
Th
ès

e
de

 d
oc

to
ra

t
N

N
T:

2
0
2
1
U

PA
S
G

0
3
2

Higher-Order Confluence and
Universe Embedding in the

Logical Framework
Confluence d’ordre supérieur et encodage

d’univers dans le Logical Framework

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, sciences et technologies de
l’information et de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, Inria, Inria

Saclay-Île-de-France, 91120, Palaiseau, France
Référent: ENS Paris-Saclay

Thèse présentée et soutenue à, le 202X, par

Gaspard FÉREY

Composition du Jury
Maribel Fernández Rapporteure
Professeure à King’s College London,
Londres
Nicolas Tabareau Rapporteur
Directeur de Recherche à Inria, Nantes
Véronique Benzaken Examinatrice
Professeure à Université Paris Saclay
Femke van Raamsdonk Examinatrice
Professeure associée à Vrije
Universiteit, Amsterdam
Tobias Nipkow Examinateur
Professeur à Université Technique
de Munich
Jean-Pierre Jouannaud Invité encadrant
Professeur émérite à Université
Paris Saclay

Direction de la thèse
Gilles Dowek Directeur
Directeur de Recherche à Inria,
Professeur attaché à ENS Paris-Saclay

Contents

1 Introduction 5
1.1 Formal proof systems . 5
1.2 A unifying logical framework . 7
1.3 Confluence . 10
1.4 Embedding higher-order theories . 11
1.5 In practice . 13
1.6 Outline of this manuscript . 14

I Confluent Rewriting in the Logical Framework 16

2 Higher-Order Term Rewriting in the Lambda-Pi-calculus 17
2.1 Terms . 17
2.2 Higher-order term rewriting . 24
2.3 The lambda-Pi-calculus modulo . 31
2.4 Term rewriting formalisms . 42

3 Confluence of Left-Linear Systems 45
3.1 Orthogonal rewriting . 47
3.2 Decreasing Diagrams . 51
3.3 Critical peaks . 53
3.4 Non-overlapping local peaks . 57
3.5 Confluence of rewriting . 61

4 Confluence of Non-Left-Linear Systems 68
4.1 Confinement and layering . 69
4.2 Layered sub-rewriting . 72
4.3 Overlapping sub-rewriting peaks . 74
4.4 Decreasing Diagrams . 79
4.5 Example . 87
4.6 Future work . 89

2

CONTENTS 3

II Embedding Higher-order Logics with Universes 93

5 Embedding Cumulativity 94
5.1 Pure Type Systems . 96
5.2 Introducing cumulativity . 100
5.3 Cumulative Type Systems . 102
5.4 Embedding CTS’s in the lambda-Pi-calculus modulo 104
5.5 Getting some privacy . 110
5.6 A new paradigm . 114

6 Calculi of Constructions with Universe Variables 117
6.1 The infinite universe hierarchy . 117
6.2 Algebraic universes . 122
6.3 Universe constraints . 127
6.4 Deciding cumulativity under constraints . 130

7 A Universe Polymorphic Calculus of Constructions 140
7.1 Definition . 141
7.2 Conservative extensions . 145
7.3 System restrictions . 149

8 Embedding Universe Polymorphism in the lambda-Pi-calculus modulo 156
8.1 The encoding signature . 157
8.2 Translation functions . 161
8.3 Correctness of the translation . 166
8.4 Future work . 176

9 Practical embedding of Coq 179
9.1 The CoqInE translator . 179
9.2 Renouncing left-linearity . 180
9.3 Inductive constructions . 183
9.4 Fixpoints . 187
9.5 Universe polymorphisms . 194
9.6 Local let-in . 196
9.7 Minimal universe constraints . 198
9.8 In practice . 198

