓ′1 in T1 and ℓ2

g2,a,Y2−−−−→ ℓ′2 in T2 such that:

• g = g1 ∧ g2;
• Y = Y1 ∪ Y2;

– Inv((ℓ1, ℓ2)) = Inv1(ℓ1) ∧ Inv2(ℓ2).

This is straightforward to prove that a timed word is accepted by A iff it is both accepted
by A1 and A2.

The following proposition is on the contrary rather bad news.

Proposition 8. The class of timed languages accepted by timed automata is not closed
under complementation.

The most well-known timed automaton, already given in [AD94], which cannot be
complemented is given in Figure 6. This automaton, over the single-letter alphabet {a},

ℓ0 ℓ1 ℓ2
a, x := 0 x = 1, a

a a a

Fig. 6: A non-complementable timed automaton

recognizes the timed language:

{(a, t1)(a, t2) . . . (a, tn) | n ∈ N, n ≥ 2 and there exist 1 ≤ i < j ≤ n with tj − ti = 1}

Intuitively, to be recognized by a timed automaton, the complement of this timed language
would require an unbounded number of clocks, because for any action a, we need to check
that there is no a-action one time unit later, so a fresh clock is intuitively required. However
the complete proof is rather technical and harassing [Bou98], and we do not provide it here.

An alternative and elegant proof of the above proposition has been proposed in [AM04],
and this is the one we have decided to present here.

Proof. We consider the timed automaton of Figure 7. It accepts the following timed lan-

ℓ0 ℓ1
a, x := 0

a, b x ̸= 1, a, b

Fig. 7: Another non-complementable timed automaton
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guage over the alphabet {a, b}:

L = {(α1, t1) . . . (αn, tn) | n ∈ N, n ≥ 1,∃1 ≤ i ≤ n s.t. αi = a and ∀i < j ≤ n, tj− ti ̸= 1}

We assume towards a contradiction that L (the complement of L) can be recognized by a
timed automaton. It is not hard to get convinced that the timed language over the alphabet
{a, b}

L′ = {(a+b∗, τ) | all a′s happen before 1 and no two a′s simultaneously}

is accepted by the timed automaton:

ℓ0 ℓ1
y > 0, x < 1, a

y > 0, x < 1, a, y := 0 b

Hence by Proposition 7, L∩L′ is accepted by some timed automaton. The following lemma
is just a matter of expanding and manipulating the definition of L ∩ L′.

Lemma 9. The untiming of L ∩ L′ is the non-regular language

{anbm | n ∈ N, n ≥ 1 and m ≥ n}.

This lemma yields a contradiction with the fact that L ∩ L′ is accepted by some timed
automaton, say B, because the untiming of L∩L′ should then be recognized by the region
automaton of B. Hence we conclude that the complement of L is not recognized by any
timed automaton.

7.2 The universality and inclusion problems

The universality problem asks, given a timed automaton A, whether A accepts all (finite)
timed words. The inclusion problem asks, given two timed automata A and B, whether
all timed words accepted by B are also accepted by A, that is whether L(B) ⊆ L(A).
Note that the universality problem is a special instance of the inclusion problem, where B
is universal, i.e. accepts all (finite) timed words. The following result is bad news in the
verification context, as argued in Section 3.

Theorem 5 ([AD90,AD94]). The universality problem is undecidable for timed au-
tomata.

Proof. We encode the halting problem for perfect channel machines as a universality prob-
lem of a timed automaton.

Let M be a channel machine. We use the same encoding as for the logics MTL, that
is, a (finite) feasible execution19

(q0, ϵ)
α1−→ (q1, w1) . . .

αn−→ (qn, wn)

19 If αi = a?, then the first letter of wi−1 is a, and wi−1 = awi; if αi = a!, then wi = wi−1a.

42



ofM will be encoded by the (finite) timed word

(q0, t0)(α1, t1)(q1, t2) . . . (αn, t2n−1)(qn, t2n)

such that:

➀ (ti)0≤i≤2n is (stricly) increasing;
➁ for every i such that αi = a!, there exists j > i such that αj = a? and tj = ti + 1
➂ for every j such that αj = a?, there exists i < j such that αi = a! and ti = tj − 1

We build a timed automaton A (over finite words) which will accept all (finite) timed
words which are not encodings of a halting computation ofM. The alphabet of A is:

Q ∪ {a?, a! | a ∈ Σ}

where Q is the set of states of M and Σ is the alphabet of M. We write ‹Σ for the set
{a?, a! | a ∈ Σ}, Σ? = {a? | a ∈ Σ} and Σ! = {a! | a ∈ Σ}.

This will be done using a highly non-deterministic timed automaton, which will deny
one-by-one the various conditions:

– deny “correct alternations between states and actions, and follow the rules of M”:
complement the automaton of the machineM.

– deny “the sequence of timestamps is increasing”

x := 0 x = 0

– deny the timing constraints implementing the fifo rules

x < 1

a!

x := 0

̸= a?

x = 1

x > 1

̸= a!

x := 0

a?

x = 1

x := 0 y := 0

a?

x > 1 ∧ y < 1

We can show that A is universal if and only if M does not halt. Indeed, assume M
halts, and consider an accepting execution, and one of its corresponding encodings as a
timed word. It satisfies all the rules, hence it cannot be accepted by A. Conversely pick a
timed word which is not accepted by A. Then this word is a proper encoding of an halting
execution inM, otherwise one of the conditions would be denied and the word would be
accepted by A ⊓⊔
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The following is a straightforward corollary of the initial observation that the univer-
sality problem is a special instance of the inclusion problem.

Corollary 1. The inclusion problem is undecidable for timed automata.

It is interesting to notice that the reduction used in the above proof builds a timed
automaton with two clocks. And actually, the universality problem (and also the inclu-
sion problem) is decidable (but non-primitive recursive) for single-clock timed automata,
see [ADOW05]. Recent developments have considered alternating timed automata (a nat-
ural extension of timed automata with alternations) [LW05,OW05,LW08,OW07], but The-
orem 5 implies that the emptiness problem is undecidable for alternating timed automata.

7.3 Timed automata and determinism

In the context of formal languages, determinism is a standard and central notion which
expresses that for a word there is at most one execution which reads that word. For regu-
lar languages determinism does not restrict recognition of languages, but for context-free
languages this is not the case [HMU01]. We discuss in this section the issue of determinism
in the context of timed automata, which gives some explanation to the previous negative
results.

The class of deterministic timed automata. We give a syntactical definition of de-
terminism in timed automata (with no invariants, for simplicity). A timed automaton
A = (L,L0, LF , X,Σ, T ) is deterministic whenever L0 is a singleton, and for every ℓ ∈ L,
for every a ∈ Σ, (ℓ, g1, a, Y1, ℓ1) ∈ T and (ℓ, g2, a, Y2, ℓ2) ∈ T imply Jg1 ∧ g2KX = ∅. This
notion extends in a natural way the standard notion of determinism in finite automata.
In a deterministic timed automaton, for every timed word, there is at most one run that
reads that timed word from a given configuration.

Example 11. The timed automaton of Figure 1 (see page 8) is deterministic. From loca-
tion ‘alarm’, there are two outgoing transitions, but the constraints labelling those two
transitions are disjoint. From the other locations, there is only one outgoing transition.

On the other hand, the timed automata of Figures 6 and 7 are not deterministic. In
the first one, there is a non-deterministic choice from location ℓ1, but it can be removed
by strengthening the constraint on the self-loop (adding one self-loop with the constraint
x < 1 and another one with the constraint x > 1). There is another non-determinisc choice
from location ℓ0, and this one cannot be removed (note that this is in general not obvious
to see whether a non-deterministic choice can be removed or not!): it is not possible to
predict when will be the occurrence of an a that will be followed one time unit later by
another a.

Deterministic timed automata form a strict subclass of timed automata.20 Using a
product construction, as done in the proof of Proposition 7 for the intersection, it is easy

20 The strictness is obvious at the syntactical level, and also holds at the semantical level, as will be argued later:
there exists a timed automaton such that no deterministic timed automata accepts the same timed language.
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to get convinced that this subclass is closed under finite union and finite intersection. On
the other hand the two timed automata we have given to illustrate the non-closure under
complementation of the class of standard timed automata (Proposition 8) are not determin-
istic. And actually it is not very hard to get convinced that the class of deterministic timed
automata is closed under complementation: add a sink location, add transitions to that
sink from every location, with constraints complementing the union of all the constraints
labelling the outgoing transitions from that location, and finally swap final and non-final
locations. As a consequence, this is not possible to construct deterministic timed automata
which accept the same languages as the two timed automata of Figures 6 and 7. And it
is even possible to prove that this is not possible to decide whether a timed automaton is
determinizable or not [Tri03,Fin06].

Finally it is interesting to mention that the reduction to prove the undecidability of the
universality problem (proof of Theorem 5) builds a non deterministic timed automaton.
And indeed the universality problem (and the inclusion problem) is decidable for the class
of deterministic timed automata: to check for the universality of a given deterministic timed
automaton A, first build a (deterministic) timed automaton which accepts the complement
of L(A), and then check for emptiness of this automaton.

Determinizable classes of timed automata. As mentioned in the previous paragraph,
not all timed automata can be determinized (i.e. there exist timed automata that ac-
cept timed languages which cannot be recognized by any deterministic timed automaton).
However, deterministic (and hence effectively determinizable) timed automata enjoy nice
closure (complementation) and decidability (universality, inclusion) properties. Verification
can thus benefit of such properties.

One of the first determinizable classes of timed automata which have been investigated
is the class of event-clock timed automata [AFH94]. In such an automaton every letter of
the alphabet is associated two clocks, one which measures delays since the last occurrence
of this action (those are called event-recording clock), and one which measures delays to
the next occurrence of this action (those are called event-predicting clock). In the syntax
of event-clock timed automata. resets of clocks are ommitted as they are implicitely given
by actions.

Example 12. In Figure 8 we give two event-clock timed automata (we take the convention
that xa is the event-recording clock associated with a whereas yb is the event-predicting
clock associated with b). In the first automaton, the time between the last b and the unique
initial a is precisely one time unit (specified with the constraint on the last transition
xa = 1): when we do the last b, we know that the last a was precisely one time unit earlier.
In the second automaton, the time between the first a and the unique final b is precisely
one time unit as well (specified with the constraint on the first transition yb = 1): when
the first a is done, we know that the next b has to be one time unit later.

We give the intuition why an event-clock timed automaton with only event-recording
clocks can be determinized (the case of event-predicting clocks is more involved and we
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ℓ0 ℓ1 ℓ2
a xa = 1, b

b

xa: event-recording clock for a

ℓ0 ℓ1 ℓ2
yb = 1, a b

a

yb: event-predicting clock for b

Fig. 8: Two event-clock timed automata

refer the reader to [AFH94] for more details). The reason is that the timed behaviour of
those automata is input-determined: given a timed word, the value of the clocks after each
prefix of the timed word is determined by that prefix (and not by the run followed in
the timed automaton). For that reason a subset construction can be done. This kind of
arguments has later been used for more complex classes of timed systems [DT04].

Recently more determinizable classes of timed automata have been investigated [BBBB09],
among which we can find the class of so-called strongly non-Zeno timed automata (we omit
the definition of this class here, but basically it enforces time elapsing in a rather strong
way) or more dedicated classes, e.g. corresponding to logical formalisms [NP10] or to sim-
pler classes of timed systems [SP09].

7.4 What about ε-transitions?

Following classical automata theory, we assume some transitions are silent, and we denote
them ε-transitions.

