

On the Probabilistic and Statistical Verification of Infinite Markov Chains

Patricia Bouyer

LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Joint work with Benoît Barbot (LACL) and Serge Haddad (LMF)

General purpose

Design algorithms to estimate probabilities in some **infinite-state** Markov chains, **with guarantees**

General purpose

Design algorithms to estimate probabilities in some **infinite-state**Markov chains, **with guarantees**

Our contributions

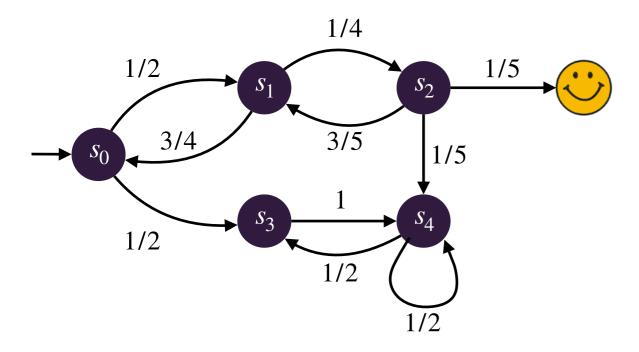
- Review two existing approaches (approximation algorithm and estimation algorithm) and specify the required hypothesis for correctness
- Propose an approach based on importance sampling and abstraction to partly relax the hypothesis
- Analyze empirically the approaches

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

Discrete-time Markov chain (DTMC)

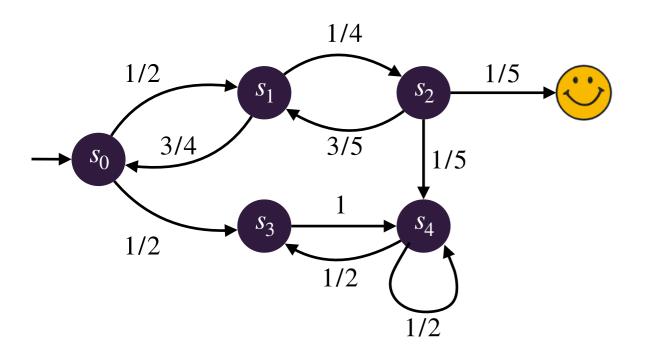
 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

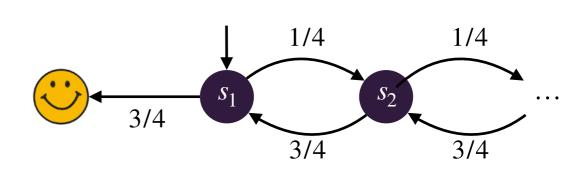


Finite Markov chain

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$





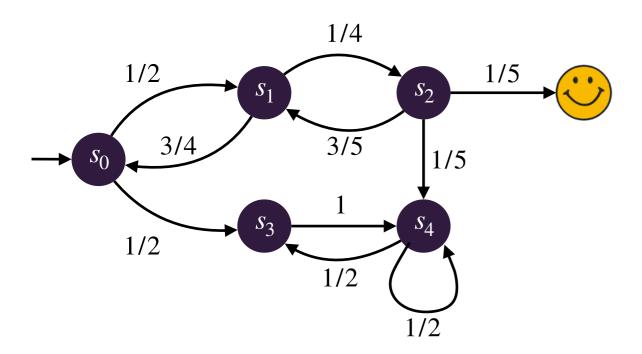
Finite Markov chain

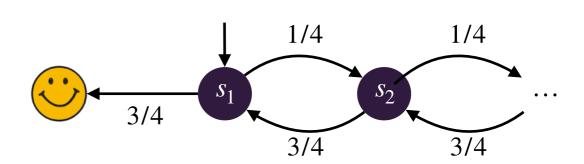
Countable Markov chain (random walk of parameter 1/4)

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

+ effectivity conditions..

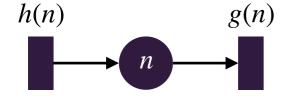


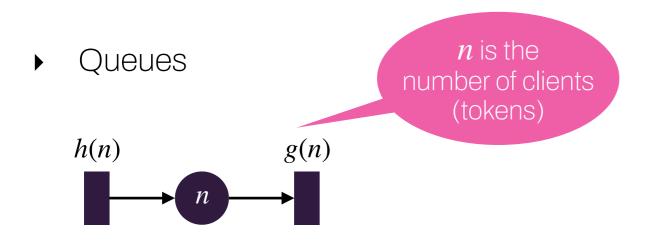


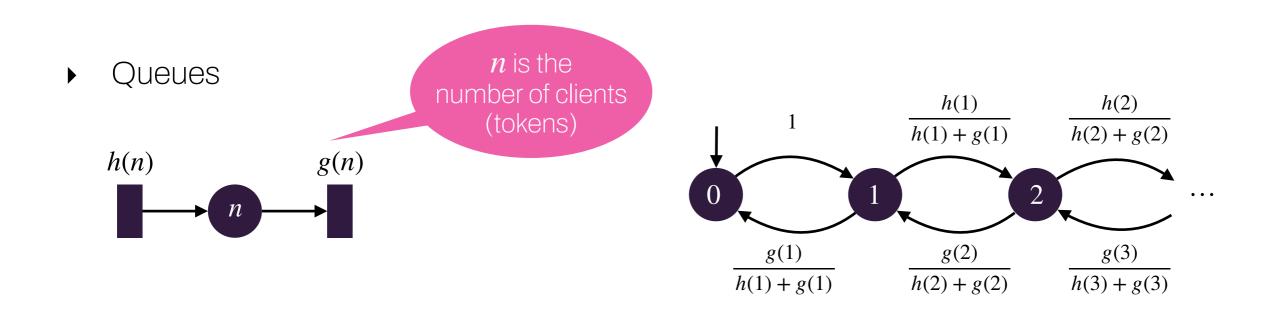
Finite Markov chain

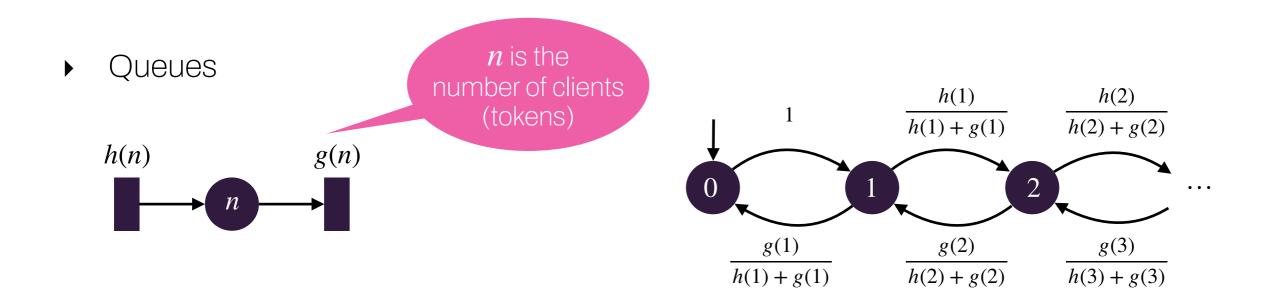
Countable Markov chain (random walk of parameter 1/4)

Queues



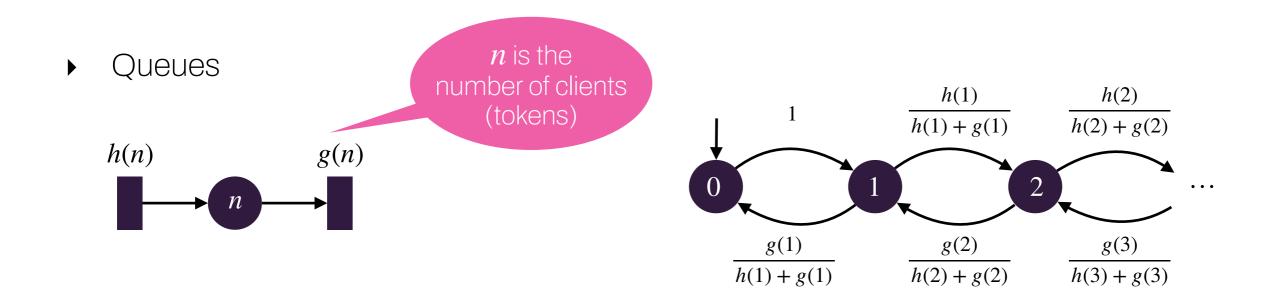






Probabilistic pushdown automata

$$A \xrightarrow{1} C \qquad A \xrightarrow{n} BB \qquad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \qquad C \xrightarrow{1} C$$

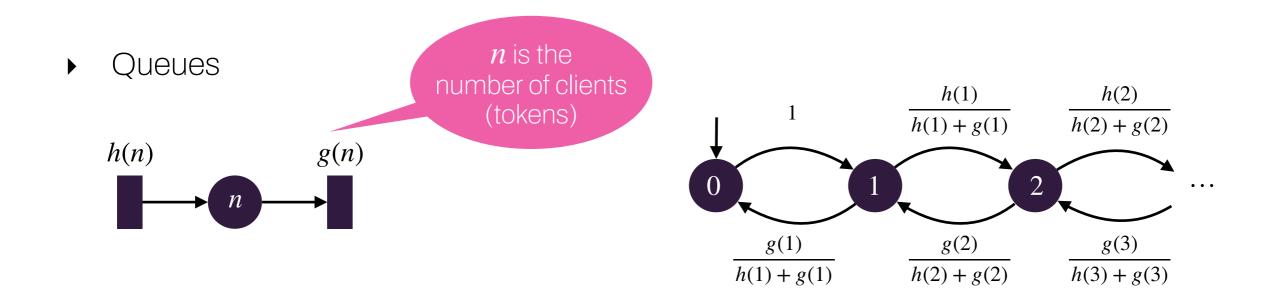


Probabilistic pushdown automata

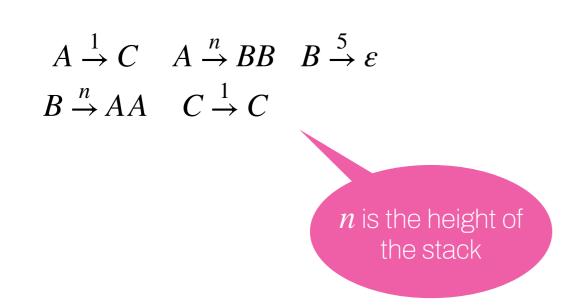
$$A \xrightarrow{1} C$$
 $A \xrightarrow{n} BB$ $B \xrightarrow{5} \varepsilon$

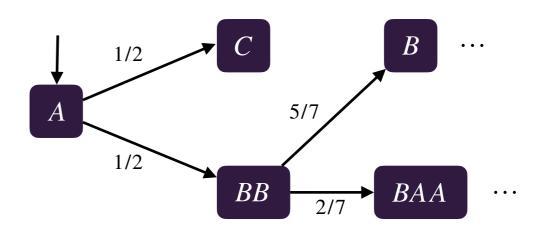
$$B \xrightarrow{n} AA$$
 $C \xrightarrow{1} C$

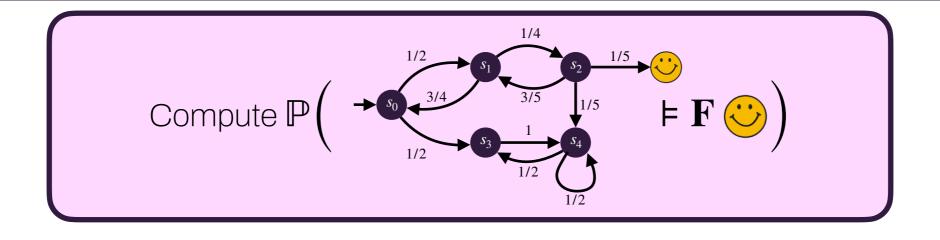
$$n \text{ is the height of the stack}$$

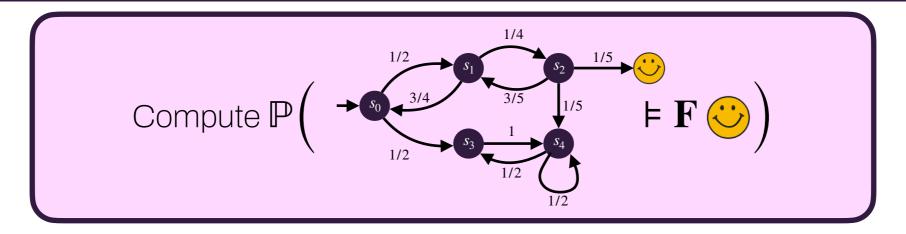


Probabilistic pushdown automata







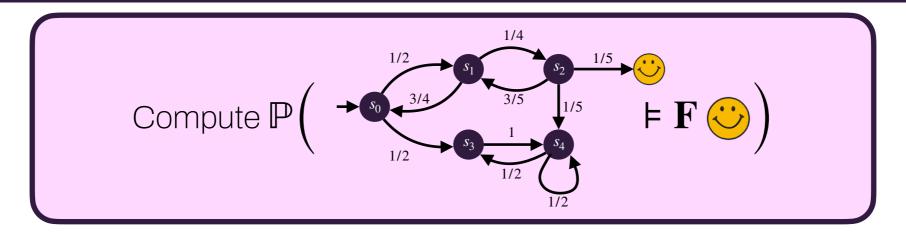


Closed-form solution

Random walk of parameter p > 1/2:

$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

Does not always exist



Closed-form solution

Random walk of parameter p > 1/2:

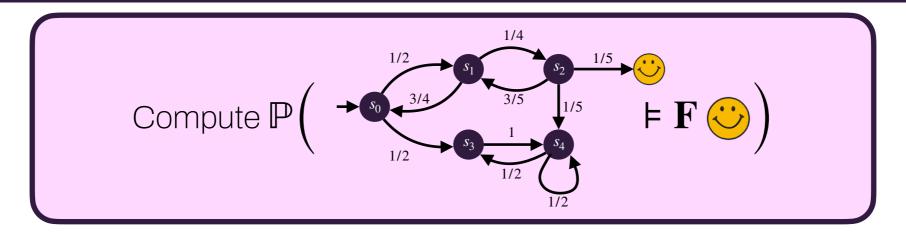
$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

Does not always exist

Apply a numerical method [RKPN04]

$$x_s = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

- $\mathbb{P}_{s_0}(\mathbf{F} \odot) = 1/19$
- System must be finite
- Prone to numerical error



Closed-form solution

Random walk of parameter p > 1/2:

$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

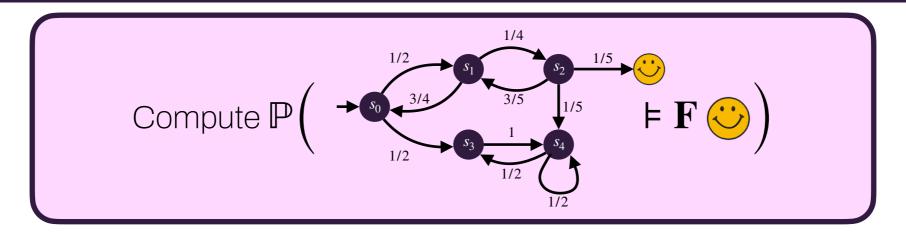
Does not always exist

Apply a numerical method [RKPN04]

$$x_s = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

- $\mathbb{P}_{s_0}(\mathbf{F} \odot) = 1/19$
- System must be finite
- Prone to numerical error

No general method exists for infinite Markov chains



Closed-form solution

Random walk of parameter p > 1/2:

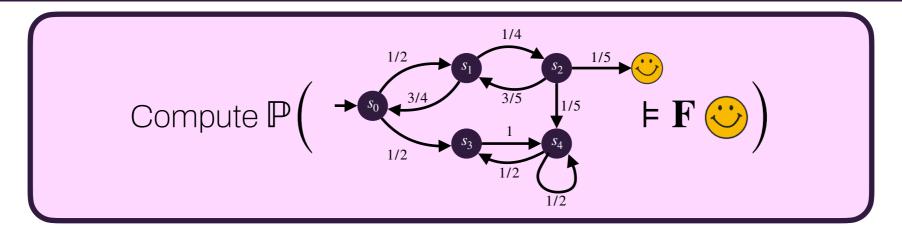
$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

Does not always exist

Apply a numerical method [RKPN04]

$$x_s = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

- $\mathbb{P}_{s_0}(\mathbf{F} \odot) = 1/19$
- System must be finite
- Prone to numerical error
- No general method exists for infinite Markov chains
- Ad-hoc methods in specific classes



Closed-form solution

• Random walk of parameter p > 1/2:

$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

Does not always exist

Apply a numerical method [RKPN04]

$$x_s = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

- $\mathbb{P}_{s_0}(\mathbf{F} \odot) = 1/19$
- System must be finite
- Prone to numerical error
- No general method exists for infinite Markov chains
- Ad-hoc methods in specific classes
- Specific approaches for decisive Markov chains

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

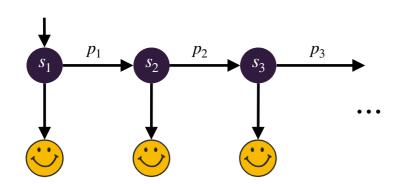
Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:



$$\mathbf{P}(\mathbf{G} \neg \mathbf{O}) = \prod_{i \geq 1} p_i$$

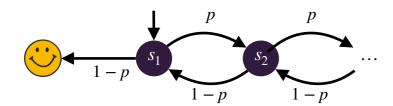
ullet Decisive iff this product equals 0

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:



- Recurrent random walk ($p \le 1/2$): decisive
- Transient random walk (p > 1/2): not decisive

Deciding decisiveness?

Classes where decisiveness can be decided

- ▶ Probabilistic pushdown automata with constant weights [ABM07]
- Random walks with polynomial weights [FHY23]
- ▶ So-called probabilistic homogeneous one-counter machines with polynomial weights (this extends the model of quasi-birth death processes) [FHY23]

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$ \smile $}}{ ext{$ \smile $}}$
- $\Rightarrow = \{ s \in S \mid s \not\models \exists \mathbf{F} \circlearrowleft \}$

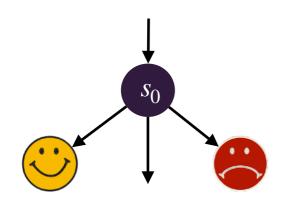
- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$ \smile $}}{ ext{$ \smile $}}$

Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{m \cup}$

$$\Rightarrow = \{ s \in S \mid s \not\models \exists \mathbf{F} \circlearrowleft \}$$

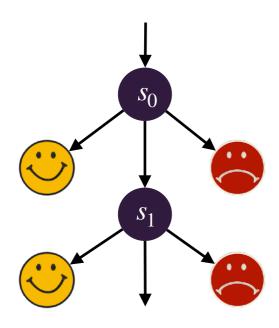


Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\text{yes}} \le \mathbb{P}(\mathbf{F}^{\circlearrowright}) \le 1 - p_1^{\text{no}}$$

ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{\circlearrowleft}$



Approximation scheme

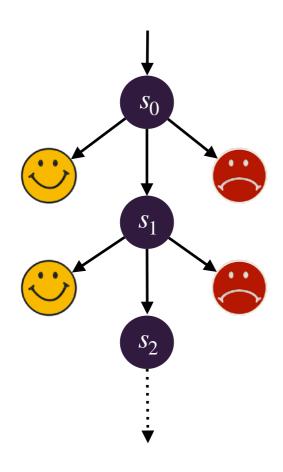
$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{o}}) \leq 1 - p_1^{\mathrm{no}}$$

$$| \wedge \qquad \qquad \forall |$$

$$p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{o}}) \leq 1 - p_2^{\mathrm{no}}$$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$arphi}}{ ext{$arphi}}$



Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\text{o}}) \leq 1 - p_1^{\text{no}}$$

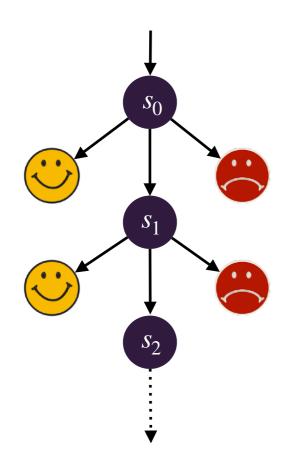
In vi

 $p_2^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\text{o}}) \leq 1 - p_2^{\text{no}}$

In vi

In vi

ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{\circlearrowleft}$



Approximation scheme

Given $\varepsilon > 0$, for every n, compute:

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

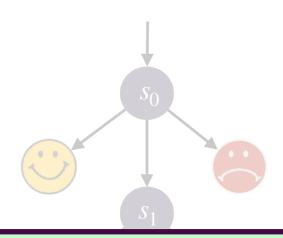
$$p_1^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\circ}) \leq 1 - p_1^{\text{no}}$$
 $\downarrow \wedge \qquad \qquad \vee \downarrow \wedge$
 $p_2^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\circ}) \leq 1 - p_2^{\text{no}}$
 $\downarrow \wedge \qquad \qquad \vdots \qquad \qquad \vee \downarrow \wedge$

At the limit: $\mathbb{P}(\mathbf{F} \bigcirc)$

 $1 - \mathbb{P}(\mathbf{F} \bigcirc)$

Aim: compute probability of ${f F}$

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$



The approximation scheme converges

 \mathscr{C} is decisive from s_0 w.r.t. \bigcirc

Approximation scheme

Given $\varepsilon > 0$, for every n, compute:

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

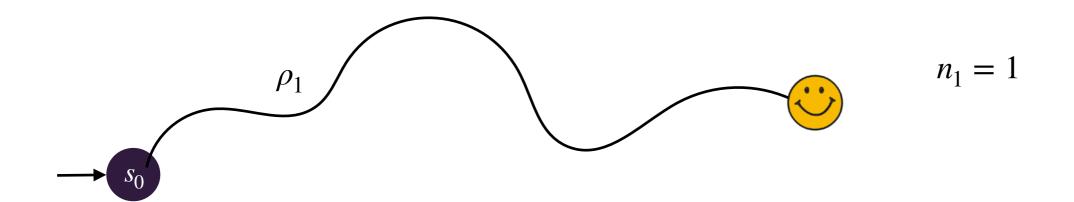
$$p_1^{\text{yes}} \le \mathbb{P}(\mathbf{F}^{\circlearrowright}) \le 1 - p_1^{\text{no}}$$

$$p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}_{\bullet}) \leq 1 - p_2^{\mathrm{no}}$$

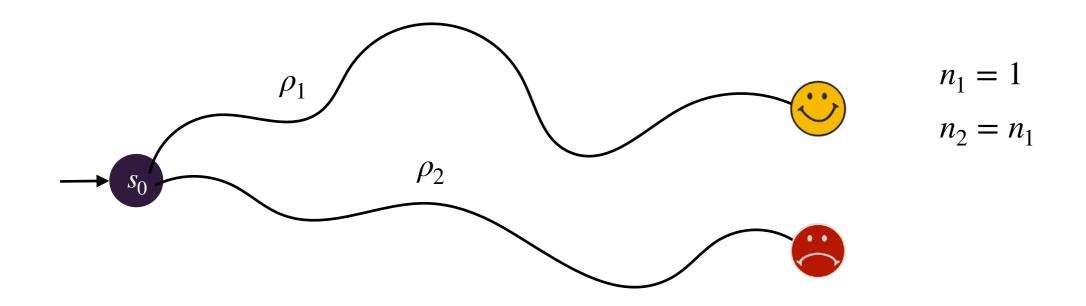
 $\mathbb{P}(\mathbf{F} \overset{\smile}{\smile})$ At the limit:

 $1 - \mathbb{P}(\mathbf{F} \overset{\boldsymbol{\leftarrow}}{\rightleftharpoons})$