Conclusion 202

Appendix 207
Bibliography . 208
Figures . 216

Introduction

4

Chapter 1

Introduction

1.1 Formal proof systems
Mathematics have long been a matter of pen, paper, and some form of perseverance many
would call stubbornness. The technological progress of the past decades has extended
this toolbox with a new powerful tool: computers. Proof assistants are a wide variety of
programs allowing to write theorems and develop their proofs using dedicated languages
designed to be easily interpreted by computers. Proving a theorem using such a language
is quite similar to writing a computer program: it is time consuming, requires to be very
specific and precise, and, all too often, involves long desperate stares at alarming error
messages. Yet proof systems offer many advantages. They usually come with the prac-
tical conveniences of modern development environments, such as syntax and debugging
tools. More importantly the digital format of proof allows them to be easily shared and
published, therefore promoting large scale research collaboration through the development
of extensive libraries of proofs. Besides the recent drastic increase in available computing
power has now allowed computers to directly assist mathematicians with the process of
proof construction. Many tools, such as SAT or SMT solvers, are able to automatically
iterate over numerous cases or to quickly try out several relatively straightforward strate-
gies to handle particularly tedious roadblocks in proofs. Finally algorithms allow to check
the developed proofs in real time and pinpoint errors in the logical reasoning. This con-
siderably reduces the risk of writing an incorrect proof and therefore improves the trust
that can be put in these formally verified theorems.

1.1.1 Practical use

Formal proof systems have met quite some success both in the fields of formalization of
mathematics and certification of programs.

A famous example is the proof of the four color theorem, stating that the regions of
any planar map can be colored with only four colors so that no two adjacent regions are
assigned the same color. The original proof of this theorem involved heavy calculations
that could not be directly checked and required instead to rely on a computer. The

5

CHAPTER 1. INTRODUCTION 6

mathematical community was therefore reluctant to recognize the validity of this proof
until it was formalized by Gonthier and Werner [Gon05, Gon08] using the Coq proof
assistant. Along with the other results that formal methods helped to prove, such as the
Feit-Thompson theorem [GAA+13] and Kepler’s conjecture [Hal05], it is worth mentioning
the many efforts to formalize simpler but larger libraries of well-known textbook results
and proof strategies.

Proof systems are also used, together with other formal methods such as model check-
ing and abstract interpretation, to formally verify that programs are bug-free and correctly
implement the algorithm they are supposed to. This is particularly important in the case
of software controlling safety-critical systems which malfunction can potentially have great
economical or even human consequences. While test-driven development prevents most
simple bugs, formal software verification offers the much safer guarantee that all possible
corner cases have been checked. An example of such verified software is the CompCert
compiler for a subset of the C language. This program was proven, using Coq, to preserve
the semantic of C programs when translating them into executable code in the assembly
language. Other notable examples include the automation of Paris Métro line 14 using
the B method or the verification of aeronautical systems by NASA using PVS and many
more in the fields of hardware and security.

1.1.2 Type theoretical foundations of mathematics

Before developing a formal proof system, it is necessary to define the underlying logic: the
mathematical objects and rules upon which all subsequent theoretical developments will be
based. Set theory has long been universally accepted as such a foundation of mathematics.
However, in the turn of the last century, several paradoxes have led to rethink the proper
ways to define mathematics. These paradoxes usually rely on self-referencing issues such
as the well-known paradox "This sentence is a lie." paradox. This grammatically correct
sentence states its own negation and therefore cannot be assigned a truth value. Other
paradoxes allow to contradict the existence of the ordinal number of all ordinals (Buralli
Forti, 1897), the least indefinable ordinal (Richard, 1905), or the set of all set (Russell,
1901).

A work-around these paradoxes was suggested by Russell [Rus08] who introduced an
alternative foundation: type theories. The objects of a type theory are called terms
and are assigned a type which characterizes their nature in a somewhat more abstract
and fundamental way than the sets they belong to or the properties they satisfy. For
instance the natural number 0 can be assigned the type of natural number N which we
write 0 : N. In many type theories, terms are built from variants of Church’s λ-calculus
[Chu40]. Functions may be assigned a product type written N→ N and the application of
a functional term f to a term t is only valid if the type of t is the same as the domain of the
type of f . This inference rule corresponds, following the Curry-Howard correspondence
[Cur34, dB83, How80], to its logical counter part: the well-known modus ponens deduction
rule.