Exercise 18. Consider the following timed automaton.

x = 2, a, x := 0

x = 2, ε, x := 0

Prove that the timed language recognized by the above timed automaton cannot be rec-
ognized by any classical timed automaton with no ε-transitions. ⌟
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8 The task-graph example

8.1 Description of the problem

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+

T1

×
T2

×
T3

+

T4

×
T5

+

T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
c
h
1

T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
c
h
2

T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
c
h
3

T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

8.2 Modelization of the problem

– Processors P1:
idle+

(x≤2)

×
(x≤3)

x:=0

add1

x:=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×
(y≤7)

y:=0

add2

y:=0

mult2

y=5

done2

y=7

done2

– Tasks

T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

8.3 How to model more?

How should we take into account:

– uncertainties on delays? (not mentioned in the lecture)
– power consumption?
– job preemption?
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9 Hybrid systems

Hybrid systems are convenient models for representing general continuous behaviours. They
have application in control theory, biology, etc.

Example 13. We want to model a thermostat. If T is the temperature, it can written as a
list of rules:

– when the heater is Off, the room cools down: Ṫ = −0.5T ;
– when the heater is On, the room heats: Ṫ = 22.5− 0.5T ;
– when 21 ≤ T ≤ 22, it switches Off;
– when 18 ≤ T ≤ 19, it switches On.

This thermostat can be modelled by the following automaton:

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=22.5−0.5T

(T≤22)

T≤19

T≥21

A possible behaviour for that system is as follows:

22

18

21

19

2 4 6 8 10 time

A behaviour can also be seen as a sequence of delays and jumps.

Theorem 6. The reachability problem is undecidable in hybrid automata.

Therefore, to be able to analyze such systems, one needs to consider subclasses:

– dimension (number of variables), continuous- or discrete time
– what kind of dynamics
– what kind of guards, invariants, jumps

A zoology of subclasses:

– Linear hybrid automata: dynamics described by ẋ = c, polyhedral guards and invari-
ants, linear resets
• memory cell: ẋ = 0 (but x can be reset)
• clock: ẋ = 1
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• stopwatch: in some locations, ẋ = 1, in others ẋ = 0
• skewed clock: ẋ = c in all locations

– Rectangular hybrid automata: dynamics described by ẋ ∈ [c, d], guards and invariants
described by x ∈ [c, d], resets described by x ∈ [c, d]

• Initialized rectangular hybrid automata: each time a variable changes its slope, it
should be reset
• Linear hybrid automata are rectangular hybrid automata

– O-minimal hybrid automata: strong resets between locations, everything described in
an o-minimal theory

– Piecewise affine maps
– Piecewise constant derivatives (PCD):
– Polygonal differential inclusion systems (PDIS):
– etc...

Exercise 19. Back to the task-graph scheduling problem, how would you model the power
consumption? And how would you model job preemption?

In this lecture we will study:

➀ Piecewise affine maps: rich jumps, poor dynamics
➁ (Initialized) Rectangular hybrid automata: decorrelated variables (rather poor jumps)
➂ Weighted timed automata, a timed-automata based model with observer variables

9.1 Piecewise affine maps (PAMs)

(Pictures borrowed from Eugene Asarin)
A d-dimensional piecewise affine map (PAM) is a discrete-time dynamical system de-

fined as a tuple (P , (Pi)1≤i≤n, f) where:

– P is a bounded polyhedron of Rd (e.g. P = [0, 1]d);
– (Pi)1≤i≤n is a polyhedral partition of P ;
– f : P → P is such that for every 1 ≤ i ≤ n, f|Pi

is affine.

The semantics of a PAM is given as a sequence (f i(x))i≥0, where x ∈ P .
The reachability problem asks whether, given two points x1, x2 ∈ P , there exists an

index n such that fn(x1) = x2.

Theorem 7 ([KCG94]). Two-dimensional PAMs are undecidable.
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Proof. Note that we cannot directly express a counter machine using a PAM since in a
PAM, the domain is bounded.

However we can simulate a deterministic two-counter machine as follows: A state
(qi, c, d) will be represented by point (i−1+2−c, 2−d). The domain is therefore (0, N ]×(0, 1]
where N is the number of states of the two-counter machine. State qi is encoded by the
polyhedron Pi = (i − 1, i] × (0, 1] (we may have to split this polyhedron for defining the
affine functions). We now define the affine functions, depending on the instruction starting
at qi:

– if qi : c + +; goto qj, then we should go from point (i − 1 + 2−c, 2−d) to point

(j − 1 + 2−c−1, 2−d), that is y := y and x := j − 1 + x−(i−1)
2

– if qi : c − −; goto qj, then we should go from point (i − 1 + 2−c, 2−d) to point
(j − 1 + 2−c+1, 2−d) in case c > 0, that is from Pi ∩ (x < i). The affine function is then
defined as: x := j − 1 + 2(x− (i− 1)) and y := y

– if qi : if c > 0 then goto qj else goto qk, then we should go from Pi ∩ (x < i) to Pj

using x := j − i + x and y := y and from Pi ∩ (x = i) to Pk using x := k − i + x and
y := y

– if qi : d + +; goto qj, then we should go from point (i − 1 + 2−c, 2−d) to point
(j − 1 + 2−c, 2−d−1), that is x := x+ j − i and y := y

2

– if qi : d − −; goto qj, then we should go from point (i − 1 + 2−c, 2−d) to point
(j − 1 + 2−c, 2−d+1) on Pi ∩ (y < 1), that is x := x+ j − i and y := 2y

– if qi : if d > 0 then goto qj else goto qk, then we should go from Pi ∩ y < 1 to Pj

using x := j − i + x and y := y, and from Pi ∩ y = 1 to Pk using x := k − i + x and
y := y.

The encoding is illustrated on the following picture. Blue dots represent counter values.

q1 q2 q3 q4 q5

counter values c = 4, d = 1

If qn is the halting state, and q1 is the initial state of the counter machine, the two-counter
machine halts iff there is a path in the PAM from (1, 1) (all counters set to 0 in q1) to the
area (n− 1, n]× (0, 1]. By adding instructions decreasing the two counters when reaching
qn, one can reduce to checking whether there is a path in the PAM from (1, 1) to (n, 1). ⊓⊔

Remark 11 (An example open problem). It is unknown whether we can decide the reacha-
bility problem in one-dimensional PAMs.
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9.2 Rectangular hybrid automata

We write I for the set of intervals of R with rational bounds.
A rectangular (hybrid) automaton is a tuple H = (L, ℓ0, X,E, Inv,Act,Pre,Post,Upd)

where:

– L is a finite set of locations;
– ℓ0 ∈ L is the initial location;
– X = {x1, . . . , xn} is a finite set of variables;
– E ⊆ L × L is a finite set of edges, each edge e = (ℓ, ℓ′) ∈ E is characterized by its

source, src(e) = ℓ ∈ L, and its target target(e) = ℓ′ ∈ L;
– Inv : L→ IX assigns an invariant to every location;
– Act : L→ IX indicates the evolution (aka activity) of the variables in each location;
– Pre : E → IX and Post : E → IX are the pre- and post-conditions to be fulfilled when

firing transitions;
– Upd : E → 2X indicates which variables should be updated.

It is said initialized whenever for every e ∈ E for every x ∈ X, either x ∈ Upd(e), or
Act(src(e))(x) = Act(target(e))(x).

We assume H is equipped with an extra variable t which is a clock.

The semantics of H is given as a timed transition system (S, s0,→) defined by S =
{(ℓ, ν) ∈ L × RX | ∀x ∈ X, ν(x) ∈ Inv(ℓ)(x)}, s0 = (ℓ0,0), and → is defined as follows:
(ℓ, ν)→ (ℓ′, ν ′) iff one of the two following conditions are met:

– [continuous step] ℓ = ℓ′, and either ν = ν ′, or ν ′(t) > ν(t), and for every x ∈ X,

ν ′(x)− ν(x)
ν ′(t)− ν(t)

∈ Act(ℓ)(x)

– [discrete step (or jump)] there is a transition e ∈ E such that src(e) = ℓ, target(e) =
ℓ′, ν |= Pre(e), ν ′ |= Post(e), ν ′(t) = ν(t), for all x ∈ X, ν ′(x) = ν(x) unless x ∈ Upd(e).

Example 14. The following is an example of an initialized rectangular automaton:

ẋ ∈ [1, 2] ẋ ∈ [0, 3] ẋ ∈ [0, 3]
x ∈ [3, 5]

x :∈ [1, 2]

x ∈ [3, 4]

x

time0
1
2
3
4
5

2.2 3.63.6

Remark 12. Obviously any timed automaton is an initialized rectangular automaton.
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Undecidability of rectangular automata. A rectangular automaton is said simple
whenever:

– only one variable, say z, is not a clock;
– the activity of z is singular in each location;
– Inv, Pre, Post have compact values;
– Post(e)(x) = [0, 0] if x ∈ Upd(e), and Post(e)(x) = Pre(e)(x) otherwise.

Such a simple automaton is said 2-slope whenever the only non-clock variable can take two
values only.

Theorem 8. The reachability problem is undecidable for simple 2-slope rectangular au-
tomata.

Proof. The result holds for any two different rationals serving as the slopes of the 2-slope
variable, but we only prove it for the special case where the slopes are 0 and 1.

We begin with the case of stopwatches. We encode the halting problem for two-counter
machines. Counters c1 and c2 are encoded by clocks x1 and x2, with xi = 2−ci . We now have
to be able to double and halve the value of a clock, preserving the value of the other clock
at the same time. Doubling the value of a clock is achieved by the automaton depicted
below:

ℓ1

ż=1

ℓ2

ż=1

ℓ3

ż=0

ℓ4

ż=1

ℓ5

ż=1

ℓ6

ż=1{y,z}

x2>0∧y=1

{y}

x1=1

{x1,z}

y=1

{y}

x1=1 y=1

{y}

z=1

{x1}

x2=1, {x2} x2=1 {x2} x2=1 {x2} x2=1 {x2} x2=1 {x2} x2=1 {x2}

Notice that, in this figure, we omit invariants in each state (but they can be easily inferred).
Then it can be checked that the value of c1 is doubled between the entry and exit of this
automaton, while the value of c2 is preserved. Halving the clock is achieved in a similar
way, which can be done as an exercise. ⊓⊔

Decidability of initialized rectangular automata.

Theorem 9. The reachability problem is decidable in initialized rectangular automata. It
is even PSPACE-complete.

Proof. We assume H is a rectangular automataton. W.l.o.g. we assume that:

– Pre(e) ⊆ Inv(src(e));
– Post(e) ⊆ Inv(target(e));
– ∀x /∈ Upd(e), Pre(e)(x) = Post(e)(x).

W.l.o.g. we assume that Inv is always true (this does not affect reachability properties,
because of the above assumptions). We furthermore assume that all intervals are compact.
Obviously, this restriction can be relaxed.

We first construct a multi-rate automaton M (activities are singular). Locations are
the same as in H. We have that:

52



– its set of variables is X ′ = {x−, x+ | x ∈ X};
[variable x will take any value x− ≤ x ≤ x+]

– activites are defined by Act′(ℓ)(x+) = [b, b] and Act′(ℓ)(x−) = [a, a] whenever Act(ℓ)(x) =
[a, b];

– We will have several copies of every edge in H: E ′ = E × 4X . They are defined as
follows.