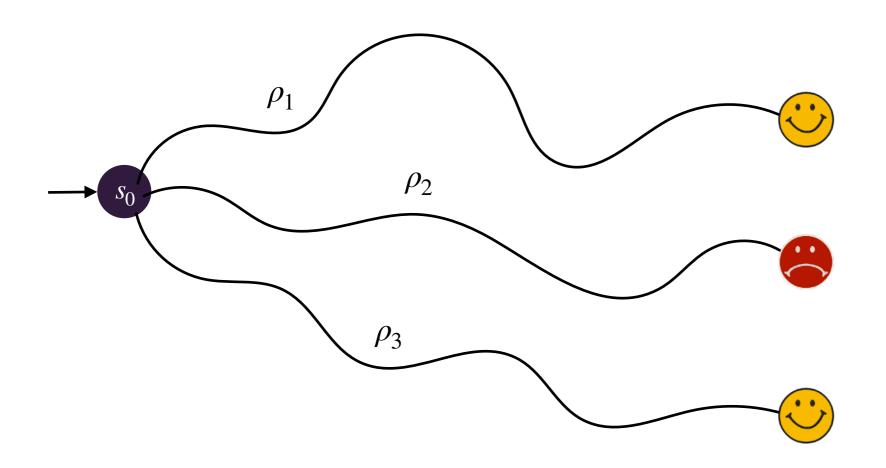
Sample N paths



Sample N paths



Sample N paths

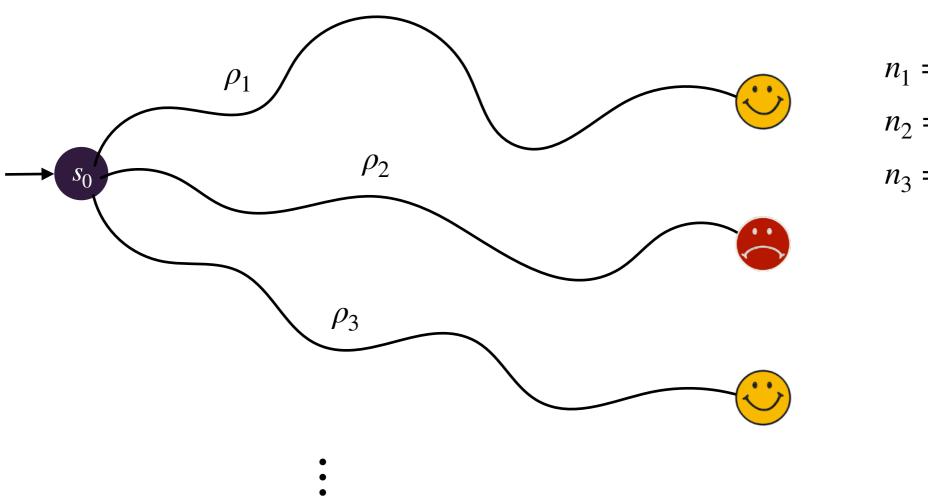


$$n_1 = 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

Sample N paths



$$n_1 = 1$$

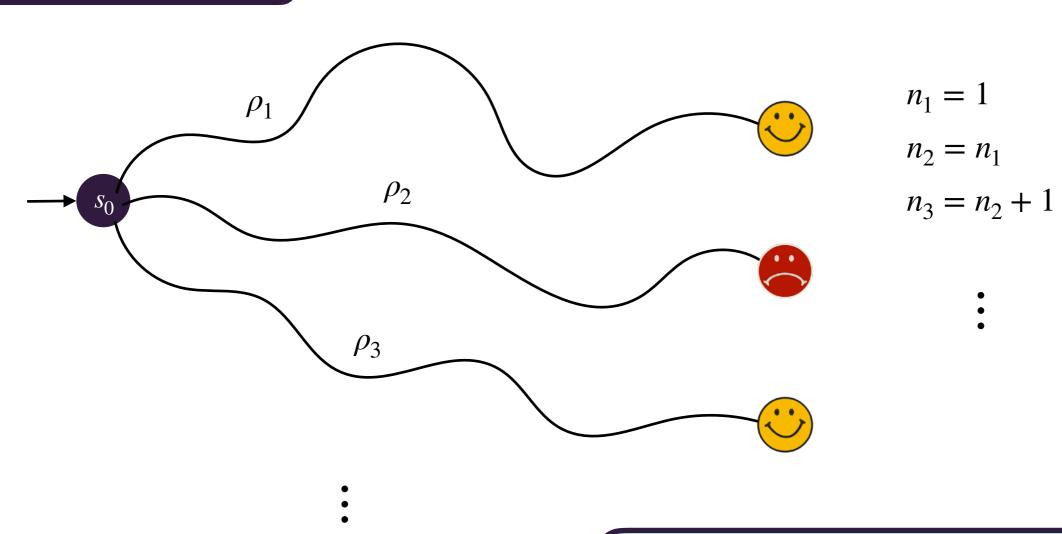
$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

•

Statistical model-checking

Sample N paths



Return $\frac{n_N}{N}$ + some confidence interval (in the best case)

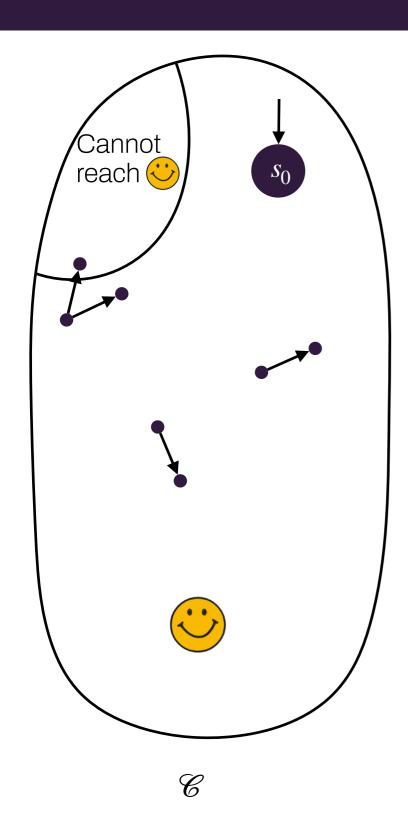
Termination

(To our knowledge, never expressed like this)

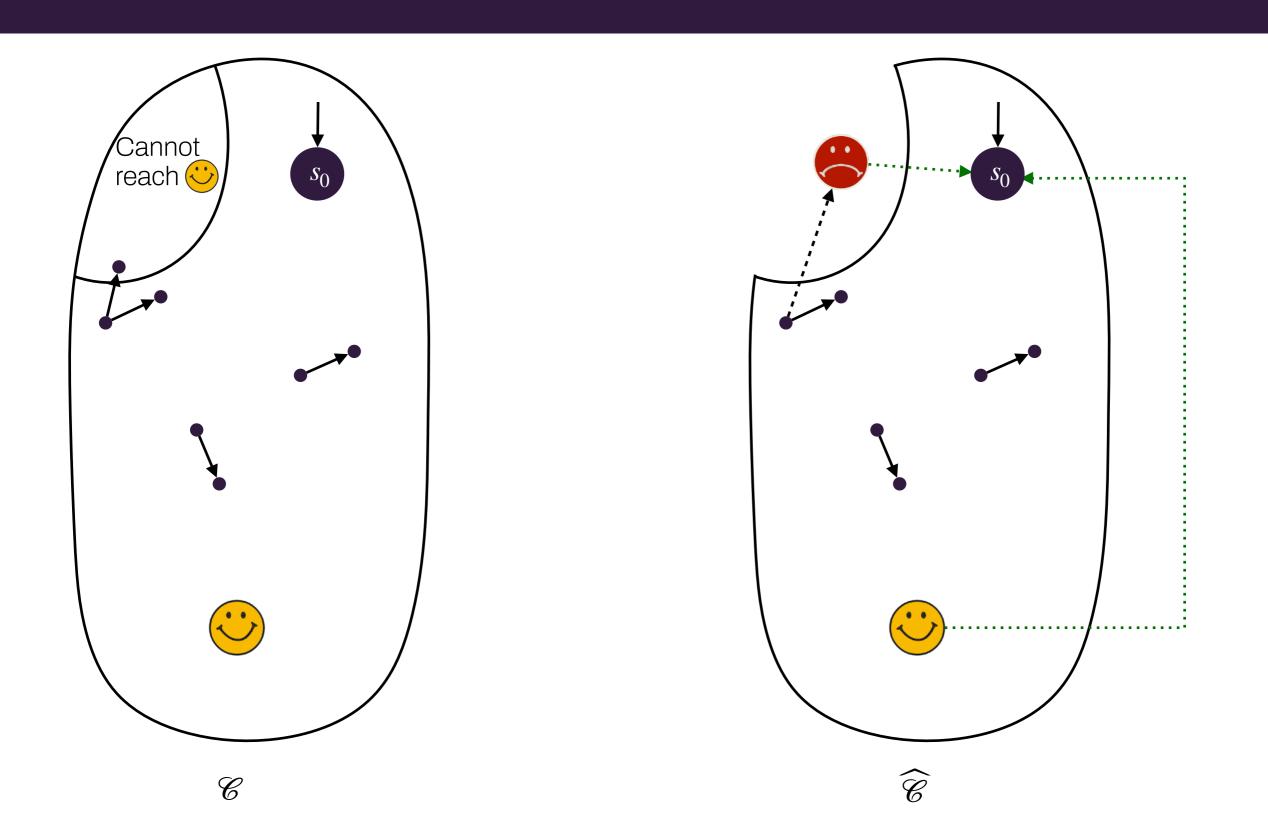
A sampled path starting at s_0 almost-surely hits $\stackrel{\smile}{\bigcirc}$ or $\stackrel{\smile}{\rightleftharpoons}$