A⇒ B A

B
ModusPonens

f : A→ B t : A
f t : B

Application

CHAPTER 1. INTRODUCTION 7

The Curry-Howard correspondence identifies the usual notion of theorem with certain
types in a type theory. For instance the theorem A⇒ B corresponds to the product type
A→ B and a proof of that theorem corresponds to a function taking an argument of type
A and defining a term of type B.

Variables must also be assigned a type and, unless that type can be inferred, they
are therefore usually annotated in quantifications ∀x, P (x) or functions x 7→ f(x) which
are represented with dependent product Πx :N. P x and lambda abstractions λx :N. f x
respectively. Based on these ideas, many type theories have emerged since then. In
particular, types themselves can be represented as terms which have a special “type of
all types”: Type. This allows to have higher-order quantifications over properties or
predicates. Just like the set of all sets, which, as Girard showed [Gir72], cannot be a set,
neither can type theories allow Type : Type. A way around this limitation is to introduce
an extra universe of types, Kind, lying above Type such that Type : Kind. Proceeding this
way, it is then possible to successively define an infinite ascending hierarchy of universes
to express ever more complex mathematical concepts.

1.2 A unifying logical framework
Since the work of Whitehead and Russell on type theory for foundation of mathematics
[WR27], many proof assistants have been developed.

The huge number of these proof systems reflects the many different "ways to consider
mathematics", each of them being adapted to their respective culture, traditions, fields of
mathematics, automated tools and applications. A proof assistant based on the homotopy
of type theory principles and an other one designed for hardware verification are bound
to make different choices in the definition of their core logic. However many of these
systems usually share similar features, such as term representation of proofs, programs,
theorems and types. Systems may sometimes differ only by a small variation in some of
these choices, but when it comes to logic, a slight variation may be enough to define a
fundamentally different system. Because of the diversity of available proof systems, similar
proofs of similar theorems are re-developed in many proof systems.

Translation is a solution to avoid this duplication of work and allow some form of
interoperability between proof systems. Developing translators is however costly since
it requires, in order to be implemented, an in-depth technical understanding of both
the target and origin logics and systems. Besides, the number of required translators to
achieve full interoperability between any two systems grows quadratically with the number
of systems which is not sustainable. When the translated systems share some elementary
features, such as λ-abstractions or logical operators, with the system it is encoded in, it is
convenient and efficient to reuse this feature. However, differences in formalism mean that
such a shallow representation is not always possible and translation must often either be
partial or rely on a deep implementation of the missing feature using an explicit encoding
which must be proven equivalent.

A different solution would be to specify and agree on a common language and log-
ical framework in which all developments from other systems such as theorems, proofs,

CHAPTER 1. INTRODUCTION 8

definitions and so on, can be expressed, automatically translated and easily manipulated.
Such a framework should remain simple enough to be easily understood and trusted but
be expressive enough to represent all the various features from other logics. It should also
preserve the usual key properties of formal systems, such as consistency and decidability
of type checking, and allow the re-checking of libraries expressed in it with the same level
of confidence as in the original system. Finally a logical framework is a tool to study
the various logic themselves, compare the features they implement and design simpler or
shorter proof that, in a context of interoperability, would also be easier to express in other
partially compatible formalisms.

1.2.1 The lambda-Pi-calculus modulo

In this manuscript, we focus on the lambda-Pi-calculus modulo, written λΠ≡. This system
extends the well-known simply typed λ-calculus with dependent types and higher-order
term rewriting. It is an extension of the lambda-Pi-calculus, λΠ, also known as LF, for
“Logical Framework” [HHP93a]. Relying on the λ-calculus seems natural when defining
a logical framework for type theories. It provides a direct representation for variables,
abstractions and quantifications as well as a native notion of computation for functional
terms. Proofs are represented as λ-terms which act as fully explicit witnesses that a
theorem holds. Finally, the simplicity of this system provides efficiency and some enjoyable
typing and syntactical guarantees such as a stratification of terms as objects, types or kinds.