• Assume x ∈ Upd(e). We write Pre(e)(x) = [a, b] and Post(e)(x) = [m,M ]. Then any
transition e′ = (e, σ) ∈ E ′ will update x− and x+ ({x−, x+} ⊆ Upd′(e)). Further-
more: ß

Pre′(e′)(x−) = (−∞, b]
Pre′(e′)(x+) = [a,+∞)

ß
Post′(e′)(x−) = [m,m]
Post′(e′)(x+) = [M,M ]

• Assume x /∈ Upd(e). We write Pre(e)(x) = [a, b] and Post(e)(x) = [m,M ]. Note that
by hypothesis, [a, b] = [m,M ]. These constraints on x must be transferred to x−

and x+. The way it will be handled depends on the relative positions of x− and x+

with regards to constants a and b.

x−

x+

a

b

(a) Case 1

x−

x+

a

b

(b) Case 2

x−

x+

a

b

(c) Case 3

x−

x+

a b

(d) Case 4

∗ Case 1: We fix σ such that σ(x) = 1, and define e′ = (e, σ) ∈ E ′.ß
Pre′(e′)(x−) = [a, b]
Pre′(e′)(x+) = [a, b]

ß
Post′(e′)(x−) = [a, b]
Post′(e′)(x+) = [a, b]

and variables x− and x+ are unchanged: x−, x+ /∈ Upd′(e′).
∗ Case 2: We fix σ such that σ(x) = 2, and define e′ = (e, σ) ∈ E ′.ß

Pre′(e′)(x−) = [a, b]
Pre′(e′)(x+) = (b,+∞)

ß
Post′(e′)(x−) = [a, b]
Post′(e′)(x+) = [b, b]

variable x− is unchanged whereas variable x+ is changed: x− /∈ Upd′(e′) but
x+ ∈ Upd′(e′).

∗ Case 3: We fix σ such that σ(x) = 3, and define e′ = (e, σ) ∈ E ′.ß
Pre′(e′)(x−) = (−∞, a)
Pre′(e′)(x+) = [a, b]

ß
Post′(e′)(x−) = [a, a]
Post′(e′)(x+) = [a, b]

variable x+ is unchanged whereas variable x− is changed: x+ /∈ Upd′(e′) but
x− ∈ Upd′(e′).
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∗ Case 4: We fix σ such that σ(x) = 4, and define e′ = (e, σ) ∈ E ′.ß
Pre′(e′)(x−) = (−∞, a)
Pre′(e′)(x+) = (b,+∞)

ß
Post′(e′)(x−) = [a, a]
Post′(e′)(x+) = [b, b]

variables x+ and x− are changed: {x−, x+} ⊆ Upd′(e′).

Example 15. The transformation applied to the previous example yields:

ẋ+=2

ẋ−=1

ẋ+=3

ẋ−=0

ẋ+=3

ẋ−=0

x+≥3∧x−≤5

x+:=2, x−:=1

3≤x−∧x+≤4

x−<3∧3≤x+≤4

x−:=3

3≤x−≤4∧4<x+

x+:=4

x−<3∧4<x+

x−:=3, x+:=4

We now discuss the correctness of the construction ofM. For every configuration (ℓ, ν)
ofM we define the following set of configurations of H:

χ(ℓ, ν) = {(ℓ, v) | ∀x ∈ X, ν(x−) ≤ v(x) ≤ ν(x+)}

We define the following set of states of M: U = {(ℓ, ν) | ∀x ∈ X, ν(x−) ≤ ν(x+)}.
Obviously, χ(ℓ, ν) ̸= ∅ iff (ℓ, ν) ∈ U .

We can easily prove:

Lemma 10. Let (ℓ, ν) ∈ U , t ∈ R+ and e ∈ E. Then:

– timePosttH

(
χ(ℓ, ν)

)
= χ

(
timePosttM(ℓ, ν)

)
;

– discPosteH

(
χ(ℓ, ν)

)
= χ

(
discPost

{(e,σ)∈E′|σ∈4X}
M (ℓ, ν)

)
.

where timePostt is the time-successor after a delay of t time units, and discPoste is the
discrete successor after edge e.

As a consequence, the set of reachable states in H is the image by χ of the set of reachable
states inM.

Remark 13. Let us summarize the characteristics of multi-rate automatonM:

– for each variable y, for each location ℓ, Act′(ℓ)(y) is a singleton;
– for every edge e, if y ∈ Upd′(e), then Post′(e)(y) is a singleton;
– for every edge e, if y /∈ Upd′(e), then Pre′(e)(y) = Post′(e)(y);
– if H is initialized, then so isM.
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We now transform the (initialized) multi-rate automatonM into a(n initialized) stop-
watch automaton21 S. The idea is to scale the variables by a correct factor. We as-
sume the set of variable of M is X ′ = {y1, . . . , yp}. For every location ℓ of M, we
define mℓ

i by Act′(ℓ)(yi) if ̸= 0, and 1 otherwise. We define ζℓ : Rp → Rp such that
ζℓ(y1, . . . , yp) = (y1/m

ℓ
1, . . . , yp/m

ℓ
p). The stopwatch automaton is obtained by applying

ζℓ to Act′(ℓ) (therefore defining Act′′) and Pre′(e′) when ℓ = src(e′) (therefore defining
Pre′′), and Post′(e′) when ℓ = target(e′) (therefore defining Post′′). Updates are unchanged:
Upd′′ = Upd′. We then define ζ(ℓ, ν) = (ℓ, ζℓ(ν)) when (ℓ, ν) is a state ofM.

Lemma 11. The relation ≡ defined betweenM and S by (ℓ, ν) ≡ ζ(ℓ, ν) is a strong-timed
bisimulation. In particular, if (ℓ, ν) is a configuration ofM, t ∈ R+ and e ∈ E ′, then:

– timePosttS

(
ζ(ℓ, ν)

)
= ζ
(
timePosttM(ℓ, ν)

)
;

– discPosteS

(
ζ(ℓ, ν)

)
= ζ
(
discPosteM(ℓ, ν)

)
.

Remark 14. Let us summarize the characteristics of the stopwatch automaton S:
– for each variable y, for each location ℓ, Act′′(ℓ)(y) ∈ {0, 1};
– for every edge e, if y ∈ Upd′′(e), then Post′′(e)(y) is a singleton;
– for every edge e, if y /∈ Upd′′(e), then Pre′′(e)(y) = Post′′(e)(y);
– ifM is initialized, then so is S.

We finally transform S into a timed automaton A, under the assumption that S is
initialized. We let K = {finite endpoints of intervals in Post′′}. Assume L′′ is the set of
locations of S. The set of locations of A is then:

L′′′ = {(ℓ, α) ∈ L′′ × (K ∪ {⊤})X′′ | ∀y ∈ X ′′, Act′′(ℓ)(y) ̸= 0 iff α(y) = ⊤}

[⊤ represents active clocks, whereas value k represents stopped clocks at value k]

If e = ℓ
Pre,Post,Upd−−−−−−−→ ℓ′ is an edge of S, then, for every α such that (ℓ, α) ∈ L′′′, we will

have a transition (ℓ, α)
g,up−−→ (ℓ′, α′) where:

– g encodes Pre (which is simplified by assuming that the value of each y with α(y) ∈ K
is α(y));

– for each y ∈ Upd(e) such that Act(target(e))(y) = 1, upy is an update y := cte, if
Post(e)(y) = [cte, cte]; also, α′(y) = ⊤;

– for each y ∈ Upd(e) such that Act(target(e))(y) = 0, α′(y) = cte, if Post(e)(y) =
[cte, cte]; also, α′(y) = ⊤;

– for each y /∈ Upd(e) such that Act(target(e))(y) = 0, as the system is initialized, it holds
that α(y) ∈ K, and we therefore set α′(y) = α(y).

The resulting system is a diagonal-free timed automaton, which uses updates to con-
stants (instead of just resets to 0). However (see exercise below), those are harmless in
diagonal-free timed automata.

Reachability is decidable in PSPACE in timed automata and in space linear in the
number of states of the automaton. We thus get a PSPACE algorithm. ⊓⊔
21 That is, in each location, each variable has either slope 0 or 1.
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Exercise 20. Show that we can remove updates of the form x := c in timed automata.
However notice that this yields an exponential blowup in the size of the system. Therefore,
show that standard region automata construction can be used to prove decidability of this
class of systems (adapt the compatibility of the regions with resets).

9.3 Weighted timed automata

Weighted timed automaton. A weighted timed automaton is a timed automaton with
an observer weight variable. It is defined as a tuple A = (L, ℓ0, LF , X,Σ, T,weight), where:

– (L, ℓ0, LF , X,Σ, T ) is a standard (diagonal-free) timed automaton, and

– weight : L ∪ T → Z assigns a value to each location and to each transition.

We assume Σ = T , that is each transition can be identified with its label.

The weight of a delay move (ℓ, v)
d−→ (ℓ, v + d) is given by d · weight(ℓ): weight(ℓ) is the

rate in ℓ. The weight of a discrete move (ℓ, v)
e−→ (ℓ′, v′) is given by weight(e). The weight

of a finite run ϱ is the accumulated weight of all moves that compose the run ϱ, we write
cost(ϱ) for that value, and we call it the cost of ϱ.

Example 16. We consider the following weighted timed automaton:

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,y:=0

x=2
+1

x=2
+7

A possible execution for that system is:

ℓ0
1.3−→ ℓ0

c−→ ℓ1
u−−→ ℓ3

0.7−−→ ℓ3
c−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

Remark 15. Note that weighted timed automata can be seen as linear hybrid automata, or
as (non-initialized) rectangular automata. However the weight variable is never constrained,
that is, the behaviour of the weighted timed automaton is that of the underlying timed
automaton.

Example 17. Back to the taskgraph scheduling problem, we can refine the models for the
processors and get:

56



P1:
+10+90

(x≤2)

+90

(x≤3)
x:=0

add1

x:=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)
y:=0

add2

y:=0

mult2

y=5

done2

y=7

done2

Optimal reachability in weighted timed automata We focus on the optimal reach-
ability question: given a weighted timed automaton A, can we compute the optimal cost
that allows to reach the set of target states. The optimal cost is defined as

optcostA = inf{cost(ϱ) | ϱ run from (ℓ0,0) to LF}

Example 18. If we consider the weighted timed automaton of Example 16, this optimal
cost can be computed as:

inf
0≤t≤2

(
5t+min(10(2− t) + 1, (2− t) + 7)

)
= 9

and the “strategy” is to take the first transition when x = 0.

Theorem 10. We can compute the optimal cost for reaching the target location in weighted
timed automata in polynomial space.

First notice that the region abstraction is too rough to correctly take into account the
cost information:

time elapsing

reset to 0

Therefore the proof of this theorem relies on a refinement of the region automaton
construction, called the corner-point abstraction, which is a finite weighted graph:

3
0 0

0

0 0
3

7

7

57



We fix a weighted timed automaton A, and w.l.o.g. we assume all clocks are bounded
by maximal constant M . We fix its set of diagonal-free regions R. A corner-point is a pair
(r, α) where r ∈ R, and α ∈ r with integral coordinates. Note that if r is given by the
following order on fractional part X0 < X1 < · · · < Xp where (Xi) is a partition of the set
of clocks, X0 contains all clocks with integral values, for every i, the fractional parts of all
clocks in Xi are equal, and all clocks in Xi have fractional part strictly larger than clocks
in Xi−1, then there are p + 1 corner-points to r, each one is characterized by 0 ≤ i ≤ p
such that the value of clocks in X0 ∪X1 ∪ · · · ∪Xi is the integral part whereas the value
of clocks in Xi+1 ∪ · · · ∪Xp is the integral part plus one.

We write Rcp for the set {(r, α) | r ∈ R and α is a corner-point of r}. We write r0 for
the region where all clocks have value 0, and α0 for its unique corner-point.

Example 19. Region 0 < x < 1 ∧ 1 < y < 2 ∧ y − x < 1 has three corner-points:

(x = 0, y = 1) (x = 1, y = 1) (x = 0, y = 2)

The corner-point abstraction Rcp(A) of A is a finite weighted graph (Q, q0, QF ,→)
where Q = L × Rcp, q0 = (ℓ0, r0, α0), QF = L × Rcp, and →⊆ Q × Z × Q is defined as
follows:

– there is a transition (ℓ, r, α)
weight(ℓ)−−−−−→ (ℓ, r, α′) if α and α′ are corner-points of r (this is

only possible if α′ = α + 1)

– there is a transition (ℓ, r, α)
0−→ (ℓ, r′, α) if r′ is the immediate successor of r, and α is a

corner-point of both r and r′

– there is a transition (ℓ, r, α)
weight(e)−−−−−→ (ℓ′, r′, α′) if edge e = (ℓ, g, Y, ℓ′) is such that

r ⊆ JgK, r′ = [Y ← 0]r and α′ = [Y ← 0]α.22

We will show that this abstraction is sound and complete w.r.t. optimal reachability,
that is optcostA = optcostRcp(A). More precisely we will prove the following proposition:

Proposition 9. For every accepted finite run ϱ in A, there is an accepted finite path π in
Rcp(A) such that cost(π) ≤ cost(ϱ).