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\diamondsuit}$

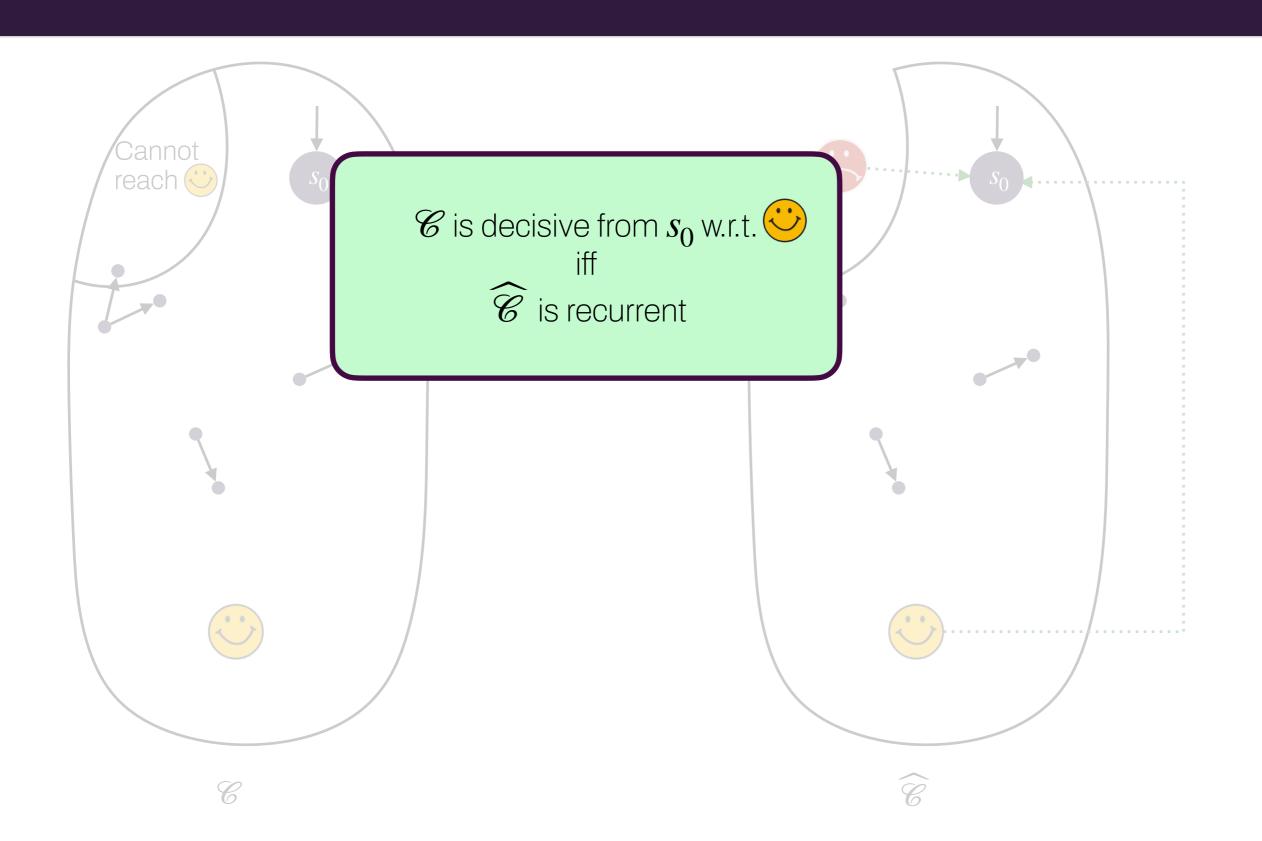
Decisiveness vs recurrence



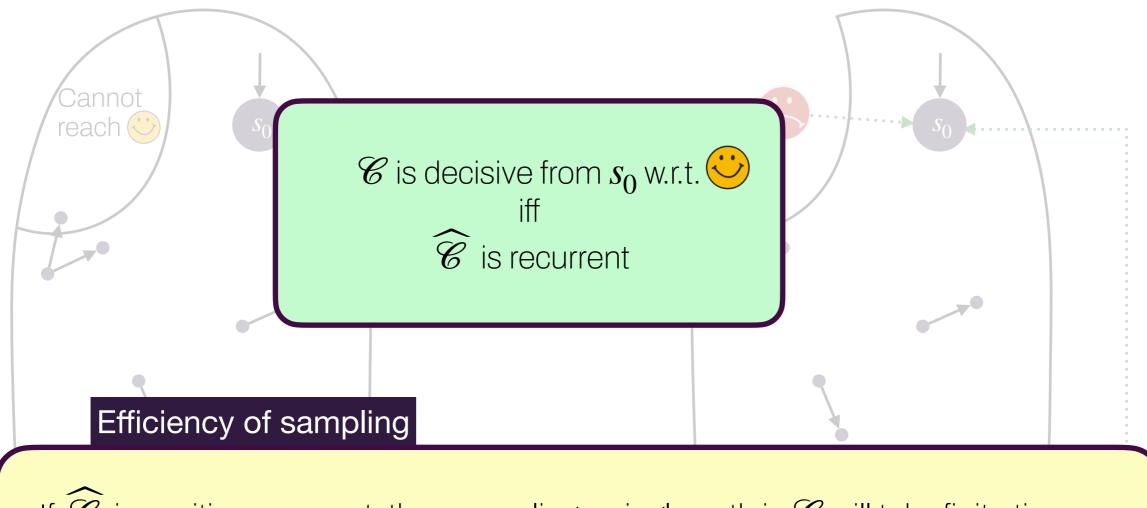
Decisiveness vs recurrence



Decisiveness vs recurrence

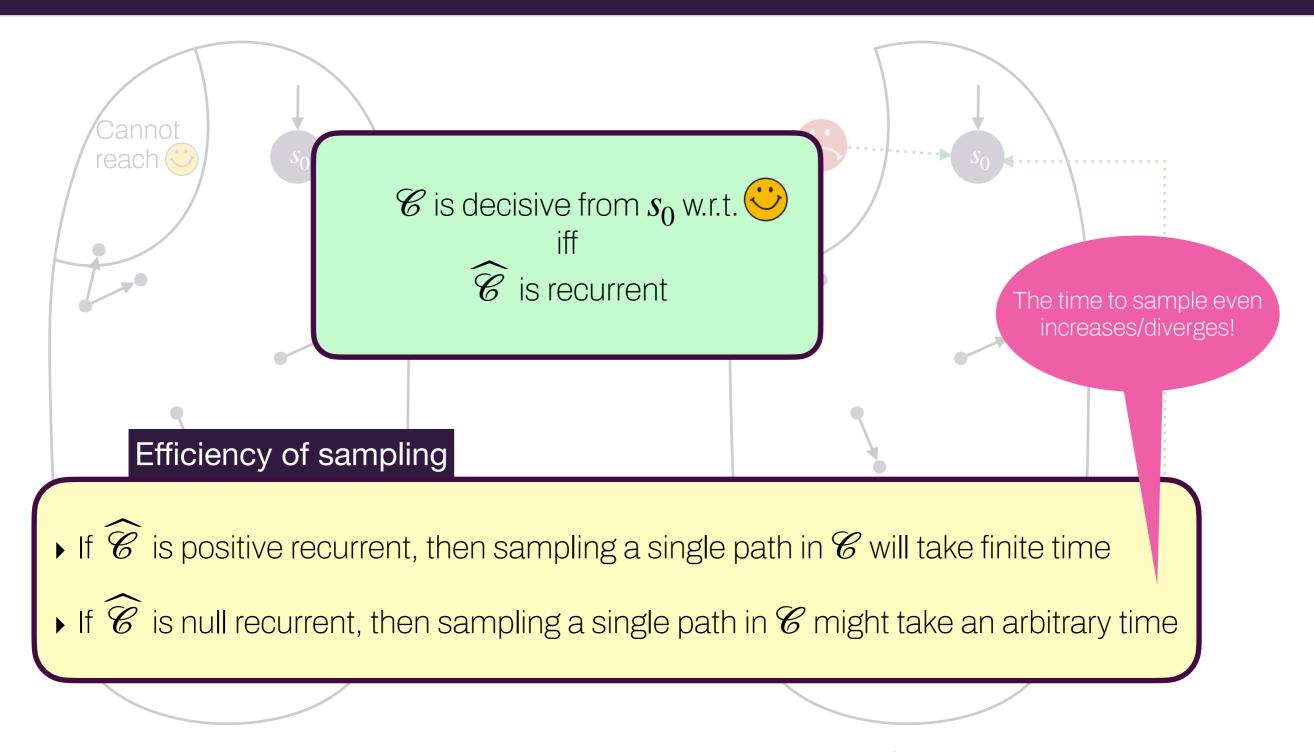


<u>Decisiveness vs recurrence</u>



- lacktriangledown If \mathscr{C} is positive recurrent, then sampling a single path in \mathscr{C} will take finite time
- lacktriangledown If $\widehat{\mathscr{C}}$ is null recurrent, then sampling a single path in \mathscr{C} might take an arbitrary time

<u>Decisiveness vs recurrence</u>



Termination

(To our knowledge, never expressed like this)

A sampled path starting at s_0 almost-surely hits $\stackrel{\smile}{\bigcirc}$ or $\stackrel{\smile}{\rightleftharpoons}$ iff

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\diamondsuit}$

+ efficiency if finite return time (« $\widehat{\mathscr{C}}$ is positive recurrent »)

Termination

(To our knowledge, never expressed like this)

A sampled path starting at s_0 almost-surely hits $\stackrel{ ext{.}}{\bigcirc}$ or $\stackrel{ ext{.}}{\rightleftharpoons}$

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\diamondsuit}$

+ efficiency if finite return time (" $\widehat{\mathscr{C}}$ is positive recurrent ")

Guarantees: Hoeffding's inequalities

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Termination

(To our knowledge, never expressed like this)

A sampled path starting at s_0 almost-surely hits $\stackrel{ ext{.}}{\bigcirc}$ or $\stackrel{ ext{.}}{\rightleftharpoons}$

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\diamondsuit}$

+ efficiency if finite return time (" $\widehat{\mathscr{C}}$ is positive recurrent ")

Guarantees: Hoeffding's inequalities

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Termination

(To our knowledge, never expressed like this)

A sampled path starting at s_0 almost-surely hits $\stackrel{\smile}{\bigcirc}$ or $\stackrel{\smile}{\bigcirc}$

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\diamondsuit}$

+ efficiency if finite return time (« $\widehat{\mathscr{C}}$ is positive recurrent »)

Guarantees: Hoeffding's inequalities

Empirical average

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Precision

Termination

(To our knowledge, never expressed like this)

A sampled path starting at s_0 almost-surely hits $\stackrel{ ext{$\circ$}}{ ext{$\circ$}}$ or $\stackrel{ ext{$\circ$}}{ ext{$\circ$}}$

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\diamondsuit}$

+ efficiency if finite return time (« $\widehat{\mathscr{C}}$ is positive recurrent »)

Guarantees: Hoeffding's inequalities

Empirical average

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Confidence level

Precision

Termination

(To our knowledge, never expressed like this)

A sampled path starting at s_0 almost-surely hits $\stackrel{\smile}{\bigcirc}$ or $\stackrel{\smile}{\bigcirc}$

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\diamondsuit}$

+ efficiency if finite return time (" $\widehat{\mathscr{C}}$ is positive recurrent ")

Guarantees: Hoeffding's inequalities

Empirical average

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Confidence level

Precision

$$\left[\frac{n_N}{N} - \frac{\varepsilon}{2}; \frac{n_N}{N} + \frac{\varepsilon}{2}\right]$$
: confidence interval

Termination

(To our knowledge, never expressed like this)

A sampled path starting at s_0 almost-surely hits $\stackrel{\smile}{\bigcirc}$ or $\stackrel{\smile}{\bigcirc}$

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\diamondsuit}$

+ efficiency if finite return time (« \mathscr{C} is positive recurrent »)

Guarantees: Hoeffding's inequalities

Let $\varepsilon, \delta > 0$ s.t. $N \ge \frac{8B^2}{\varepsilon^2} \log\left(\frac{2}{\delta}\right)$. Then:

B bound on the function

Empirical estimation

$$\mathbb{P}\left(\left|\frac{f_N}{N} - \mathbb{E}(f_{L, \odot})\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

$$\left| \frac{f_N}{N} - \frac{\varepsilon}{2}; \frac{f_N}{N} + \frac{\varepsilon}{2} \right|$$
 : confidence interval

Value given by L for paths that stop at \odot

What can we do for non-decisive Markov chains??

Rare events problem

• Issue: rare events in $\mathscr C$

Rare-Event Problem for Statistical Model Checking

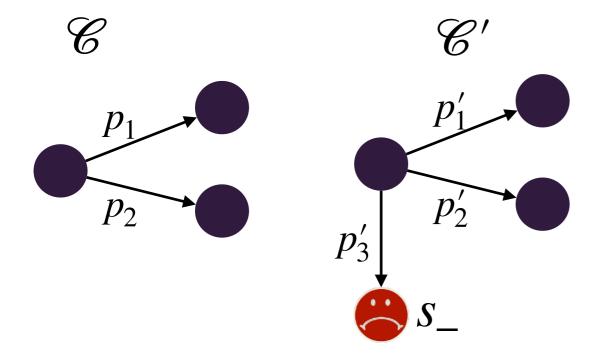
Problem Statement

- We want to estimate the probability of a rare event e occurring with probability close to 10^{-15} .
- We want a confidence level of 0.99.
- We are able to compute 10⁹ trajectories.

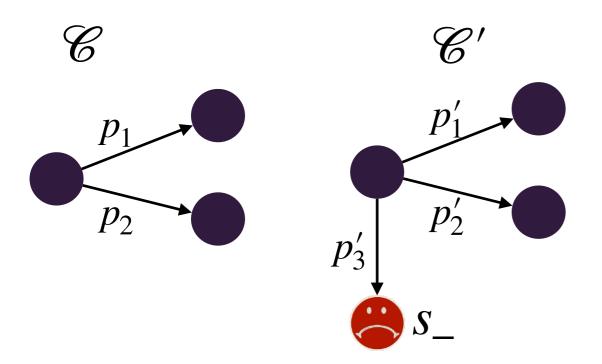
Possible Outcomes

Number of occurrences of e Probability Confidence interval $0 \approx 1 - 10^{-6} \qquad [0,7.03 \cdot 10^{-9}]$ $1 \qquad \leq 10^{-6} \qquad [6.83 \cdot 10^{-10}, 1.69 \cdot 10^{-9}]$ $n > 1 \qquad \leq 10^{-12} \qquad > 6.83 \cdot 10^{-10}$

Analyze a biased Markov chain \mathscr{C}'



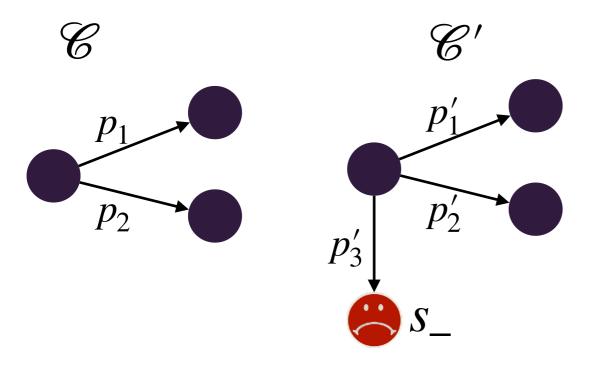
Analyze a biased Markov chain \mathscr{C}'



Correct the bias

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \circlearrowleft \\ 0 & \text{otherwise} \end{cases}$$

Analyze a biased Markov chain \mathscr{C}'

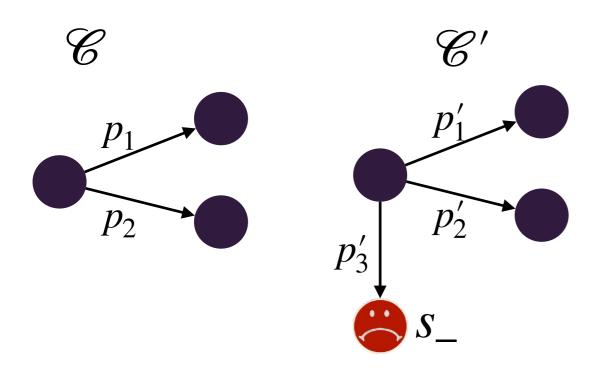


Correct the bias

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \circlearrowleft \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\boldsymbol{\smile}}{\boldsymbol{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

Analyze a biased Markov chain \mathscr{C}'



Correct the bias

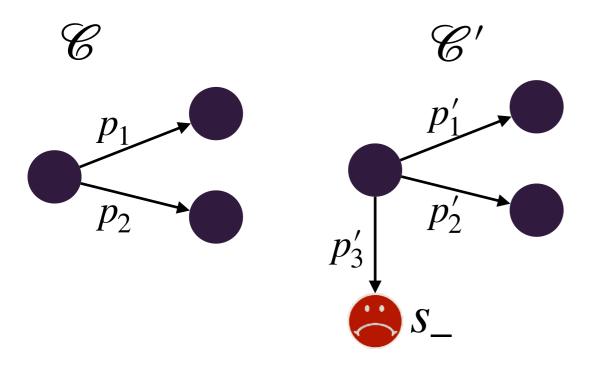
$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \circlearrowleft \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\boldsymbol{\smile}}{\boldsymbol{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

Originally used for rare events

It is sufficient to compute $\mathbb{E}_{\mathscr{C}'}(\gamma)$

Analyze a biased Markov chain \mathscr{C}'



Correct the bias

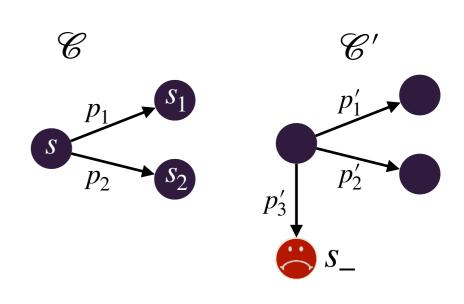
$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \circlearrowleft \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\smile}{\smile}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

It is sufficient to compute $\mathbb{E}_{\mathscr{C}'}(\gamma)$

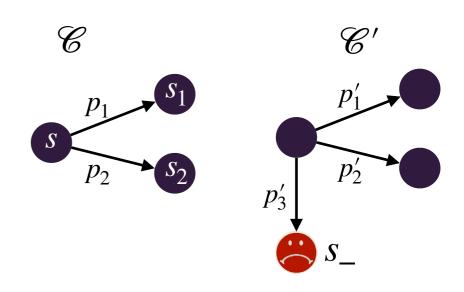
- Originally used for rare events
- Setting giving statistical guarantees [BHP12,Bar14]

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ \bigcirc) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$