Despite its simplicity, this system is expressive enough to represent a large class of
different logics, including feature-rich type systems, by means of encodings. The power of
λΠ relies both on its dependent types which allow to represent more complex type relations,
such as hierarchy of universes, and on its conversion relation which allows computational
embeddings where computations in the original systems are represented with similarly
computing terms. In particular it allows a shallow representation of the usual functional
β-reduction which is a key component of most computational type theories based on the
Curry–Howard correspondence.

1.2.2 Higher-order term rewriting

Most logical systems rely on a notion of implicit “sameness” between objects. This relation,
written ≡ in this manuscript, allows to identify objects that are considered identical or
“equivalent”. For instance, even though they have different syntactical representations,
the sets {a, b}, {b, a} and {a}∪{b} are considered identical in set theory without the need
for any proof. This sameness can sometimes become quite confusing. For instance much
larger explicit finite sets may require a lot more work to be decided equivalent. One way to
check that two sets are identical is to check that each element in the first one also belongs
to the second and vice-versa. This technique to check that two sets are equivalent is called
an algorithm. A more complex but faster algorithm would be to sort the elements in each
set and to check that both resulting sets are syntactically equal.

This notion of implicit sameness can be local, “Assume e := {∅}. Then . . . ” implicitly
means that the symbol e is now considered identical to its definition {∅} in the directly

CHAPTER 1. INTRODUCTION 9

following few sentences but not necessarily in the rest of the development. It can depend
on the semantics: the η-expansion rule states that t ≡ λx. t x if and only if the term t has
a product type, which is a semantic property.

In type theory it is usually desirable that the sameness relation ≡ is computable so
that mathematical developments relying on it can be automatically checked. In order to
define an algorithm for checking sameness it is convenient to ensure ≡ can be defined by
an oriented reduction relation customarily represented with an arrow, −→.

Term rewriting is a relation on terms defined with the instances of rewrite rules. For
instance, the rule plus X 0 −→X allows to reduce plus 0 0 to 0, written plus 0 0−→ 0.
A finite set of rewrite rules, called a rewrite system, therefore allows to define an infinite
relation on the infinite set of terms. Rewrite systems are quite convenient since they allow
to define general computational conversion relations that can be parameterized to fit the
various needs of encoded logical systems.

In order to better represent other complex computational mechanisms and to make
explicit some mechanisms of encoded systems, the conversion rule of λΠ≡ is based on
higher-order term rewriting. Several type checkers for λΠ≡ have been implemented, in-
cluding Dedukti which our work is based upon. A substantial part of our contribution
lies in the formalization and study of higher-order rewriting in the lambda-Pi-calculus.
Besides, we contributed to the practical implementation and the recent improvements of
the Dedukti tool to meet the ever evolving expectations of its users.

1.2.3 Embedding higher-order logics

In order to properly embed a system into λΠ≡, it is usually necessary to design an encoding
system which consists of type assignments, a : T , and rewrite rules, f X −→X, as well
as a translation mechanism which uniquely defines a syntactical term representation, JtK
in λΠ≡ for any term t well-typed in the original system. This translation may depend
on more than the strict syntactical representation of t. We show in this manuscript that
it makes sense to have the translation mechanism consider the type of t, the context in
which it is well-typed and even the corresponding typing derivation.

The theoretical part of the embedding usually requires to prove that the rewrite sys-
tem of the encoding is both confluent and terminating. These two properties are a typical
first step to show that the defined system has the key properties of subject reduction and
decidability of type checking. It is then necessary to show that symbol type assignations
define a logic consistent with the original system, a property called conservativity. Even-
tually, the translation function must be defined on all well-typed terms and preserve their
well-typedness, a property called correctness.

In this manuscript we chose to address two essential issues in the field of logic encoding
using term rewriting. In a first part we focus on the confluence property of higher-order
rewrite systems in an untyped setting. Many confluence results already exist but the use
of term rewriting to define logics often requires tailored criteria for confluence. In a second
part we introduce embedding techniques for infinitely sorted type systems with subtyping
and prove the correctness of an embedding of the particular case of universe polymorphism
in Coq.