For every accepted finite path π in Rcp(A), for every ε > 0, there is an accepted finite
run ϱ in A such that cost(ϱ) ≤ cost(π) + ε.

Proof (of Proposition 9). We first prove the correctness, and then the soundness.

Correctness. Let ϱ = (ℓ0, u0)→ (ℓ0, u0 + d0)→ (ℓ1, u1)→ (ℓ1, u1 + d1) · · · → (ℓn, un) be a
finite run in A (with alternating delay and discrete transitions). We moreover assume that

this execution is read on the sequence of transitions ℓ0
g1,Y1−−−→ ℓ1 . . .

gn,Yn−−−→ ℓn in A. The cost
of ϱ is given by:

f(d0, d1, ..., dn−1) =
n−1∑
i=0

ci · di + c

22 Note that [Y ← 0]α is a corner-point of [Y ← 0]r if α is a corner-point of r.
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where ci’s are the weights of the locations ℓi’s, and c is the sum of all the discrete weights
of transitions along ϱ.

We want to minimize this function f with the constraints that ϱ̃ = (ℓ0, v0)→ (ℓ0, v0 +

d̃0) → (ℓ1, v1) → (ℓ1, v1 + d̃1) · · · → (ℓn, vn) is a run which is region-equivalent to ϱ, that

is, if ũi(x) =
∑i−1

h=j d̃h and ũ′i(x) =
∑i

h=j d̃h, where j = max{k ≤ i | x ∈ Yk}, then ũi ∈ ri,
ũ′i ∈ r′i where ri (resp. r′i) is the region of ui (resp. ui + di).

The (topological) closure of this set of constraints on variables D = (d̃i)0≤i≤n−1 can
be represented by a linear constraint M · D ≤ A, where each line of M is of the form
0 . . . 0 1 . . . 1 0 . . . 0 or 0 . . . 0 − 1 · · · − 1 0 . . . 0. One can show that such a matrix is totally
unimodular.23 This implies that minimizing f along the region path of ϱ yields an integer
solution (αi)0≤i≤n−1.

Example 20 (Optimal reachability as a linear programming problem). We illustrate the
above construction:

d1 d2 d3 d4 d5
···

 d1+d2≤2

d2+d3+d4≥5x≤2y:=0 y≥5

We define the valuations (σi)0≤i≤n by σi(x) =
∑−i−1

h=j αh where j = max{k ≤ i | x ∈ Yk}.
Each valuation σi is in ri and has integer coordinates. It is thus a corner-point of ri.
Moreover, the sequence of valuations (σi)i would be an accepted sequence if we replace the
constraints ri by ri. In addition, the time elapsed in each state ℓi would then be αi. It is
technical but easy to build a corresponding path π in the corner-point abstraction Rcp(A).

As (αi)i=1...n minimizes f over the closure of the constraint defined by the region path
of ϱ, we get that cost(π) ≤ cost(ϱ) and we are done.

Completeness. Note that if all guards are closed, then this is straightforward. In the general
case, it relies on the following lemma:

Lemma 12. Let π = (ℓ0, r0, α0) → (ℓ1, r1, α1) → . . . be a path in Acp. For every ε > 0,
there exists a real run ϱε = (ℓ0, v0) → (ℓ1, v1) → . . . such that for every i, vi ∈ ri and
∥αi − vi∥∞ < ε.

To prove this lemma we show the following: for every (ℓ, r, α) → (ℓ′, r′, α′), for every
ε > 0, for every v ∈ r such that δα(v) < ε, there exists (ℓ, v) → (ℓ′, v′) in A such
that v′ ∈ r′ and δα′(v′) < ε, where the diameter of v w.r.t. α is defined as δα(v) =

max
(
maxx(|v(x)− αx|),maxx,y(|(v(x)− αx)− (v(y)− αy)|)

)
.

To prove this we distinguish between all cases for the transition (ℓ, r, α)→ (ℓ′, r′, α′).

– Assume (ℓ, r, α)→ (ℓ′, r′, α′) is a discrete transition and δα(v) < ε with v ∈ r. Then let
v′ be such that (ℓ, v) → (ℓ′, v′). Let Y be the set of clocks which are reset along that
move. Then v′(y) = 0 and α′

y = 0 for every y ∈ Y , and v′(y) = v(y) and α′
y = αy for

every y /∈ Y . Then obviously δα′(v′) ≤ δα(v) < ε.

23 Which means that every square matrix extracted from M has determinant −1, 0 or 1.
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– Assume (ℓ, r, α)→ (ℓ′, r′, α′) is a delay transition. There are several cases:
• (ℓ, r, α)→ (ℓ, r, α + 1)

α

v(x)v(z)v(y)

< ε

α + 1

In that case, write τ = min{v(x)− αx | x ∈ X} and τ ′ = max{v(x)− αx | x ∈ X},
and define v′ = v + 1 − τ ′ − τ . With this value we easily get δα+1(v

′) = δα(v) < ε.
The new situation is illustrated below:

α

v′(x)
v′(z)

v′(y)

< ε

α + 1

• (ℓ, r, α)→ (ℓ, r′, α) where r′ is the immediate successor of r. There are several cases,
which depend on the position of v relative to α.
∗ There are some clocks x, such that v(x) < αx, and there is no clock y such that
v(y) = αy. This case is illustrated below.

α

v(x) v(z)v(y)

< ε

In that case, we define τ = min{αx − v(x) | v(x) < αx}, and then v′ = v + τ .
We get that v′ ∈ r′, and that δα(v

′) = δα(v) < ε. The new situation is illustrated
below.

α

v′(x) v′(z)v′(y)

< ε

∗ There is some clock x such that v(x) = αx, and there is some clock y such that
v(y) < αy.

α

v(x)v(y) v(z)

< ε

We let τ = min{αy − v(y) | v(y) < αy}, and we define v′ = v + τ
2
. We get the

expected result, illustrated below.

α

v′(x)v′(y) v′(z)

< ε

∗ This is the “most complex” case. There is some clock x such that v(x) = αx, and
there is no clock y such that v(y) < αy.
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α

v(x) v(y)v(z)

< ε

In that case, we let τ = ε − δα(v) (which we know is positive), and we let
v′ = v + τ

2
. We then get the expected result.

α

v′(x) v′(y)v′(z)

> δv(α) but < ε

This concludes the proof. ⊓⊔

Now, along a given sequence of transitions, the cost is continuous, which means that
for every ν > 0, we can find some ε > 0 such that the distance between two runs is smaller
than ε implies that the difference of costs for the two runs is smaller than ν. This concludes
the completeness of the construction.

THE END
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10 Implementation and data structures

In the original work by Alur and Dill, the so-called region automaton construction is an
abstraction which proves the decidability of the model. However, whereas well-suited for
establishing decidability of problems related to timed automata, the region automaton
is highly impractical from a tool implementation point-of-view. Instead, most real-time
verification tools (like CMC24 [LL98], Kronos25 [DOTY96], and Uppaal26 [BDL+06]) apply
abstractions based on so-called zones, which in practice provide much coarser abstractions.

In this section, we describe methods that can be used for analysing reachability (or
equivalently simple safety) properties in timed automata.

10.1 Checking reachability properties: two general methods

There are two main approaches for checking reachability (or safety) properties in systems
(not only timed systems, but all kinds of systems). We describe these two approaches
shortly and apply them to timed automata.

– Forward analysis. The general idea is to compute configurations which are reachable
from the initial configuration within 1 step, 2 steps, etc. until final (or goal) configura-
tions are computed, or until the computation terminates. The forward analysis compu-
tation can be schematized as below.

Init

Final

– Backward analysis. The general idea is to compute configurations from which we can
reach final configurations within 1 step, 2 steps, etc. until the initial configuration is
computed, or until the computation terminates. The backward analysis computation
can be represented as below.

24 http://www.lsv.ens-cachan.fr/~fl/cmcweb.html/
25 http://www-verimag.imag.fr/TEMPORISE/kronos/
26 http://www.uppaal.com/
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Final

Init

These two generic approaches are used in many contexts, including the analysis of models
like counter machines, hybrid systems, etc. Of course, given a class of systems, specific
techniques (eg. abstractions, widening operations, etc.) can be used for improving the
computations. We will now focus on timed automata and explain how these two approaches
can be implemented in that framework.

10.2 Reachability analysis in timed automata: the zone symbolic
representation

Timed automata have infinitely (and even uncountably) many configurations, it is thus
necessary to use symbolic representations for doing the computations. For the discussion
which follows we fix a timed automaton A = (L,L0, LF , X,Σ, T ). Given an edge e =
(ℓ, g, a, Y, ℓ′) ∈ T of A, we need to be able to compute its effect on a set of valuations.
More precisely, if W is a set of valuations, we define the two following sets of valuations:

Poste(W ) = {v′ ∈ TX | ∃v ∈ W ∃t ∈ T such that v + t |= g
and v′ = [Y ← 0](v + t)}

Pree(W ) = {v ∈ TX | ∃v′ ∈ W ∃t ∈ T such that v + t |= g
and [Y ← 0](v + t) = v′}

A valuation v′ is in Poste(W ) whenever there exists some valuation v ∈ W and some t ∈ R≥0

such that (ℓ, v)
t,e−→ (ℓ′, v′) is a mixed move in TA. Similarly a valuation v is in Pree(W )

whenever there exists some valuation v′ ∈ W and some t ∈ R≥0 such that (ℓ, v)
t,e−→ (ℓ′, v′)

is a mixed move in TA.
It is worth noticing that if W is a zone, i.e., a set of valuations defined by a general

clock constraint, then for every transition e of A, Poste(W ) and Pree(W ) are both zones.
For analysing timed automata, zones are the most basic and commonly used symbolic
representation.

In the following, we will need to decompose the computation of Poste and Pree in several
simpler steps, hence we define the following operations on zones (or more generally on sets
of valuations):

– Future of W :
−→
W = {v + t | v ∈ W and t ∈ R≥0}
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– Past of W :
←−
W = {v − t | v ∈ W and t ∈ R≥0}

– Intersection of W and W ′: W ∩W ′ = {v | v ∈ W and v ∈ W ′}
– Reset to zero of W with respect to the set of clocks Y :

[Y ← 0]W = {[Y ← 0]v | v ∈ W}
– Inverse reset to zero of W with respect to the set of clocks Y :

[Y ← 0]−1W = {v | [Y ← 0]v ∈ W}

Exercise 21. Prove that those elementary operations preserve zones. ⌟

These operations allow to express the Poste and Pree operators:Poste(W ) = [Ye ← 0](
−→
W ∩ JgeK)

Pree(W ) =
←−−−−−−−−−−−−−−−−−−−−−−−
[Ye ← 0]−1(W ∩ JYe = 0K) ∩ JgeK

10.3 The DBM data structure

The most common data structure for representing zones is the so-called DBM data struc-
ture. This data structure has been first introduced in [BM83] and then set in the framework
of timed automata in [Dil90]. Several presentations of this data structure can be found in
the literature, for example in [CGP99,Ben02,Bou04].

A difference bound matrix, we shall write DBM for short, for a set X = {x1, . . . , xn} of
n clocks is an (n+ 1)-square matrix of pairs

(≺,m) ∈ V = ({<,≤} × Z) ∪ {(<,∞)}.