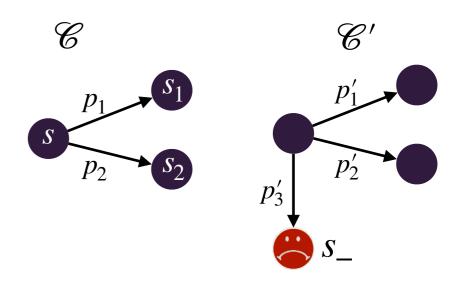
$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ {\overset{\smile}{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

lacktriangle The analysis of $\operatorname{\mathscr{C}}$ can be transferred to that of $\operatorname{\mathscr{C}}'$, provided some conditions on $\operatorname{\mathscr{C}}'$



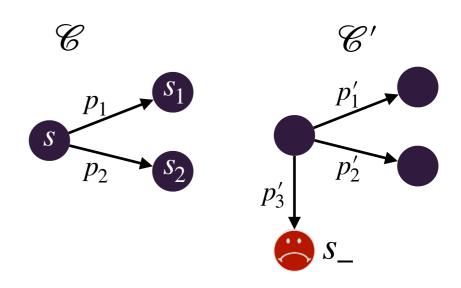
$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ {\overset{\smile}{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

- lacktriangle The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - Decisiveness of \mathscr{C}' is required for both approx. and estim. methods



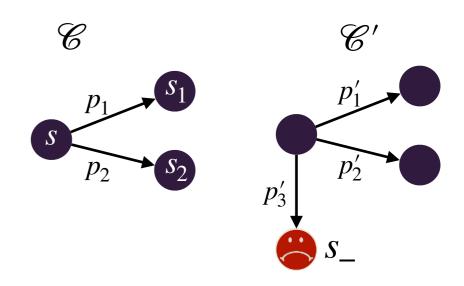
$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ {\overset{\smile}{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

- lacktriangle The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - Decisiveness of \mathscr{C}' is required for both approx. and estim. methods
 - Boundedness of γ is required as well



Define
$$\mu(s)$$
 as $\mathbb{P}^s_{\mathscr{C}}(\mathbf{F} \circlearrowleft) = \mathbb{E}_{\mathscr{C}'}(\gamma)$

- lacktriangle The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - Decisiveness of \mathscr{C}' is required for both approx. and estim. methods
 - Boundedness of γ is required as well



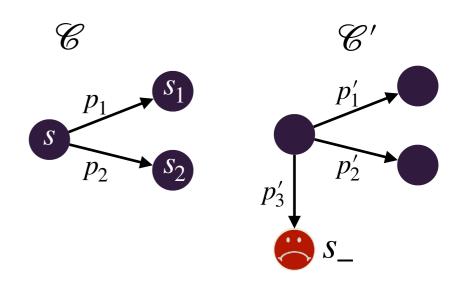
Define
$$\mu(s)$$
 as $\mathbb{P}^s_\mathscr{C}(\mathbf{F} \centum{$\overset{\circ}{\cup}$})$

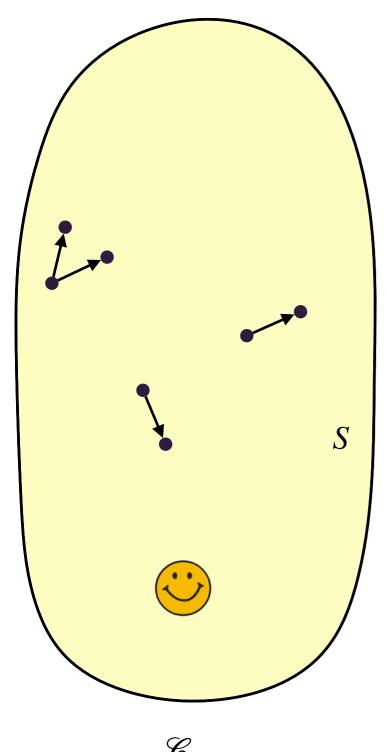
$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ \bigcirc) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

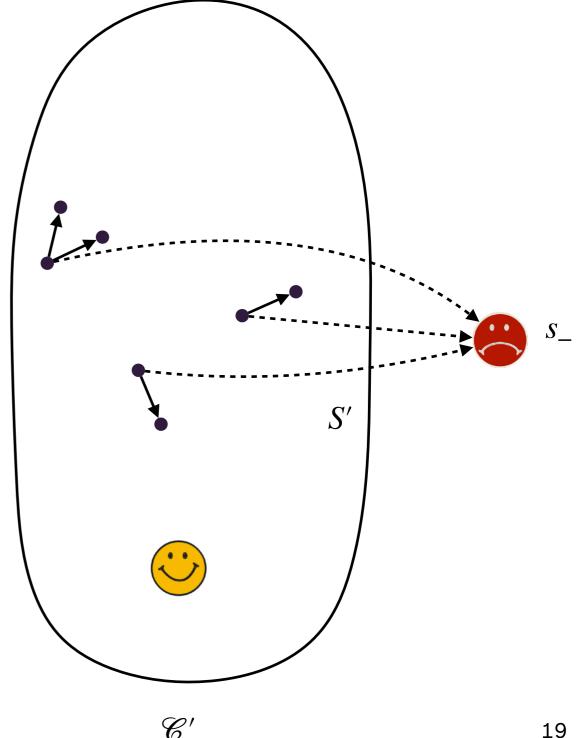
- lacktriangle The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - Decisiveness of \mathscr{C}' is required for both approx. and estim. methods
 - Boundedness of γ is required as well

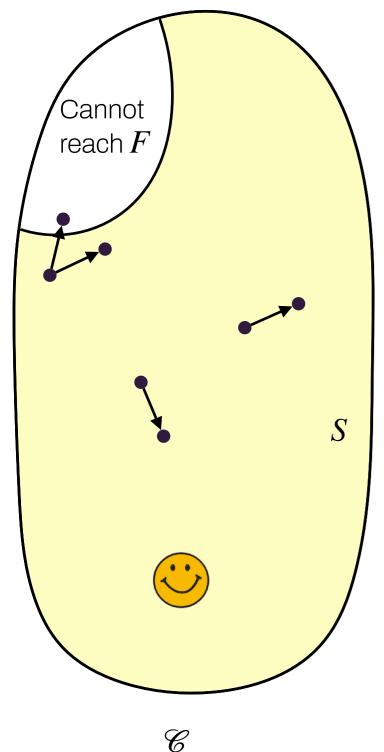
There is a best choice:
$$p_i' = \frac{\mu(s_i)}{\mu(s)} \cdot p_i$$

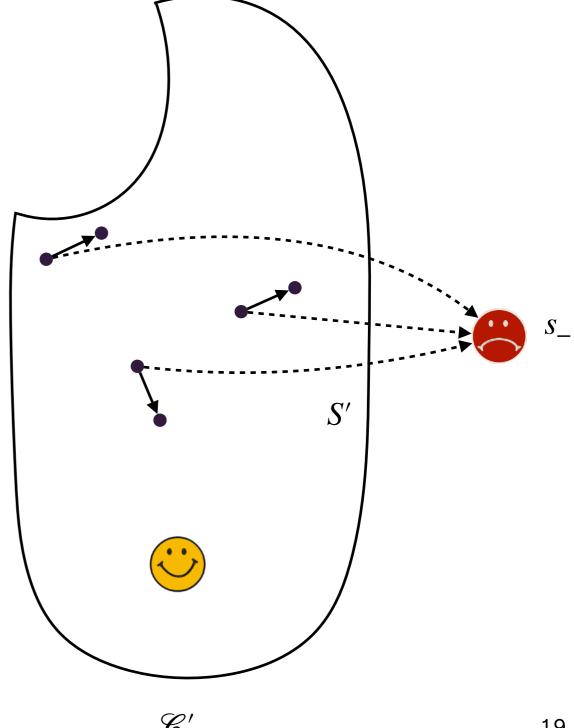
- The r.v. in \mathscr{C}' takes value $\mu(s)$
- One needs to know μ !