https://deducteam.github.io/

CHAPTER 1. INTRODUCTION 10

1.3 Confluence
Unlike equivalence relations, term rewriting is inherently oriented and is meant to be played
exclusively forwards. It corresponds to a term reduction procedure which is computed us-
ing pattern matching on terms. Furthermore, term rewriting is often non deterministic.
A term may have several reducts depending on the position where a rewrite step is per-
formed, as illustrated by the following reduction diagram which assumes a unary symbol
double defined by means of the rewrite rule double X −→ plus X X.

double (plus 0 0)

plus (plus 0 0) (plus 0 0)

plus 0 (plus 0 0)double 0 plus (plus 0 0) 0

plus 0 0

0

In order for this conversion procedure to be complete, it is critical that rewrite steps are
never required to be played backwards. The two terms double 0 and plus (plus 0 0) 0
are equivalent since they are both reducts of double (plus 0 0), however this can also be
more conveniently checked by computing that they both reduce to 0.

Therefore, a critical property of rewrite systems is the Church-Rosser property, also
known as confluence, which states that any two equivalents terms can be joined, that is
to say, reduced to a common term. This property guarantees that when checking whether
two terms are convertible, it is sufficient to consider, and compute, their reducts only.
In rewrite systems satisfying this property, it is possible to rely on a reduct-enumerating
semi-decision procedure for conversion. In terminating systems, this procedure becomes a
decision procedure.

1.3.1 Confluence of untyped rewriting

The two essential properties of a computational type theory, consistency and decidability
of type checking, usually follow from three simpler ones: type preservation, strong nor-
malization and confluence of the relation on terms defining computation. In dependent
type theories however, confluence is often needed to prove type preservation and strong
normalization, making all three properties interdependent if termination is used in the
confluence proof.

This circularity can be broken in two ways: by proving all properties together within a
single induction [Gog94]; or by proving confluence on untyped terms first, and then succes-
sively type preservation, confluence on typed terms, and eventually strong normalization.

CHAPTER 1. INTRODUCTION 11

Confluence

Product Compatibility

Rule Well-Typedness
Subject Reduction

Termination

Decidability of Type-Checking

We develop the latter way here, focusing on untyped confluence. There are several ob-
stacles to confluence of higher-order rewrite systems which we address in this manuscript:

• The untyped setting means that confluence must be proven on all terms of the pure
λ-calculus where, in particular, the β-reduction is non-terminating.

• Rewrite rules may overlap, creating critical peaks which must be proven joinable.
• Higher-order rewriting may nest redexes inside others forcing us to consider simul-

taneous reduction steps.
• Non-left-linear rewrite rules, such as the computational reflexivity eq X X −→ true,

may be necessary.
In the context of the embedding of ever richer logics, it is in general required to consider

complex encoding systems which confluence quickly becomes quite complicated to show.
We provide several criteria for confluence of higher-order rewrite systems together with
the β rule in the untyped setting. These criteria focus on the complex systems used, in
particular, to encode universes in higher-order logics. They are often based on left-linear
rules having critical pairs which forbids the use of most existing confluence criteria which
rely on the orthogonality property. We show that confluence still holds if higher-order
critical pairs have decreasing diagrams. Non-left-linear rewrite rules are usually avoided
in higher-order settings since it was shown that they easily break confluence, [Klo80]. We
show that a syntactical stratification of terms allows to retrieve confluence on a constrained
subset of terms.

1.4 Embedding higher-order theories
Some proof systems, such as fully automated theorem provers, ACL2, Mizar or the HOL
family of proof assistants, made the choice to rely on a rather simple and well understood
core logic which provides some enjoyable logical guarantees at the cost of a somewhat
verbose and explicit representation of proofs. What they lack in the expressiveness of
their logic they make up for with efficient proof assisting tools such as SAT and SMT
solvers. This strategy is close to that of a logical framework and therefore is more easily
embedded and used in a context of interoperability. Indeed, proofs can be processed so
as to be expressed in a rather minimal logic which relies on as few axioms and logic rules
as possible. Such proofs hold in all the extensions of this minimal logic and are therefore
more likely to be re-usable in other, more specialized, contexts.