A DBM M = (≺i,j,mi,j)0≤i,j≤n defines the following subset of RX
≥0 (if v ∈ RX

≥0, v is the
‘canonical’ valuation over X ∪ {x0} — where x0 is a fresh clock — such that v(x) = v(x)
for every x ∈ X, and v(x0) = 0; In the following we may write v instead of v):

{v : X → R≥0 | ∀ 0 ≤ i, j ≤ n, v(xi)− v(xj) ≺i,j mi,j}

where γ < ∞ simply means that γ ∈ R≥0 (without any constraint on γ). This subset
of RX

≥0 is a zone and will be denoted by JMK. To simplify the notations, we now assume
that all constraints are non-strict, so that coefficients of DBMs will simply be elements of
Z ∪ {∞}.

Example 21. We consider the zone over the set of clocks X = {x1, x2} defined by the
general clock constraint

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4).

This zone, depicted on the next picture on the right, can be represented by the DBM on
the left.
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x0 x1 x2
x0
x1
x2

Ñ
∞−3∞
∞ ∞ 4
5 ∞ ∞

é x2

x13

5

x1−x2=4

⌟

A zone can have several representations using DBMs. For example, the zone of the
previous example can equivalently be represented by the DBM

x0 x1 x2
x0
x1
x2

Ñ
0−3 0
9 0 4
5 2 0

é
Normal forms of DBMs. We define a total order on V in the following way: if (≺,m), (≺′

,m′) ∈ V, then

(≺,m) ≤ (≺′,m′)⇔

m < m′

or
m = m′ and either ≺ = ≺′ or ≺′ = ≤ .

Of course, for each m ∈ Z, we have m <∞. We define >, ≥ and < in a natural way. These
orders are extended to DBMs M = (≺i,j,mi,j)i,j=0...n and M ′ = (≺′

i,j,m
′
i,j)i,j=0...n by

M ≤M ′ ⇔ for every i, j = 0 . . . n, (≺i,j,mi,j) ≤ (≺′
i,j,m

′
i,j).

We also define an addition on the set V as follows:

(≺,m) + (≺′,m′) = (≺′′,m′′)

where m′′ = m+m′ and ≺′′ is ≤ if both ≺ and ≺′ are ≤ and ≺′′ is < otherwise.
Let M be a DBM. We write GM for the graph corresponding to that DBM. Then the

following property follows:

Property 1 (Emptiness checking).

JMK = ∅ iff there is a cycle with weight strictly smaller than (≤, 0) in GM

Proof. The right-to-left implication is obvious.
We focus on the left-to-right implication. The proof relies on shortest paths proper-

ties [CLR90].
We first assume that all ≺i,j are ≤. In the graph GM , there is a path from vertex x0 to

any other vertex. We can therefore define δ(i) the shortest path inGM from 0 to i (forgetting

65



the comparison operator, since it is ≤). We have that for every j, δ(i) ≤ δ(j)+mj,i, that is
(−δ(j))− (−δ(i)) ≤ mj,i. Hence, (−δ(i))i is a solution to the system of equations defined
by M .

In the general case, we fix some ϵi,j ≥ 0 such that the following conditions hold:

– ≺i,j=< iff ϵi,j > 0
– for every cycle i1i2 . . . ik of length at most n+ 1,

k−1∑
j=1

(
mij ,ij+1

− ϵij ,ij+1

)
≥ 0

This is possible to do so since there is no negative cycle inM . We defineMϵ = ((mi,j−ϵi,j);≤
)i,j. Applying the previous result, we get that JMϵK ̸= ∅. Furthermore, Mϵ ≤ M , which
implies JMK ̸= ∅. ⌟

We apply the Floyd-Warshall algorithm to DBM M (seen as the adjacency matrix of
GM), yielding the DBM ϕ(M). The DBM ϕ(M) is the normal form of M , which will be
justified later. Notice that ϕ(ϕ(M)) = ϕ(M) if JMK is not empty.

We can now state some (very useful) properties of normal forms of DBMs.

Property 2. If M and M ′ are DBMs, then:

(i) JMK = Jϕ(M)K and ϕ(M) ≤M ,
(ii) JMK ⊆ JM ′K⇔ ϕ(M) ≤M ′ ⇔ ϕ(M) ≤ ϕ(M ′).

The last point expresses the fact that the test for inclusion of zones can be checked syn-
tactically on the normal forms of the DBMs (representing the zones).

Normal forms of DBMs can be characterized in a natural way.

Property 3. IfM = (≺i,j,mi,j)i,j=0...n is a DBM such that JMK ̸= ∅, then the two following
properties are equivalent:

(i) M is in normal form,
(ii) for every i, j = 0 . . . n, for every real −mj,i ≺j,i r ≺i,j mi,j, there exists a

valuation v ∈ JMK such that v(xj)− v(xi) = r (still assuming that v(x0) =
0).

This property expresses the fact that if a DBM is in normal form, then no constraint of
this DBM can be tightened using Floyd algorithm.

Computation of Some Operations on DBMs. As we argued at the beginning of the
section, the data structure used to represent zones must also be appropriate to compute
several operations.

Intersection. Let M = (≺i,j,mi,j; )i,j=1...n and M ′ = (≺′
i,j,m

′
i,j)i,j=1...n be two DBMs and

define M ′′ = (≺′′
i,j,m

′′
i,j)i,j=1...n by

(≺′′
i,j,m

′′
i,j) = min((≺i,j,mi,j), (≺′

i,j,m
′
i,j)) for all indices i, j = 1 . . . n.

Then JM ′′K = JMK ∩ JM ′K. Note that it can be the case that M ′′ is not in normal form,
even if M and M ′ are in normal form.
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Future. Assume that M = (≺i,j,mi,j)i,j=1...n is a DBM in normal form. Define the DBM
−→
M = (≺′

i,j,m
′
i,j)i,j=1...n by: ß

(≺′
i,j,m

′
i,j) = (≺i,j,mi,j) if j ̸= 0

(≺′
i,0,m

′
i,0) = (<,∞)

.

Then J
−→
MK =

−−→
JMK and the DBM

−→
M is in normal form.

Past. Assume that M = (≺i,j,mi,j)i,j=1...n is a DBM in normal form. Define the DBM
←−
M = (≺′

i,j,m
′
i,j)i,j=1...n by: ß

(≺′
i,j,m

′
i,j) = (≺i,j,mi,j) if i ̸= 0

(≺′
0,j,m

′
0,j) = (≤, 0) .

Then J
←−
MK =

←−−
JMK and the DBM

←−
M is in normal form.

Image by resets. Assume that M = (≺i,j,mi,j)i,j=1...n is a DBM in normal form and define
the DBM Mxk:=0 = (≺′

i,j,m
′
i,j)i,j=1...n by:

(≺′
i,j,m

′
i,j) = (≺i,j,mi,j) if i, j ̸= k

(≺′
k,k,m

′
k,k) = (≺′

k,0,m
′
k,0) = (≺′

0,k,m
′
0,k) = (≤, 0)

(≺′
i,k,m

′
i,k) = (≺i,0,mi,0) if i ̸= k

(≺′
k,i,m

′
k,i) = (≺0,i,m0,i) if i ̸= k

Then JMxk:=0K = [xk ← 0]JMK and the DBM Mxk:=0 is in normal form.
Let us just mention that the DBM data structure is the most basic data structure which

is used for analysing timed systems, some more involved BDD-like data structures can also
be used, for example CDDs (which stands for ‘Clock Difference Diagrams’) [LPWY99], or
more recently federations [DHGP04,Dav05].

10.4 Backward analysis

We first focus on the backward analysis computation, which will surprisingly turn out to
be the simplest to analyse. We fix a timed automaton A = (L,L0, LF , X,Σ, T ).

Backward symbolic transition system. The backward symbolic transition system as-
sociated with A is denoted by ‘⇐’ and is defined inductively as follows:

e =
(
ℓ1

g,a,Y−−−→ ℓ2

)
∈ E W1 = Pree(W2)

(ℓ2,W2)⇐ (ℓ1,W1)

Obviously, if we write ⇐∗ for the reflexive and transitive closure of ⇐, we have that
(ℓ′,W ′)⇐∗ (ℓ,W ) if and only if for every v ∈ W , there exists v′ ∈ W ′ and a run in A from
(ℓ, v) to (ℓ′, v′).
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The backward analysis algorithm then consists in computing iteratively the following
sets of symbolic configurations:

Sb
0 = {(ℓ,RX

≥0) | ℓ ∈ LF}
Sb
1 = Sb

0 ∪ {(ℓ,W ) | ∃(ℓ′,W ′) ∈ Sb
0 such that (ℓ′,W ′)⇐ (ℓ,W )}

...

Sb
p+1 = Sb

p ∪ {(ℓ,W ) | ∃(ℓ′,W ′) ∈ Sb
p such that (ℓ′,W ′)⇐ (ℓ′,W ′)}

...

until either (i) the computation stabilizes, or (ii) a symbolic state is computed, which
contains the initial configuration of A. To help event (i) happen, it is possible to add
the following inclusion check: if (ℓ,W ) ∈ Sb

p+1 and if there exists (ℓ,W ′) ∈ Sb
p such that

W ⊆ W ′ (or even if there exist (ℓ,Wi) ∈ Sb
p for finitely many i’s such that W ⊆

⋃
iWi),

then do not include (ℓ,W ) in Sb
p+1. The procedure answers ‘Yes’ in case (ii) and ‘No’ in

case (i) ∧ ¬(ii).

Termination and correctness. The backward analysis computation enjoys the following
nice property, which can be seen as a consequence of the correctness of the backward
analysis algorithm for TCTL [HNSY94]. However, we will give below a simple and direct
proof of that result.

Theorem 11. The backward computation terminates and is correct with respect to reach-
ability properties.27

Proof. Correctness is immediate as the computation is exact (as opposed to over-(or under-
)approximate). The inclusion check does not cause any trouble as any state reachable from
a configuration belonging to a symbolic state that is not added due to that test is actually
already reachable from the previous symbolic state that was computed.

Termination needs some additional argument, that we sketch here. Assume that Ri’s
(for 1 ≤ i ≤ p) are regions of A, then:

–

←−−−−
p⋃

i=1

Ri is a finite union of regions;

– [Y ← 0]−1

(
p⋃

i=1

Ri

)
is a finite union of regions (for any set of clocks Y );

– JgK ∩

(
p⋃

i=1

Ri

)
is a finite union of regions if g is a clock constraint of A.

This is because of the three compatibility constraints which are satisfied by the set of
regions.

27 I.e. LF is reachable if and only if it is declared as reachable by the backward computation.
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These properties altogether imply that each of the symbolic configurations (ℓ,W ) that
are added to Sb

i is such thatW is a finite union of regions. As there are finitely many regions,
the sequence (Sb

i )i≥0 stabilizes, hence the termination of the backward computation. ⌟

Backward analysis may appear as an accurate method for analysing timed automata,
but in practice, some tools (like Uppaal) prefer using a forward analysis computation. One
of the reasons comes from the use of (bounded) integer variables that are really helpful for
modelling real systems. Backward analysis is then not suitable for dealing with arithmetical
operations: for example if we know in which interval lies the variable i and if we know that
i is assigned the value j.k + ℓ.m, it is not easy to compute the possible values of variables
j, k, ℓ, m (apart from listing all possible tuples of values). For this kind of operations,
forward analysis is much more suitable.

10.5 Forward analysis

In this section we focus on the forward analysis computation, which will require the de-
velopment of abstractions, and more effort for proving its correctness. We fix a timed
automaton A = (L,L0, LF , X,Σ, T ).