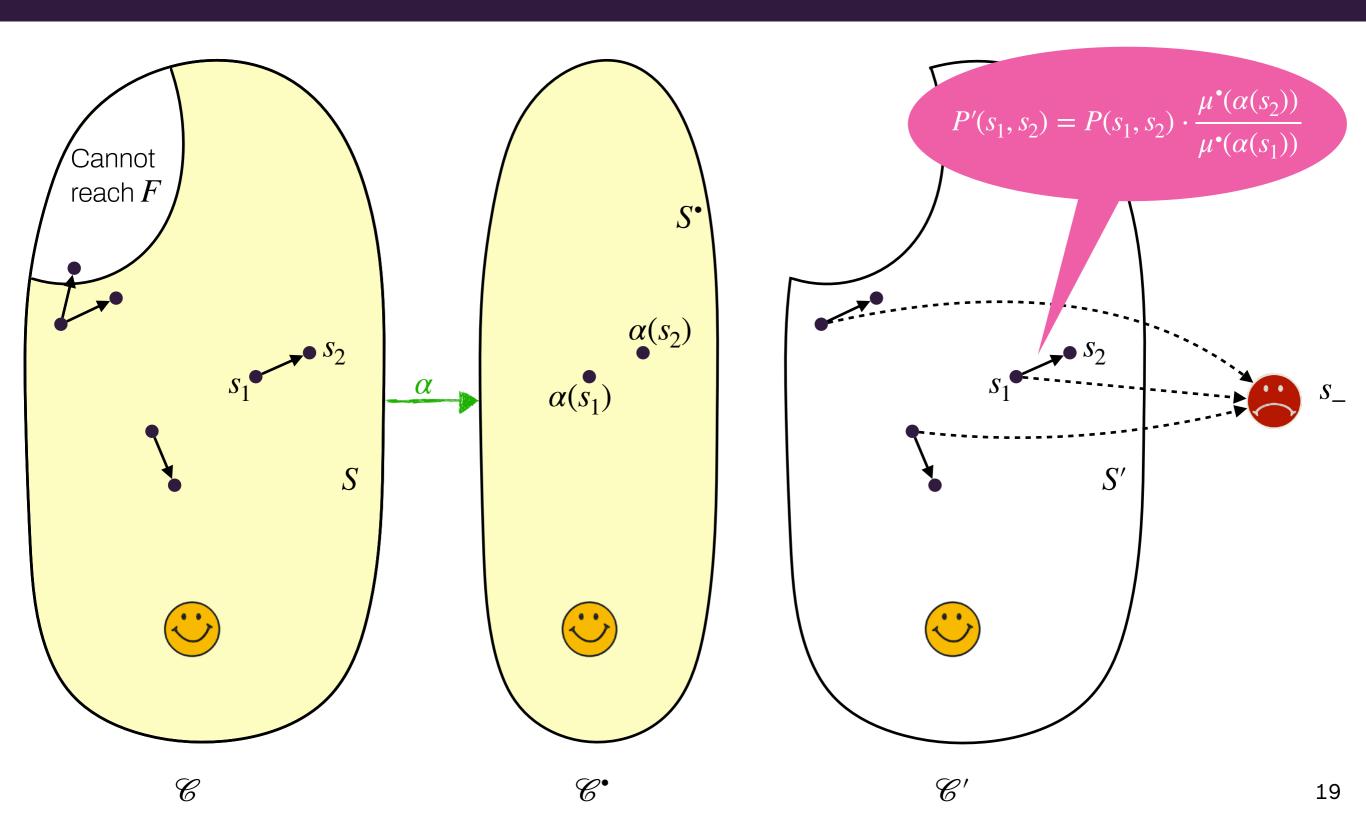


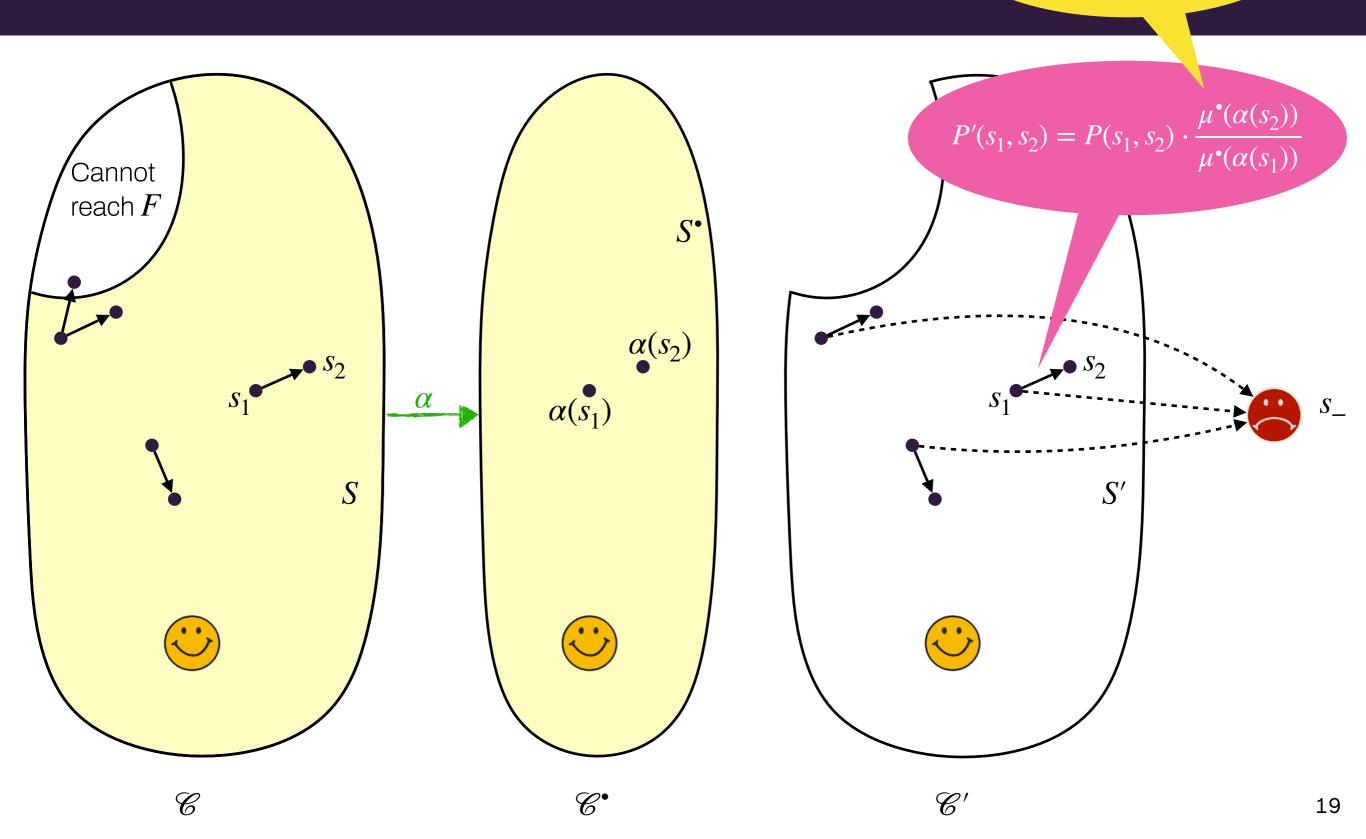


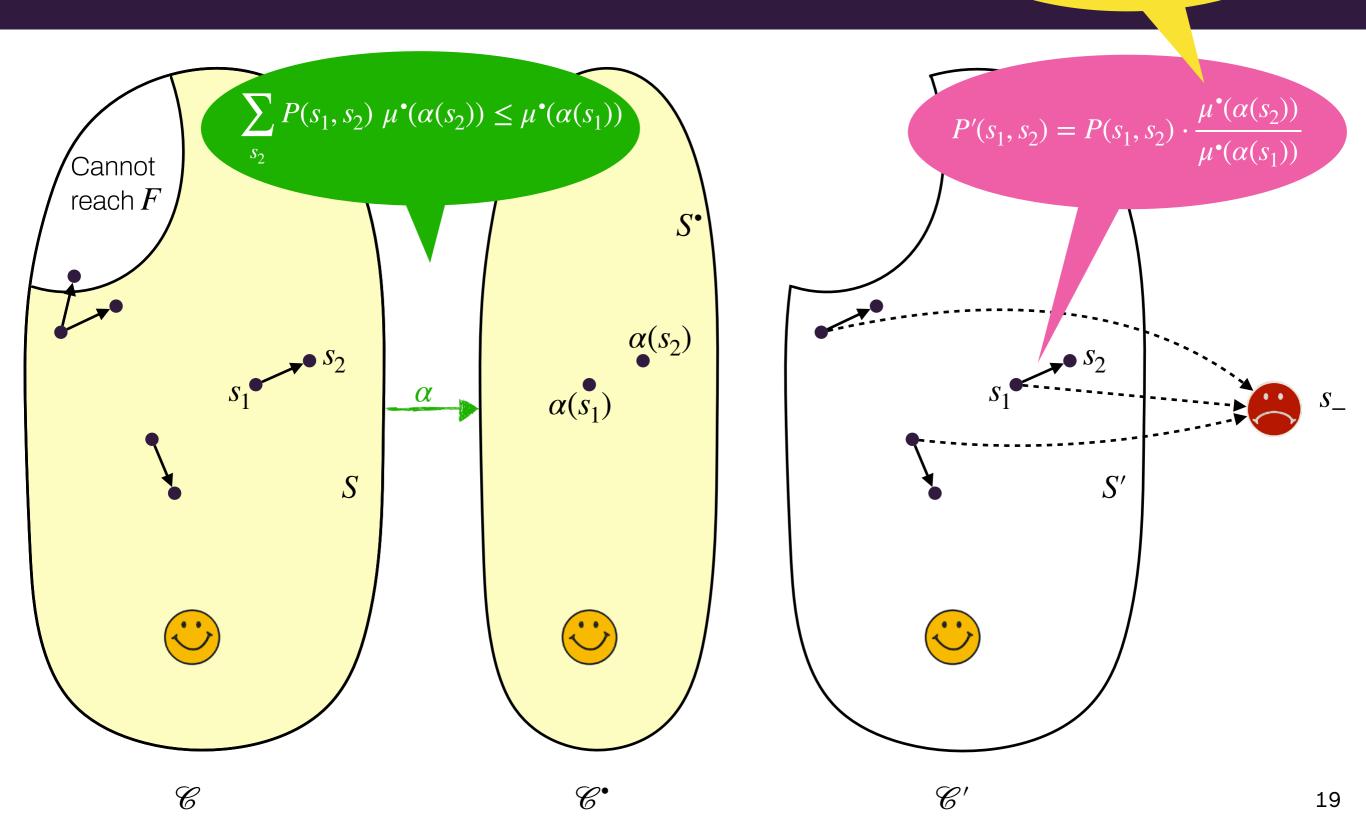








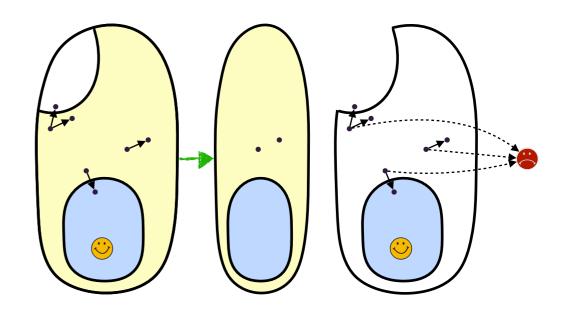




Importance sampling via an abstraction

 μ^{ullet} is the probability to reach F^{ullet} in \mathscr{C}^{ullet}

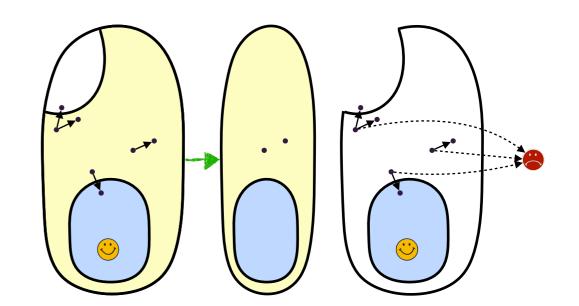




Property of the bias

$$\gamma(\rho) = \begin{cases} \mu^{\bullet}(\alpha(s_0)) & \text{if } \rho \text{ ends in } \Theta \\ 0 & \text{otherwise} \end{cases}$$

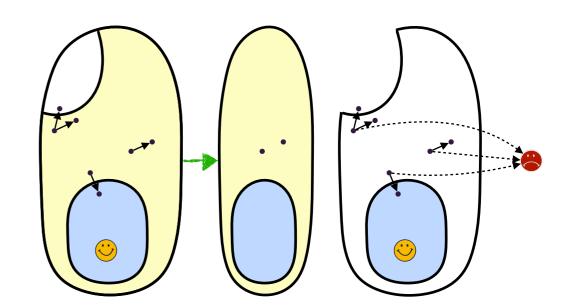
It is bivaluated, hence bounded



Property of the bias

$$\gamma(\rho) = \begin{cases} \mu^{\bullet}(\alpha(s_0)) & \text{if } \rho \text{ ends in } \Theta \\ 0 & \text{otherwise} \end{cases}$$

It is bivaluated, hence bounded



Theorem

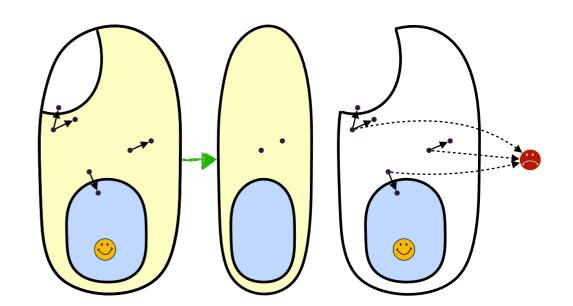
If F is finite and for every $0 \le x < 1$, $\{s \in S \mid \mu^{\bullet}(\alpha(s)) \ge x\}$ is finite, then \mathscr{C}' is decisive w.r.t. \circlearrowleft .

Proof using attractors, martingale theory

Property of the bias

$$\gamma(\rho) = \begin{cases} \mu^{\bullet}(\alpha(s_0)) & \text{if } \rho \text{ ends in } \Theta \\ 0 & \text{otherwise} \end{cases}$$

It is bivaluated, hence bounded



Theorem

If F is finite and for every $0 \le x < 1$, $\{s \in S \mid \mu^{\bullet}(\alpha(s)) \ge x\}$ is finite, then \mathscr{C}' is decisive w.r.t. \circlearrowleft .

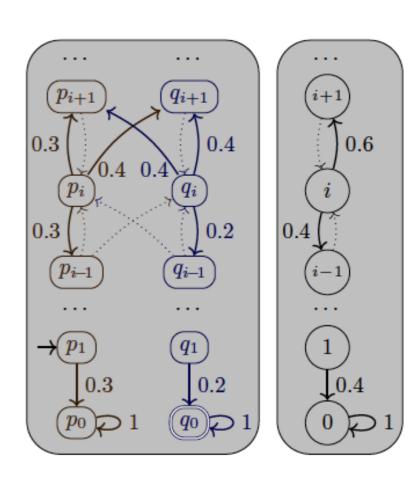
Proof using attractors, martingale theory

lacksquare The analysis can be performed on \mathscr{C}' !

- ▶ $\underline{\mathsf{Model}} = \mathsf{layered} \; \mathsf{Markov} \; \mathsf{chain} \; (\mathsf{LMC}) \; \mathscr{C} : \mathsf{there} \; \mathsf{is} \; \mathsf{a} \; \mathsf{level} \; \mathsf{function} \; \lambda : S \to \mathbb{N} \; \mathsf{s.t.}$
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite

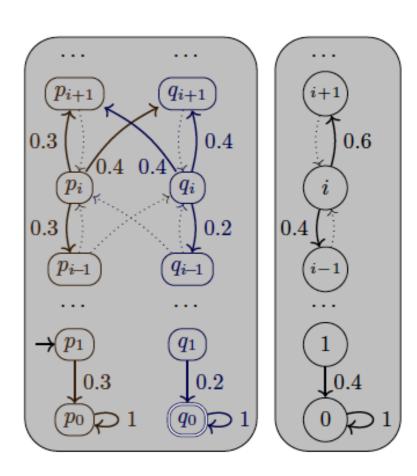
- ▶ Model = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda: S \to \mathbb{N}$ s.t.
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter $p > \frac{1}{2}$

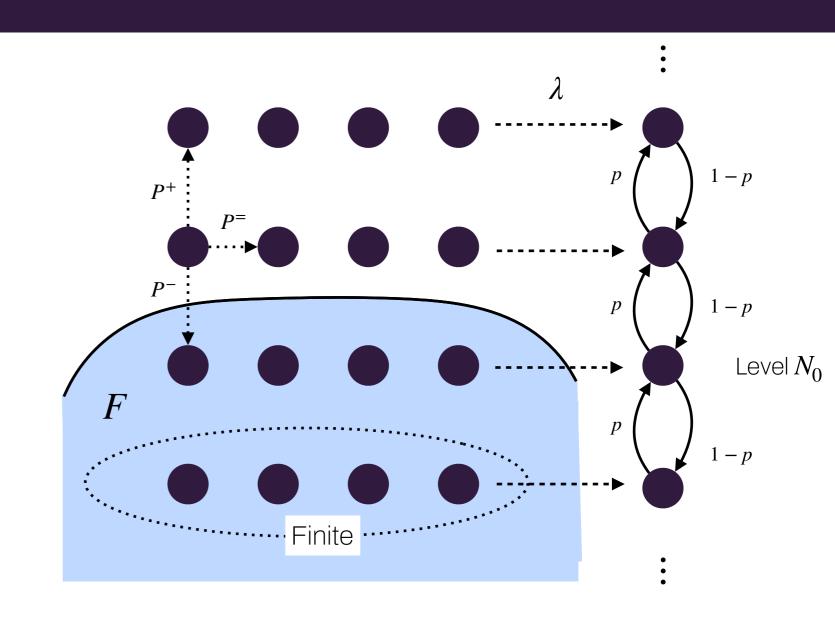
- ▶ Model = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda: S \to \mathbb{N}$ s.t.
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter $p > \frac{1}{2}$