Other systems such as PVS, Coq or Agda decided instead to extend their underlying
logic as much as possible while guaranteeing a handful of key properties such as logical

CHAPTER 1. INTRODUCTION 12

consistency. They do not hesitate to introduce very high-level features such as infinite
hierarchy of universes and even universe polymorphism in order to increase readability
and simplify practical proof development at the cost of a more complex theory. These
systems are much more difficult to express in simpler theories and harder to plug together
with other theories. Yet, in our endless course towards universality of proof checking, it
is crucial to be able to represent them.

In the second part of this manuscript, we focus on the translation of constructs from
Coq. The many advanced and complex features of this system make it particularly
worthy of interest. Indeed faithfully encoding these features in λΠ≡ represents a significant
challenge and therefore allows to showcase its expressiveness.

1.4.1 Subtyping in the cumulative hierarchy of universes

A first, already challenging, step is to embed its core logic, the Calculus of Constructions
with an infinite hierarchy of universes, introduced by Coquand [Coq85] and studied with
Huet [CH85, CH86]. Previous work from Cousineau and Dowek [CD07] relied on a dual
representation of terms, as objects and as types of the λΠ≡. This technique was originally
designed for finitely sorted sets of universes but it can be extended to infinitely hierarchies
using a term representation for the universes themselves.

The structure of Cumulative Type System introduces some form of subtyping stem-
ming from cumulativity between universe levels and extending to product types. Assume
a type T in the i-th hierarchy of universes, T : Ui, then cumulativity states that T be-
longs to the universe above as well, T : Ui+1. The translation JT K in λΠ≡ is such that
JT K : JUiK, however the uniqueness of type property of the encoding system forbids the
image of translation to have the same cumulativity property. The embedding of such type
systems was studied by Assaf [Ass15b] who relied on an explicit lifting operator on object
representations : ↑ JT K : JUi+1K. Despite having multiple representations for a single term,
the correctness of the system is guaranteed by some conversion conditions which ensure
that the type T considered in a given universe level j has a single representation up to
conversion.

This explicit subtyping operator is extended in this manuscript to product types by
means of a more general casting operator. The translation provides fully annotated terms
in which the implicit subtyping steps required to derive its well-typedness have all been
made explicit. This explicit representation can therefore, in fact, be seen as a representa-
tion of its typing derivation. The encoding introduced in this manuscript relies on term
rewriting to ensure that all such representations of a single term share a common canonical
representation. Since this representation does not necessarily correspond to a canonical
typing derivation, it is not in the image of the translation and is kept private. Private
terms serve as “hidden” unsafe intermediate representations considered only to implement
properties such as proof irrelevance using term rewriting. In particular private symbols
are kept separated from the exposed ”public“ part of the encoding and the translation
function does not rely on them.

CHAPTER 1. INTRODUCTION 13

1.4.2 Universe polymorphism

The Calculus of Constructions with algebraic universes and universe polymorphic defini-
tions was first introduced and studied by Harper and Pollack [HP91, HP89] and imple-
mented in the LEGO system. Universe polymorphism was later introduced in Coq by
Sozeau and Tabareau [ST14] though it remains a rather experimental feature. Variants of
Coq, such as Matita, chose not to support any explicit form of universe polymorphism.
The Agda system also supports universe polymorphic constant declarations where levels
are first-class constructions, may explicitly be quantified over and level expressions are ob-
jects in the syntax that can be typed. This system however does not feature cumulativity,
although it may rely on explicit lifting of universes to express some form of genericity.

For instance the polymorphic identity id : ΠA : Type0. A→ A is of type Type1 which
prevents it to be applied to itself. Using universe polymorphism, it is however possible
to define id at an abstract universe level i, id[i] : ΠA : Typei. A→ A, therefore allowing
to have: id1 (ΠA : Type0. A→ A) id0 : ΠA : Type0. A→ A. Universe polymorphism is a
prenex and constrained quantification on universe levels. It is a convenient way to handle
polymorphic symbols in a more general way than already allowed by cumulativity.