Forward symbolic transition system. The forward symbolic transition system associ-
ated with A is denoted by ‘⇒’ and is defined inductively as follows:

e =
(
ℓ1

g,a,Y :=0−−−−−→ ℓ2

)
∈ E W2 = Poste(W1)

(ℓ1,W1)⇒ (ℓ2,W2)

Obviously, if we write ⇒∗ for the reflexive and transitive closure of ⇒, we have that
(ℓ,W )⇒∗ (ℓ′,W ′) if and only if for every v′ ∈ W ′, there exists v ∈ W and a run in A from
(ℓ, v) to (ℓ′, v′).

The forward analysis computation then consists in computing iteratively the following
sets of symbolic configurations:

S f
0 = {(ℓ0,0X)}
S f
1 = S f

0 ∪ {(ℓ′,W ′) | ∃(ℓ,W ) ∈ S f
0 such that (ℓ,W )⇒ (ℓ′,W ′)}

...

S f
p+1 = S f

p ∪ {(ℓ′,W ′) | ∃(ℓ,W ) ∈ S f
p such that (ℓ,W )⇒ (ℓ′,W ′)}

...

until either (i) the computation stabilizes, or (ii) a symbolic state is computed, which
contains a final configuration of the timed automaton (i.e., a configuration of the form
(ℓf , v) with ℓf ∈ LF ). To help event (i) happen, it is possible to add an inclusion check, as
in the backward analysis computation. The procedure answers ‘Yes’ in case (ii) and ‘No’
in case (i) ∧ ¬(ii).
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Discussion on the termination and correctness. The forward analysis gives a correct
answer, but it may not terminate. An example of automaton in which the forward com-
putation does not terminate is given below. The zones that are computed by the above
procedure are represented on the right part of the figure, and it is easy to check that the
computation will never terminate.

ℓ

(y≤1)

x≥1∧y=1,a,y:=0
y

x1 2 3 4 5 6

1
···

To overcome this problem, it is necessary to use some abstraction operators. Several have
been proposed in [DT98]: for instance, if Z and Z ′ are computed for the location ℓ, they
are replaced by the smallest zone containing both Z and Z ′; this approximation is called
the convex-hull abstraction28, it does not ensure termination and is only semi-correct, in
the sense that a location announced as reachable might not be reachable (the convex-hull
abstraction is an over-approximation). The most interesting abstraction studied in this
paper is the extrapolation operator. We will present it now, but we first need to formalize
a little more the forward analysis procedure. We follow the lines of [BBFL03,BBLP04] and
define (abstract) symbolic transition systems.

Abstract forward symbolic transition systems. Let a be an abstraction operator
(possibly partially) defined on the sets of valuations (a associates to sets of valuations
sets of valuations). We define the abstract forward symbolic transition system ‘⇒a’ in the
following way:

(ℓ,W )⇒ (ℓ′,W ′) W = a(W )
(ℓ,W )⇒a (ℓ

′, a(W ′))

This transition system gives naturally rise to the following forward computation in A.

S f,a
0 = {(ℓ0, a({0X}))}
S f,a
1 = S f,a

0 ∪ {(ℓ′,W ′) | ∃(ℓ,W ) ∈ S f,a
0 such that (ℓ,W )⇒a (ℓ

′,W ′)}
...

S f,a
p+1 = S f,a

p ∪ {(ℓ′,W ′) | ∃(ℓ,W ) ∈ S f,a
p such that (ℓ,W )⇒a (ℓ

′,W ′)}
...

with the same halting conditions (and inclusion checks) as previously.

28 It is a language abuse, because it is not really the convex hull of the two zones, but it is the smallest zone
containing the convex-hull of the two zones.
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Soundness criteria. The abstraction operator a is said correct with respect to reacha-
bility properties in A whenever the following holds:

if (ℓ0, a({0X}))⇒∗
a (ℓ,W ) then there exists a run

(ℓ0,0X)→∗ (ℓ, v) with v ∈ W in A
The abstraction operator a is said complete with respect to reachability properties

whenever the following holds in A:
if (ℓ0,0X)→∗ (ℓ, v) is a run in A then

(ℓ0, a({0X}))⇒∗
a (ℓ,W ) for some W with v ∈ W

Remark 16. Note that these two notions could be generalized to more general properties
than reachability properties, but we follow our lines and concentrate on reachability prop-
erties.

⌟

Our aim is to define abstraction operators a such that the four following properties
hold:

(Finiteness) {a(W ) | a defined on W} is finite
(this ensures termination of the “abstract” forward computation)

(Correctness) a is correct with respect to reachability
(Completeness) a is complete with respect to reachability
(Effectiveness) a is “effective”

The three first properties are properly defined, the last one is more informal. The effec-
tiveness criterion expresses that the abstraction has to be easily computable. In timed
automata literature this is most of the time interpreted as “a has to be defined for all
zones and a(Z) has to be a zone when Z is a zone”. Note that other effectiveness criteria
could be proposed, but that is the one we choose here.

The extrapolation operator. The abstraction operator which is commonly used is called
extrapolation, and sometimes normalization [Ben02] or approximation [Bou04]. We will note
it here ApproxK , it is defined up to a constant K as follows: if Z is a zone, ApproxK(Z) is the
smallestK-bounded zone29 which contains Z. This operation is well-defined on DBMs: ifM
is a DBM in normal form representing Z, a DBM representing ApproxK(Z) is obtained from
M where each coefficient (≺;m) with m < −K is replaced by (<;−K) and all coefficients
(≺;m) with m > K is replaced by (<;∞), all other coefficients are unchanged. We write
ApproxK(M) for this transformed DBM: it holds that JApproxK(M)K = ApproxK(JMK).

Example 22. Consider again the zone introduced in example 21. As we have already men-
tioned, it can be represented by the DBM in normal form on the left and its 2-extrapolation
is the DBM on the right (where we again do not mention the comparison operators):

M =

Ñ
0−3 0
9 0 4
5 2 0

é
and Approx2(M) =

Ñ
0 −2 0

+∞ 0 +∞
+∞ 2 0

é
29 A K-bounded zone is a zone defined by a K-bounded clock constraint.
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They are both represented on the picture below.

3

x2

x1

5

2

2

JMK

JApprox2(M)K

⌟
Obviously,

– ApproxK is a finite abstraction operator because there are finitely many DBMs whose
coefficients are either (<;∞) or some (≺;m) with ≺ ∈ {<;≤} and −K ≤ m ≤ K;

– the computation of ApproxK is effective and can easily be done using DBMs;
– ApproxK is a complete abstraction with respect to reachability because for every zone
Z, Z ⊆ ApproxK(Z).

The only point that needs to be carefully studied is the correctness of ApproxK : of course,
not all constants K yield correctness, but we have to choose such a constant K carefully,
so that the abstraction operator be correct with respect to reachability properties. We now
discuss in details this important aspect.
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Correctness of the extrapolation operator. It is far from being obvious! We can state
it as follows.

Theorem 12 ([Bou04]). Let A be a diagonal-free timed automaton. Take K the maxi-
mal constant appearing in the constraints of A. Then ApproxK is a correct abstraction with
respect to reachability properties in A.

Proof. We prove the following property: for every region R (with maximal constant K),
for every zone Z, R ∩ Z = ∅ implies R ∩ ApproxK(Z) = ∅.

Let R = ((Ixi
)xi∈X ;≺) be a region and let MR = ((ri,j;≺i,j)i,j=0...n) be a DBM repre-

senting R such that:

(ri,0;≺i,0) =

 (c+ 1;<) if Ixi
=]c; c+ 1[

(c;≤) if Ixi
= {c}

(+∞;<) if Ixi
=]K; +∞[

(r0,i;≺0,i) =

 (−c;<) if Ixi
=]c; c+ 1[

(−c;≤) if Ixi
= {c}

(−K;<) if Ixi
=]K; +∞[

(ri,j;≺i,j) =



(c− d+ 1;<) if Ixi
=]c; c+ 1[, Ixj

=]d; d+ 1[ and xj ≺ xi, xi ̸≺ xj
(c− d;<) if Ixi

=]c; c+ 1[, Ixj
=]d; d+ 1[ and xi ≺ xj, xj ̸≺ xi

(c− d;≤) if Ixi
=]c; c+ 1[, Ixj

=]d; d+ 1[ and xi ≺ xj, xj ≺ xi
(c− d;≤) if Ixi

= {c} and Ixj
= {d}

(c+ 1− d;<) if Ixi
=]c; c+ 1[, Ixj

= {d}
(c− d− 1;<) if Ixi

= {c} and Ixj
=]d; d+ 1[

(+∞;<) in all other cases

Note that the diagonal-free hypothesis has the following important consequence on the
above representation of R: if (ri,0;≺i,0) = (+∞;<), then for every j ̸= 0, (ri,j;≺i,j) =
(rj,i;≺j,i) = (+∞;<). This property will be the core of the proof.

Let Z be a zone and M = ((mi,j;<i,j)i,j) a DBM in normal form representing zone
Z. Assume that Z ∩ R = ∅. It means that there exists a sequence of distinct indices
(i1, i2, . . . , il = i1) such that

αi1,i2 + αi2,i3 + · · ·+ αil−1,il < (0;≤) (4)

where αj,k = min((mj,k;<j,k); (rj,k;≺j,k)). Since M is in normal form, we can assume that
two successive αh,l do not come from M , otherwise we could simplify the sum (4).

• Assume that (mh,l, <h,l) < (rh,l,≺h,l) for some h and some l such that Ixh
and Ixl

are
bounded intervals.
We distinguish between two cases:
- ≺h,l=≤, which implies that (mh,l, <h,l) ≤ (rh,l, <): Z ⊆ (xh−xl < rh,l). Zone defined
by (xh − xl < rh,l) is K-bounded, hence ApproxK(Z) ⊆ (xh − xl < rh,l). However, in
that case, R ⊆ (xh − xl = rh,l), which implies that ApproxK(Z) ∩R = ∅.
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- ≺h,l=<, which implies that (mh,l;<h,l) ≤ (rh,l − 1;≤) = (−rl,h,≤): Z ⊆ (xl −
xh ≥ rl,h). This is also K-bounded, hence ApproxK(Z) ⊆ (xh − xl ≥ rl,h). However,
R ⊆ (xl − xh < rl,h), which implies that ApproxK(Z) ∩R = ∅.

• Let us now assume that the previous case does not happen: in the above sum, if
(mij ,ij+1

, <ij ,ij+1
) < (rij ,ij+1

,≺ij ,ij+1
), then either Ixij

=]K,+∞[ or Ixij+1
=]K,+∞[.

- Assume that Ixij
=]K; +∞[. Then, either ij−1 = 0 or (rij−1,ij ;≺ij−1,ij) = (+∞;<)

(by definition of MR). The second term cannot appear in the sum. Hence, ij−1 = 0.

- Assume that Ixij+1
=]K; +∞[. By definition of MR we get that every coefficient

rij+1,∗ is infinite, which is not possible in the sum. This case cannot happen.

After this analysis, we know that in the sum (4), we cannot have two coefficients coming
from M (otherwise index 0 would appear several times, which is not allowed). Thus
(since R is not empty) we have exactly one coefficient coming from M in the sum (4).
Collecting all these informations, we obtain a sequence of indices (k1, . . . , kp) such that

(r0,k1 ;≺0,k1) + (mk1,k2 ;<k1,k2) + (rk2,k3 ;≺k2,k3) + · · ·+ (rkp,0;≺kp,0) < (0;≤)

(and Ixk1
=]K; +∞[).

Now, we can notice that all coefficients (rki,ki+1
,≺ki,ki+1

) (with 2 ≤ i < p) of MR are
normalized (they cannot be tightened). Therefore, (rk2,k3 ;≺k2,k3)+· · ·+(rkp−1,kp ;≺kp−1,kp

) ≥ (rk2,kp ;≺k2,kp). The sum can therefore be simplified into:

(r0,k1 ;≺0,k1) + (mk1,k2 ;<k1,k2) + (rk2,0;≺k2,0) < (0;≤)

with Ixk−1
=]K; +infty[. In particular, (r0,k1 ;≺0,k1) = (−K;<).