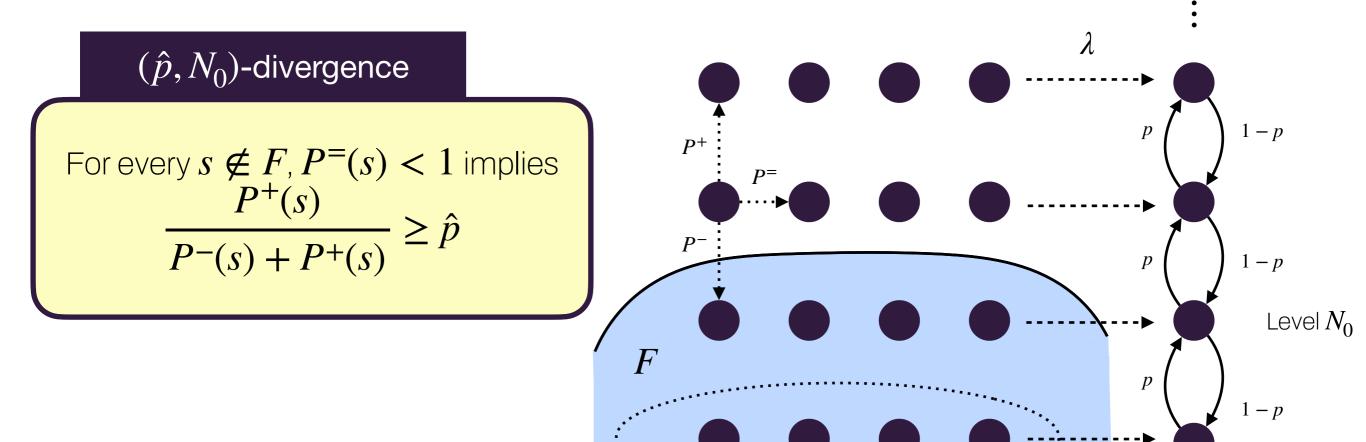


- ▶ $\underline{\mathsf{Model}} = \mathsf{layered} \; \mathsf{Markov} \; \mathsf{chain} \; (\mathsf{LMC}) \; \mathscr{C} : \mathsf{there} \; \mathsf{is} \; \mathsf{a} \; \mathsf{level} \; \mathsf{function} \; \lambda : S \to \mathbb{N} \; \mathsf{s.t.}$
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter $p > \frac{1}{2}$

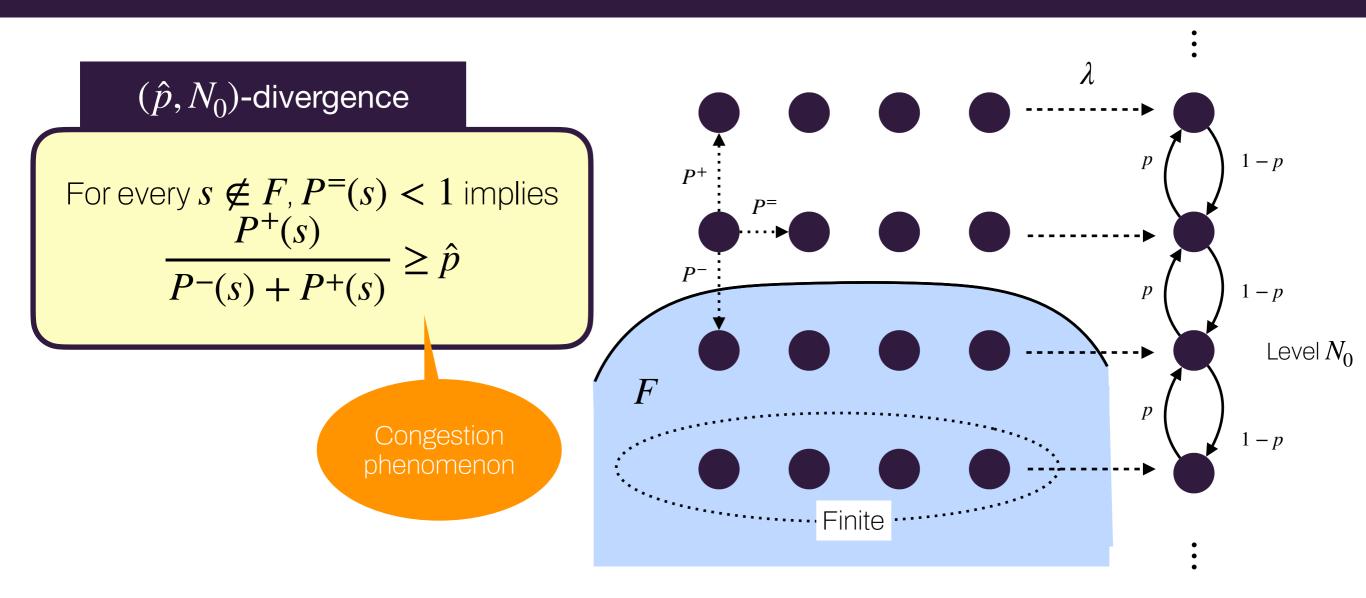
Only one condition needs to be satisfied...
The monotony condition!

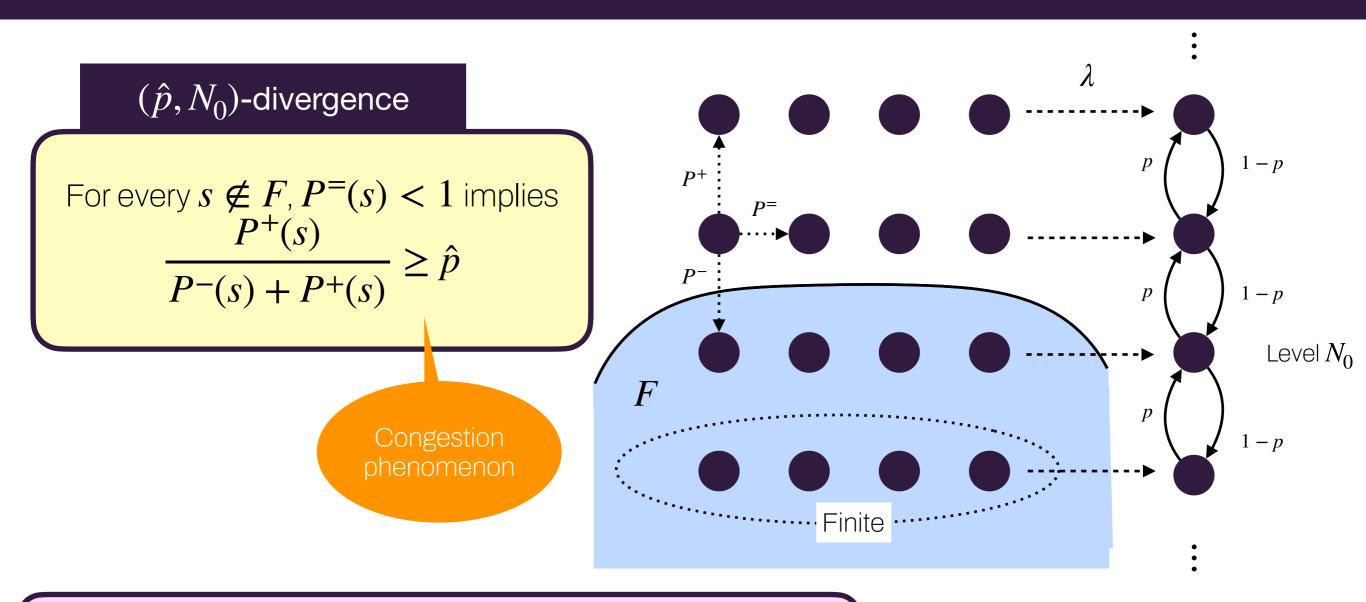






Finite





 $(\hat{p},N_0)\text{-divergence of }\mathscr{C}\text{ with }\frac{1}{2}< p<\hat{p}\text{ implies the random walk }\mathscr{C}_p^\bullet\text{ is an abstraction of }\mathscr{C}$

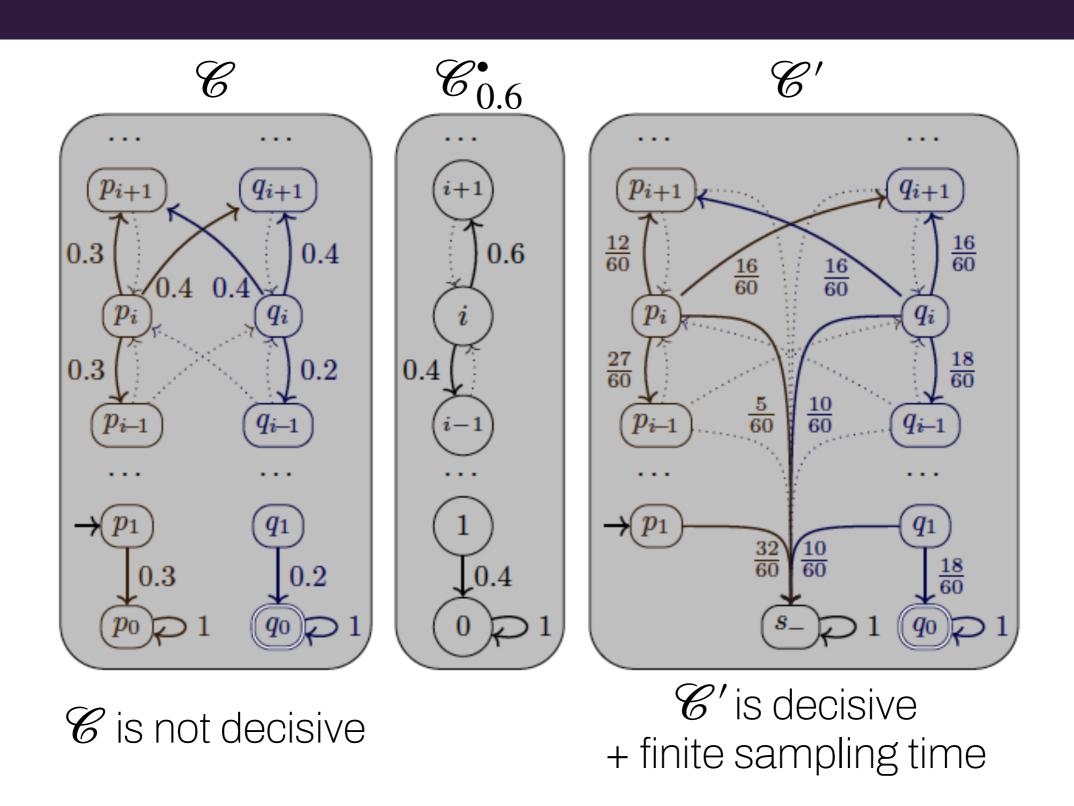
Correctness of the approach

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume there is N_0 and $\hat p$ s.t. $\frac{1}{2} and <math>\mathscr C$ is $(\hat p, N_0)$ -divergent. Then:

- The analysis of $\mathscr C$ can be made via the biased Markov chain obtained by importance sampling through the abstraction $\mathscr C_p^\bullet$
- If furthermore, $\inf_{s \text{ s.t. } \lambda(s) > N_0} P^+(s) > 0$, then the expected time to sample an execution is finite

Example



 Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \(\mathbb{C} \) is decisive

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If \mathscr{C} is (\hat{p}, N_0) -divergent

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If \mathscr{C} is (\hat{p}, N_0) -divergent
 - Use the abstraction \mathscr{C}_p^{\bullet} with $\frac{1}{2}$

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If \mathscr{C} is (\hat{p}, N_0) -divergent
 - . Use the abstraction \mathscr{C}_p^{\bullet} with $\frac{1}{2}$
 - Apply Approx and Estim on corresponding \mathscr{C}_p' (computed on-the-fly)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If & is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If \mathscr{C} is (\hat{p}, N_0) -divergent

- If \mathscr{C} is (\hat{p},N_0) -divergent, then \mathscr{C} is (\hat{p}',N_0') -divergent as soon as $1/2<\hat{p}'\leq\hat{p}$ and $N_0'\geq N_0$
- Use the abstraction \mathscr{C}_p^{ullet} with $\dfrac{1}{2}$
- Apply Approx and Estim on corresponding \mathscr{C}_p' (computed on-the-fly)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs

Are there best values?

- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If \mathscr{C} is (\hat{p}, N_0) -divergent

If \mathscr{C} is (\hat{p},N_0) -divergent, then \mathscr{C} is (\hat{p}',N_0') -divergent as soon as $1/2<\hat{p}'\leq\hat{p}$ and $N_0'\geq N_0$

- _ Use the abstraction \mathscr{C}_p^{\bullet} with $\frac{1}{2}$
- Apply Approx and Estim on corresponding \mathscr{C}_p' (computed on-the-fly)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs

Are there best values?