We set (c;≺) = (rk2,0;≺k2,0)+(r0,k1 ;≺0,k1) = (−K;<)+(rk2,0;≺k2,0). Since 0 ≤ rk2 ≤ K
we get that −K ≤ c ≤ K. We obtain that:ß

Z ⊆ (xk1 − xk2 ≺ −c)
R ∩ (xk1 − xk2 ≺ −c) = ∅

Then −K ≤ c ≤ K implies that the zone (xk1−xk2 ≺ −c) is K-bounded. As previously,
we conclude that ApproxK(Z) ⊆ (xk1 − xk2 ≺ −c) and thus R ∩ ApproxK(Z) = ∅. ⌟

Surprisingly this theorem does not extend to timed automata with general clock con-
straints. Indeed, consider the timed automaton Abug depicted below. For every integer k,
the extrapolation operator Approxk is not correct with respect to reachability properties for
Abug. One can even also prove that, for automaton Abug, there is no abstraction operator
Abs satisfying the four above-mentioned criteria (finiteness, correctness, completeness and
effectiveness).
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Abug

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4ℓ5ℓ6ℓ7

Error

x3≤3

x1,x3:=0

x2=3

x2:=0

x1=2,x1:=0

x2=2,x2:=0

x1=2,x1:=0

x2=2

x2:=0

x1=3

x1:=0

x2>x1+2

x4<x3+2

The loop

Proposition 10. Consider the timed automaton Abug defined before. For every integer k,
Approxk is not a correct abstraction with respect to reachability properties in Abug. Fur-
thermore, there is no abstraction operator a that over-approximates zones, and that can be
finite, effective and correct with respect to reachability properties in Abug.

Proof. We explain the problem with automaton Abug. The zone Zα which is computed by
a forward analysis when reaching the location ℓ6 after having taken α times the loop is
defined by the constraints below (on the left). Fixing an integer k, taking α large enough
the extrapolated zone is also described below (on the right).

Zα :


1 ≤ x2 − x1 ≤ 3
1 ≤ x4 − x3 ≤ 3
x3 − x1 = 2α + 5
x4 − x2 = 2α + 5

Approxk(Zα) :


1 ≤ x2 − x1 ≤ 3
1 ≤ x4 − x3 ≤ 3
x3 − x1 > k
x4 − x2 > k

Note that if v ∈ Zα, then in particular v(x2)− v(x1) = v(x4)− v(x3). On the other hand,
there are valuations v ∈ Approxk(Zα) such that v(x2) − v(x1) ̸= v(x4) − v(x3). Obviously,
the zone Zα does not intersect the constraint x2 − x1 > 2 ∧ x4 − x3 < 2, which implies
that the location ‘Error’ is not reachable. However, Approxk(Zα) intersects the constraint
x2 − x1 > 2 ∧ x4 − x3 < 2 (for α large enough), which implies that the location ‘Error’ is
computed as reachable by the abstract forward analysis that uses the abstraction operator
Approxk (for any integer k). The problem with automaton Abug comes from the use of
diagonal constraints on the transition leading to location ‘Error’. ⌟

Note however that for timed automata with three clocks (and possibly diagonal con-
straints), it is possible to find a constant K such that ApproxK is correct with respect to
reachability properties (the constant K may however be larger than the maximal constant
appearing in a constraint of the automaton) [Bou04]. In the general case (more than three
clocks), a way of handling diagonal constraints is to remove first (or on-the-fly) diagonal
constraints as we know they can be removed (see [BDGP98]). However this leads to an
unavoidable exponential blowup in the size of the model [BC05].

Remark 17. Several improvements on that extrapolation operator have been made, like
distinguish locations, distinguish lower- and upper-bounds.
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11 The task-graph example

11.1 Description of the problem

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+

T1

×
T2

×
T3

+

T4

×
T5

+

T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
c
h
1

T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
c
h
2

T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
c
h
3

T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

11.2 Modelization of the problem

– Processors P1:
idle+

(x≤2)

×
(x≤3)

x:=0

add1

x:=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×
(y≤7)

x:=0

add2

x:=0

mult2

y=5

done2

y=7

done2

– Tasks

T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

11.3 How to model more?

How should we take into account:

– uncertainties on delays?
– power consumption?
– job preemption?
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12 Timed games: controller synthesis

Example 23 (Finite untimed games). Recall the bases.

,
Motivation for timed games. Uncertainty over delays, controllers. We choose here the model
of control games, which is not used in a game-theoretic perspective.

A timed game G is a timed automaton (L,L0, LF , X,Σ, T ) in which we assume that
edges are partitioned into controllable and uncontrollable edges, T = Tc ∪ Tu. We assume
that LF are sink locations, and we will consider reachability games. Its dual, safety games,
are useful to model eg control problems.

12.1 Reachability games

A strategy for the controller from state s = (ℓ, v) is a partially defined function f :
Runs(G, s) → (R+ × Tc) (where Runs(G, s) is the set of finite runs from configuration
s) such that for every run ϱ on which f is defined, if f(ϱ) = (t, e), then (t, e) is a valid
mixed move after ϱ. The set of possible outcomes (or plays) of f from s in G is denoted
Outf (G, s) and is defined inductively as follows:

– the run s is in Outf (G, s);
– if ϱ is in Outf (G, s) and if (t, e) = f(ϱ), then ϱ

t,c−→ s′ is in Outf (G, s), and for every

0 ≤ t′ ≤ t and every e′ ∈ Tu, if ϱ
t′,e′−−→ s′ is a possible extension of ϱ, then ϱ

t′,e′−−→ s′ is in
Outf (G, s);

– if ϱ is an infinite run such that every prefix ϱ′ of ϱ is in Outf (G, s), then ϱ is in Outf (G, s).

An outcome ϱ ∈ Outf (G, s) is f -maximal if it is infinite or if it cannot be extended by
the strategy f (its image by f is not defined). A run is winning if it visits in LF × RX

+ . A
strategy f is winning if all f -maximal outcomes of f are winning.

Remark 18. Any reasonable change in this definition (only infinite runs, uncontrollable
edges should be taken, etc) can be taken into account. Explain turn-based games, and
changes that should be made.

Given a timed game, we want to synthesize winning strategies, if possible, or assert it
is not possible to do so.

Example 24. We consider the following timed game:
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ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x:=0

x≤1,c3

x≥2,c4

x≥1,u3

Is the configuration (ℓ0, 0) winning? [objective: reach the happy location] ⌟

Theorem 13. The controller synthesis problem is computable/decidable.

We define the following operators, defined on sets of configurations:

Predt(W,W
′) = {(ℓ, v) ∈ L×RX

+ | ∃t ∈ R+ s.t. (ℓ, v+t) ∈ W and ∀0 ≤ t′ ≤ t, (ℓ, v+t′) ∈ W ′}

Intuitively, W ′ are safe states for the controller.
We also define

cPred(W ) = {(ℓ, v) ∈ L× RX
+ | ∃e ∈ Tc s.t. (ℓ, v)

0,e−→ (ℓ′, v′) and (ℓ′, v′) ∈ W}

uPred(W ) = {(ℓ, v) ∈ L× RX
+ | ∃e′ ∈ Tu s.t. (ℓ, v)

0,e′−−→ (ℓ′, v′) and (ℓ′, v′) ∈ W}

Finally, we define
π(W ) = W ∪ Predt(cPred(W ), (uPred(W c))c)

This is the set of controllable predecessor of W : from π(W ), one can ensure a move to W ,
without being kicked out by the environment.

Lemma 13. A configuration (ℓ, v) is in π(W ) \W iff there exists t ∈ R+ and e ∈ Tc such
that (ℓ, v)

t,e−→ W , and for every 0 ≤ t′ ≤ t, for every e′ ∈ Tu, (ℓ, v)
t′,e′−−→W .

Proof. This is a direct application of the definitions. ⌟

Lemma 14. Let Goal = {(ℓ, v) ∈ L × RX
+ | ℓ ∈ LF}. The non-decreasing sequence

(πi(Goal))i∈N stabilizes in a finite number of steps.

Proof. Operators cPred, uPred and Predt preserve finite unions of extended regions (an
extended region is a pair (ℓ, R) where ℓ is a location of the automaton, and R is a region).
This can be done as an exercise. ⌟
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Remark 19. This fixpoint operator π does not preserve zones in general:

cPred(W )
uPred(W c)
Predt(cPred(W ), (uPred(W c))c)

The limit of the sequence (πi(Goal))i∈N, denoted π
∗(Goal), is the attractor of Goal. Note

that, due to the convergence of the iterative sequence, π(π∗(Goal)) = π∗(Goal).

Proposition 11. A configuration (ℓ, v) is in π∗(Goal) iff the controller has a winning
strategy for the corresponding reachability game.

Proof. We will define a memoryless strategy for the controller, which will be winning for
all configurations in π∗(Goal). For every configuration s ∈ π∗(Goal), there is a unique index
i ∈ N such that s ∈ πi(Goal)\πi−1(Goal). We will call this index the rank of s in the game.
We construct the strategy f , inductively on the rank of the configurations, as follows.

For every i ∈ N we construct a memoryless strategy fi defined over all configurations
in πi(Goal) \ Goal, and such that:

– fi restricted to πi−1(Goal) coincides with fi−1

– for every configuration s0 ∈ πi(Goal), if ϱ ∈ Outfi(G, s0), ϱ = s0
t1,a1−−→ s1

t2,a2−−→
s2 · · ·

tp,ap−−→ sp implies rank(sj+1) < rank(sj) for every 0 ≤ j < p, and furthermore,
if ϱ is fi-maximal, then rank(sp) = 0 (the run is winning).

Only configurations in Goal have rank 0, hence we define f0 as being undefined every-
where. It satisfies the above conditions over π0(Goal) \ Goal = ∅.

Assume now the induction hypothesis for all configurations of rank at most i− 1. Pick

(ℓ, v) ∈ πi(Goal)\πi−1(Goal). There exists t ∈ R+, e ∈ Tc such that (ℓ, v)
t,e−→ (ℓ′, v′) implies

(ℓ′, v′) has at most rank i− 1, and for all 0 ≤ t′ ≤ t and e′ ∈ Tu, (ℓ, v)
t′,e′−−→ (ℓ′′, v′′) implies

that (ℓ′′, v′′) has rank at most i − 1. So if we assume that we have already defined the
strategy fi as fi−1 from configurations of rank no more than i− 1, we define the strategy
in (ℓ, v) as the move (t, e). Now if we take a (maximal) run ϱ generated by the strategy fi,

ϱ = (ℓ, v)
t1,a1−−→ (ℓ1, v1)

t2,a2−−→ (ℓ2, v2) · · · , we have that the sub-run (ℓ1, v1)
t2,a2−−→ (ℓ2, v2) · · ·

is generated by the strategy fi−1 and is thus finite and winning.

Conversely, assume that (ℓ, v) ̸∈ π∗(Goal) = π(π∗(Goal)), but that the controller has
a strategy f (possibly with memory) to win the game from (ℓ, v). We will build a run
starting in (ℓ, v), generated by the strategy f , and which only visits configurations outside
π∗(Goal) (hence never winning). Assume we have constructed such a run, say ϱ, of length
i. We will extend this run into a run of length i+ 1. Assume that ϱ ends in configuration
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(ℓ′, v′) ̸∈ π∗(Goal) and that f(ϱ) = (t, e). There are two cases: either (ℓ′, v′)
t,e−→ (ℓ′′, v′′)

is such that (ℓ′′, v′′) ̸∈ π∗(Goal), in which case we are done, or there exists 0 ≤ t′ ≤ t

and e′ ∈ Tu such that (ℓ′, v′)
t,e′−−→ (ℓ′′′, v′′′) implies (ℓ′′′, v′′′) ̸∈ π∗(Goal), in which case the

extended run is ϱ
t′,e′−−→ (ℓ′′′, v′′′). That way, we build an infinite run which is generated by

f but is not winning... contradiction. ⌟

Remark 20. Memoryless strategies are sufficient to win!

Exercise 22. Apply the algorithm to the game of Example 24.

Exercise 23. Compute the complexity of the above algorithm. Think of (and prove) a
matching lower bound. Conclude.

Proof. This problem is EXPTIME-complete, and EXPTIME-hardness follows from a reduc-
tion from the halting problem of alternating linearly-bounded Turing machines. ⌟

12.2 Safety games

In that case, a run is winning if it avoids LF . A strategy f is winning if all f -maximal
outcomes of f are winning.

Those safety games can be solved using a fixpoint operator as well:

π′(W ) = W ∩ Predt(cPred(W ), (uPred(W c))c)

starting from Safe = {(ℓ, v) ∈ L× RX
+ | ℓ /∈ LF}.

Those games are also EXPTIME-complete.

12.3 Imperfect information in reachability games

Instead of observing the runs, we observe timed words, that is the strategies only depend
on the underlying timed word, not on the real run. If ϱ is a run, we write tw(ϱ) the
underlying timed word of ϱ. A strategy f respects the imperfection information whenever
tw(ϱ) = tw(ϱ′) implies f(ϱ) = f(ϱ′). This allows to have a partial observation of the
system.

Theorem 14. Reachability timed games under the imperfect information hypothesis are
undecidable.

Proof (Sketch). By reduction from the universality problem of timed automata. Let A =

(L,L0, LF , X,Σ, T ) be a timed automaton. W.l.o.g. we assume that if ℓ
g′,a,Y ′
−−−−→ ℓ′ and

ℓ
g′′,a,Y ′′
−−−−→ ℓ′′ then either Jg′K = Jg′′K or Jg′K ∩ Jg′′K = ∅. We also assume the automaton is

complete. We construct the game G = (L′, L′
0, L

′
F , X ∪ {u}, Σ ′, T ′) where:

– L′ = L ∪ (L××Ck(X)×Σ) ∪ {win, lose};30

30 Ck(X) is the set of k-bounded contraints, and k is the maximal constant in A.
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– L′
0 = L0;

– L′
F = {win};

– Σ ′ = Σ ∪ {ε,#};
– T ′ is defined as follows: for every ℓ, g and a,

ℓ

ℓ1

ℓp

g,a
,Y1

g,a,Yp

...

in A

ℓ ℓ,g,a

ℓ1

ℓp

g,a

u:=0

u=
0,ε,

Y1

u=0,ε,Y2

in G

We also add transitions ℓ
u=0,#−−−→ win if ℓ ∈ L \ LF , and ℓ

u=0,#−−−→ lose if ℓ ∈ LF .

It is not difficult to prove that the controller has a strategy to ensure Goal = L′
F × RX

+ iff
the timed automaton A is not universal. The idea is to play a timed word w which is not
accepted by A: in A, all runs that read w leads to a location in L \LF , from which we can
play the action # and reach location win. ⌟

12.4 Application of games to checking strong timed bisimulation

Theorem 15. Strong timed bisimulation between timed automata can be decided in EXP-
TIME.

Proof. The proof of this theorem can be done using timed games!
Assume A1 = (L1, L1,0, L1,F , X1, Σ, T1) and A2 = (L2, L2,0, L2,F , X2, Σ, T2) are two

timed automata over the same alphabet.
We construct a turn-based31 timed game G = (Q,Q0, Qtester, Qprover, QF , X,Σ, T ) as

follows:

– Qtester = L1 × L2

– Qprover = {(ℓ1, e2) | ℓ1 ∈ L1, e2 ∈ T2} ∪ {(ℓ2, e1) | ℓ2 ∈ L2, e1 ∈ T1}
– Q = Qtester ∪Qprover ∪ {Bad}
– Q0 = L1,0 × L2,0

– QF = {Bad}
– X = X1 ∪X2 ∪ {z}
– T is composed of the following transitions:

• (ℓ1, ℓ2)
g1,a,Y1∪{z}−−−−−−→ (ℓ2, e1) where (ℓ1, ℓ2) ∈ L1 × L2, e1 = (ℓ1, g1, a, Y1, ℓ

′
1) ∈ T1(ℓ1)

• (ℓ1, ℓ2)
g2,a,Y2∪{z}−−−−−−→ (ℓ1, e2) where (ℓ1, ℓ2) ∈ L1 × L2, e2 = (ℓ2, g2, a, Y2, ℓ

′
2) ∈ T2(ℓ2)

• (ℓ2, e1)
g2∧(z=0),a,Y2−−−−−−−−→ (ℓ′1, ℓ

′
2) where (ℓ′1, ℓ2) ∈ L1 × L2, e1 = (ℓ1, g1, a, Y1, ℓ

′
1) ∈ T1(ℓ1),

and e2 = (ℓ2, g2, a, Y2, ℓ
′
2) ∈ T2(ℓ2)

31 To be explained.
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• (ℓ1, e2)
g1∧(z=0),a,Y1−−−−−−−−→ (ℓ′1, ℓ

′
2) where (ℓ1, ℓ

′
2) ∈ L1 × L2, e2 = (ℓ2, g2, a, Y2, ℓ

′
2) ∈ T2(ℓ2),

and e1 = (ℓ1, g1, a, Y1, ℓ
′
1) ∈ T1(ℓ1)

• (ℓ2, e1)
(z=0)∧¬g,a−−−−−−→ Bad where g =

∨
(ℓ2,g2,a,Y2,ℓ′2)∈T2(ℓ2)

g2

• (ℓ1, ℓ
′
2, e2)

(z=0)∧¬g,a−−−−−−→ Bad where g =
∨

(ℓ1,g1,a,Y1,ℓ′1)∈T1(ℓ1)
g1

This is depicted on Figure 9. Then, (ℓ1, v1) and (ℓ2, v2) are timed bisimilar iff the prover

ℓ1

ℓ′1

ℓ′′1

g
′
1
,a,Y

′
1

g′′
1 ,a,Y ′′

1

timed automaton A1

... ℓ2 ℓ′2
g2,a,Y2

timed automaton A2

...

ℓ1,ℓ2

tester location

(z=0)

(z=0)

(z=0)

prover location

Bad

g
′
1
,a,Y

′
1
∪{z}

g′′
1 ,a,Y ′′

1 ∪{z}

g1,a,Y2∪{z}

ℓ′1,ℓ
′
2

ℓ′′1 ,ℓ′2

g2∧(z=0),a,Y2

g
′
1
∧(z=

0),a
,Y

′
1

g2∧(z=0),a,Y2

g ′′
1 ∧(z=0),a,Y ′′

1

...

(z=0)∧¬g,a

Fig. 9: Bisimulation game

has a winning strategy to avoid the Bad state from ((ℓ1, ℓ2), v1v2).
Define R the relation defined by (ℓ1, v1)R(ℓ2, v2) iff the prover has a winning strategy

to avoid the Bad state from ((ℓ1, ℓ2), v1v2). It is easy to prove that R is a bisimulation
relation by playing a memoryless winning strategy.

Assume now that there is a bisimulation relationR such that (ℓ1, v1)R(ℓ2, v2). We define
a winning memoryless strategy for the player as follows: for all states (ℓ1, v1)R(ℓ2, v2), for
all t, from states ((ℓ2, e1), (v1v2) + t), play the corresponding matching move witnessing

the fact that there is an edge e2 labelled with a such that (ℓ2, v2)
t,a−→ (ℓ′2, v

′
2). This yields

a winning strategy... ⌟
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13 Going further: current challenges
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Normale Supérieure de Cachan, France, 2007.
[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT

Press, Cambridge, Massachusetts, 1990.
[CY92] Costas Courcoubetis and Mihalis Yannakakis. Minimum and maximum delay problems in real-time

systems. Formal Methods in System Design, 1(4):385–415, 1992.
[Dav05] Alexandre David. Merging DBMs efficiently. In Proc. 17th Nordic Workshop on Programming Theory

(NWPT’05), 2005. DIKU, University of Copenhagen.
[DHGP04] Alexandre David, John H̊akansson, Larsen Kim G., and Paul Pettersson. Minimal DBM subtraction.

In Proc. 16th Nordic Workshop on Programming Theory (NWPT’04), pages 17–20, 2004. Uppsala
University IT Technical Report 2004-041.

[Dil90] David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Proc. of the
Workshop on Automatic Verification Methods for Finite State Systems (1989), volume 407 of Lecture
Notes in Computer Science, pages 197–212. Springer, 1990.

[DOTY96] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The tool KRONOS. In Proc.
Hybrid Systems III: Verification and Control (1995), volume 1066 of Lecture Notes in Computer Science,
pages 208–219. Springer, 1996.

[DT98] Conrado Daws and Stavros Tripakis. Model-checking of real-time reachability properties using abstrac-
tions. In Proc. 4th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’98), volume 1384 of Lecture Notes in Computer Science, pages 313–329. Springer,
1998.

85



[DT04] Deepak D’Souza and Nicolas Tabareau. On timed automata with input-determined guards. In Proc.
Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal Techniques in
Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04), volume 3253 of Lecture Notes in
Computer Science, pages 68–83. Springer, 2004.

[Fin06] Olivier Finkel. Undecidable problems about timed automata. In Proc. 4th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS’06), volume 4202 of Lecture Notes in
Computer Science, pages 187–199. Springer, 2006.

[FJ15] John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is PSPACE-complete.
Information and Computation, 243:26–36, 2015.

[FL08] Uli Fahrenberg and Kim G. Larsen. Discount-optimal infinite runs in priced timed automata. In
Proc. 10th International Workshop on Verification of Infinite-State Systems (INFINITY’08), 2008. To
appear.

[FS01] Alain Finkel and Philippe Schnoebelen. Well structured transition systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001.

[HMU01] John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory, Languages
and Computation (2nd edition). Addison-Wesley, 2001.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model-checking for
real-time systems. Information and Computation, 111(2):193–244, 1994.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, 1979.

[Kam68] Johan A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, Los Angeles,
CA, USA, 1968.

[KCG94] Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with low-dimensional dynamical
systems. Theoretical Computer Science, 132(1–2):113–128, 1994.

[Kop96] Peter W. Kopke. The Theory of Rectangular Hybrid Automata. PhD thesis, Cornell University, Ithaca,
NY, USA, 1996.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

[LL98] François Laroussinie and Kim G. Larsen. CMC: A tool for compositional model-checking of real-time
systems. In Proc. IFIP Joint International Conference on Formal Description Techniques & Protocol
Specification, Testing, and Verification (FORTE-PSTV’98), pages 439–456. Kluwer Academic, 1998.

[LMS04] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Model checking timed automata with
one or two clocks. In Proc. 15th International Conference on Concurrency Theory (CONCUR’04),
volume 3170 of Lecture Notes in Computer Science, pages 387–401. Springer, 2004.

[LPWY99] Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock difference diagrams. Nordic
Journal of Computing, 6(3):271–298, 1999.

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past. In Logic of Programs,
volume 193 of Lecture Notes in Computer Science, pages 196–218. Springer, 1985.

[LW05] Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. In Proc. 8th International Con-
ference on Foundations of Software Science and Computation Structures (FoSSaCS’05), volume 3441
of Lecture Notes in Computer Science, pages 250–265. Springer, 2005.

[LW08] Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Transactions on Compu-
tational Logic, 9(2:10), 2008.

[MSS88] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential time. In Proc. 3rd
Annual Symposium on Logic in Computer Science (LICS’88), pages 422–427. IEEE Computer Society
Press, 1988.

[NP10] Dejan Nickovic and Nir Piterman. From MTL to deterministic timed automata. In Proc. 8th Interna-
tional Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’10), Lecture Notes
in Computer Science. Springer, 2010. To appear.
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