- Methodology:
 - If & is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If \mathscr{C} is (\hat{p}, N_0) -divergent

- If \mathscr{C} is (\hat{p},N_0) -divergent, then \mathscr{C} is (\hat{p}',N_0') -divergent as soon as $1/2<\hat{p}'\leq\hat{p}$ and $N_0'\geq N_0$
- _ Use the abstraction \mathscr{C}_p^{\bullet} with $\frac{1}{2}$
- Apply Approx and Estim on corresponding \mathscr{C}'_p (computed on-the-fly)

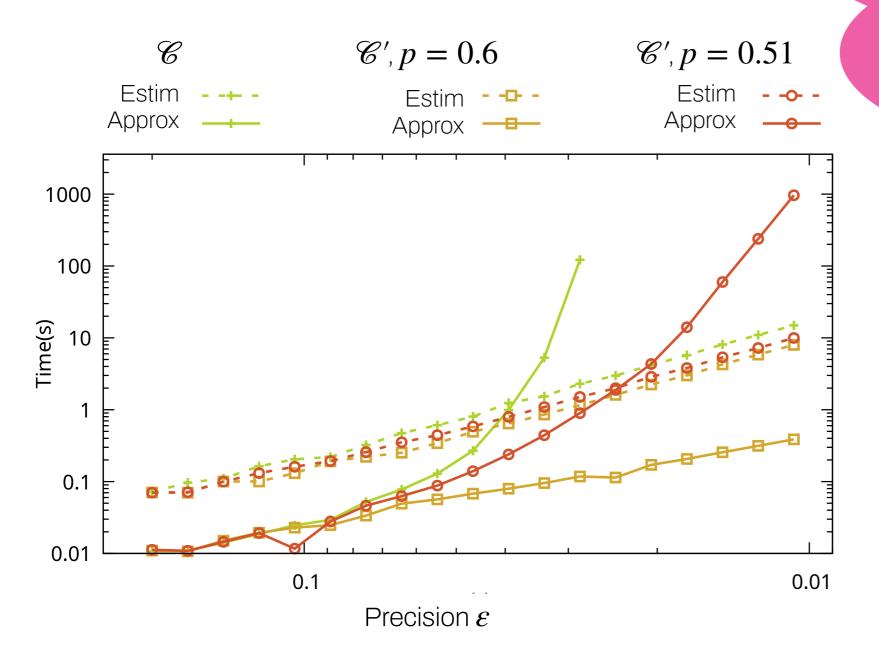
Note: in all experiments, the confidence is set to $99\,\%$

- State-free proba. pushdown automaton $\mathscr{C}: \{A \xrightarrow{1} C; A \xrightarrow{n} BB; B \xrightarrow{5} \varepsilon; B \xrightarrow{n} AA; C \xrightarrow{1} C\}$
- ightharpoonup Start from A, and target the empty stack

- State-free proba. pushdown automaton $\mathscr{C}: \{A \xrightarrow{1} C; A \xrightarrow{n} BB; B \xrightarrow{5} \varepsilon; B \xrightarrow{n} AA; C \xrightarrow{1} C\}$
- lacksquare Start from A, and target the empty stack

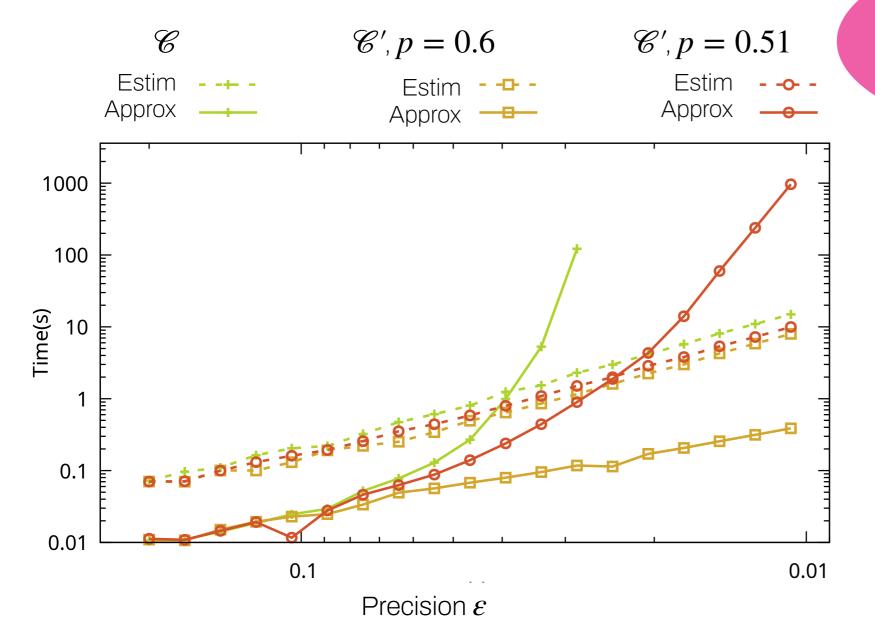
It is decisive It is (\hat{p},N_0) -divergent for every $1/2 < \hat{p} < \frac{N_0}{N_0+5}$

- State-free proba. pushdown automaton $\mathscr{C}: \{A \xrightarrow{1} C; A \xrightarrow{n} BB; B \xrightarrow{5} \varepsilon; B \xrightarrow{n} AA; C \xrightarrow{1} C\}$
- ightharpoonup Start from A, and target the empty stack



It is decisive It is (\hat{p}, N_0) -divergent for every $1/2 < \hat{p} < \frac{N_0}{N_0 + 5}$

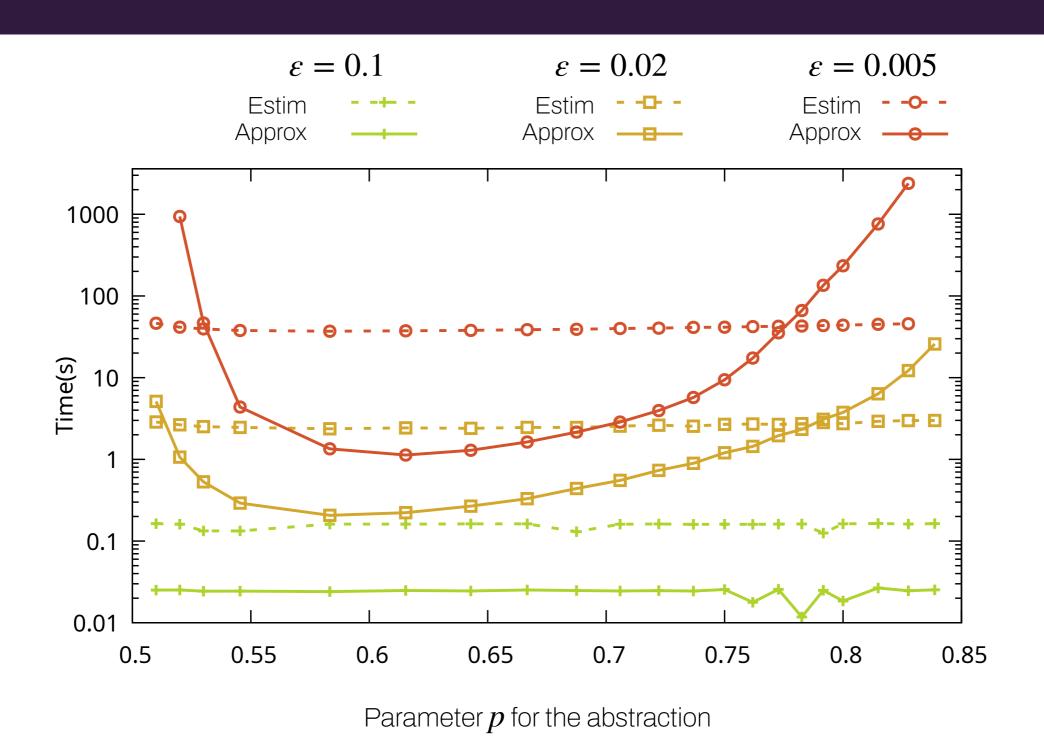
- State-free proba. pushdown automaton $\mathscr{C}: \{A \xrightarrow{1} C; A \xrightarrow{n} BB; B \xrightarrow{5} \varepsilon; B \xrightarrow{n} AA; C \xrightarrow{1} C\}$
- \blacktriangleright Start from A, and target the empty stack



It is decisive It is (\hat{p}, N_0) -divergent for every $1/2 < \hat{p} < \frac{N_0}{N_0 + 5}$

- In Estim (SMC): doubling the precision impacts in square on computation time (slope 2 in this log-log scale)
- Importance sampling seems to improve the analysis time, both for Approx and Estim (no formal guarantee, though)
- There seems to be « a best p » (p=0.6 here)
- For that best p, Approx behaves very well!

First example — continued



Second example

- State-free proba. pushdown automaton \mathscr{C} : $\{A \xrightarrow{1} B; A \xrightarrow{1} C; B \xrightarrow{10} \varepsilon; B \xrightarrow{10+n} AA; C \xrightarrow{10} A; C \xrightarrow{10+n} BB\}$
- lack Start from A, and target the empty stack

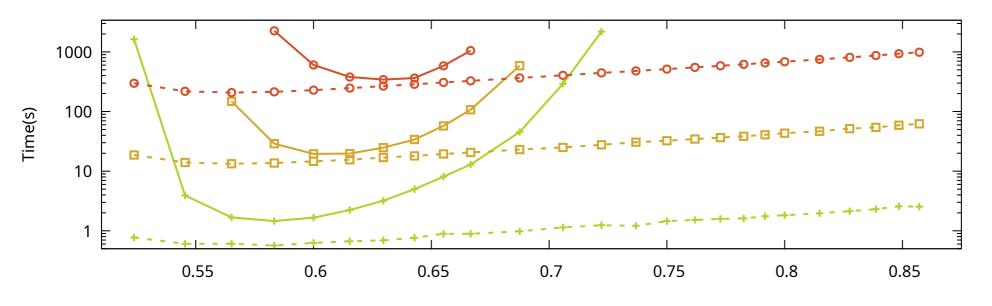
Second example

- State-free proba. pushdown automaton \mathscr{C} : $\{A \xrightarrow{1} B; A \xrightarrow{1} C; B \xrightarrow{10} \varepsilon; B \xrightarrow{10+n} AA; C \xrightarrow{10} A; C \xrightarrow{10+n} BB\}$
- \blacktriangleright Start from A, and target the empty stack

It is not decisive It is (\hat{p},N_0) -divergent for every $1/2 < \hat{p} \leq \frac{10+N_0}{20+N_0}$

Second example

- State-free proba. pushdown automaton \mathscr{C} : $\{A \xrightarrow{1} B; A \xrightarrow{1} C; B \xrightarrow{10} \varepsilon; B \xrightarrow{10+n} AA; C \xrightarrow{10} A; C \xrightarrow{10+n} BB\}$
- \blacktriangleright Start from A, and target the empty stack



It is not decisive It is (\hat{p}, N_0) -divergent for every $1/2 < \hat{p} \leq \frac{10 + N_0}{20 + N_0}$

Estim
$$\varepsilon = 0.1$$

Estim $\varepsilon = 0.02$

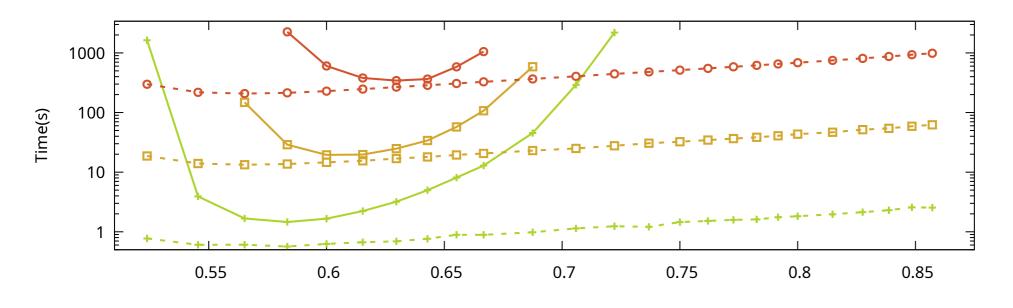
Approx $\varepsilon = 0.02$

Estim $\varepsilon = 0.005$

Parameter p for the abstraction

Second example

- State-free proba. pushdown automaton \mathscr{C} : $\{A \xrightarrow{1} B; A \xrightarrow{1} C; B \xrightarrow{10} \varepsilon; B \xrightarrow{10+n} AA; C \xrightarrow{10} A; C \xrightarrow{10+n} BB\}$
- \blacktriangleright Start from A, and target the empty stack



Parameter p for the abstraction

It is not decisive It is (\hat{p}, N_0) -divergent for every $1/2 < \hat{p} \leq \frac{10 + N_0}{20 + N_0}$

Estim
$$\varepsilon = 0.1$$

Estim $\varepsilon = 0.02$

Estim $\varepsilon = 0.02$

Estim $\varepsilon = 0.02$

Estim $\varepsilon = 0.005$

- ightharpoonup Estim (SMC) not too sensitive to p
 - Neverthess (log scale): clear bell effect on p
- lacksquare Approx very sensitive to p

Two approaches (numerical and statistical) for analysis of infinite Markov chains

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a « best p »?

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a \ll best $p \gg$?

Any theoretical justification for that?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a « best p »?

• p big: large desactivation zone (N_0)

ullet p small: small bias (few trajectories end up in (

Any theoretical justification for that?

Some more

classes to be

applied?