In Coq, universe polymorphism is kept implicit in term representations. Universe
levels and constraints are rather inferred and checked on the fly while performing the
usual type checking procedure on terms. Naturally, the translation of universe polymorphic
definitions requires to make the universe variables and constraints explicit in λΠ≡. This is
made possible by a representation of algebraic universe levels and parameterized versions
of the symbols encoding products, sorts and subtyping. We prove the correctness of the
provided encoding which relies on the translation of derivation trees, therefore making all
typing steps fully explicit.

1.5 In practice
The main contributions of this thesis are not exclusively theoretical. Many practical
developments were permitted by our theoretical results and allowed to put them to the
test. We mention here some of the achievements deeply connected to our work. Most of
them resulted from collaborations, sometimes with researchers from different fields.

• We adapted and improved the Dedukti tool in order to check our encodings and the
sizable libraries of proofs embedded in them. Various new features were implemented
such as

– The optimization of the reduction engine with decision trees and improved term
representation and sharing;

– A subject reduction checker extension to better process the typing constraints;
– Rewriting modulo associativiy-commutativity which was implemented to work

together with the already in-place decision trees.

CHAPTER 1. INTRODUCTION 14

• Our theoretical work allowed to improve the CoqInE tool, a Coq plugin exporting
modules to Dedukti encodings of the Calculus of Inductive Constructions. Admit-
tedly much remains to do in terms of documentation, bug fixing and catching up
with the fast evolving latest version of Coq. Thanks to our improvements, this tool
is however now able, to check a sizable set of proofs and definitions and is already
used in interoperability projects. Some of the added features are:

– support for universe polymorphism;
– support for monomorphic, template polymorphic and “true” polymorphic in-

ductive types;
– a redefined translation of fixpoints as first-class constructions;
– modules and functors translation;
– several output encoding, each tailored for a specific need: interoperability, fast

type checking, expressiveness, readability, etc;
– integration in the Logipedia project.

• The CoqInE tool was also used, in collaboration with the team in charge of the
GeoCoq project, to translate and recheck a sizable library of Coq proofs to Dedukti
in an dedicated encoding suitable for these particular interoperability needs.

1.6 Outline of this manuscript
The first part of this manuscript is dedicated to the property of confluence of higher-order
term rewriting together with the functional β-reduction in the context of defining encoding
theories in the lambda-Pi-calculus modulo.

• In Chapter 2, we define higher-order pattern-matching and position-annotated term
rewriting in a way fit to be studied together with the usual functional β-reduction.
Single-step reduction is extended to simultaneous multi-steps relations, such as par-
allel, orthogonal or sub-rewriting. In non-terminating systems, studying these ex-
tensions is essential in order to prove the confluence of the initial relation. We take
a particular care here in annotating rewriting steps with the position where they
occur in the term.

• In Chapter 3, we introduce several general purpose confluence criteria for confluence
of left-linear higher-order rewrite systems together with β. A first criterion is that a
confluent higher-order rewrite system R remains confluent when considered together
with β. This means that techniques relying, for instance, on termination or decreas-
ing diagrams can be used to prove confluence of R provided critical pairs do not
require β-steps to join. Otherwise a second criterion requires to show the existence
of decreasing diagrams for all orthogonal critical pairs to retrieve confluence with β.
In that case β steps are considered of low weight so they can be used for free in the
closing diagrams.

CHAPTER 1. INTRODUCTION 15

• In Chapter 4, we provide confluence criteria for non-left-linear sets of rewrite rules
together with β, assuming rewriting is restricted to a class of terms satisfying some
syntactical layering conditions. These conditions guarantee a stratification of terms
which allows to consider rules which non-linear variables belong to a level strictly
lower than that of the left-hand side. Furthermore, the lowest level forbids all β-
redexes. This constraint, called confinement, freely allows non-left-linear rules within
the confined level while locally forbidding interactions with β. As in the previous
chapter, we rely on techniques based on van Oostrom’s decreasing diagrams [vO94]
that reduce confluence proofs to the checking of critical pairs for higher-order rewrite
rules. We also discuss practical applications of these results in this chapter.

The second part of this manuscript is dedicated to the definition of an encoding and
translation function of the universe polymorphic calculus of inductive constructions in the
lambda-Pi-calculus modulo with the practical application of translating and type checking
sizable proof libraries from Coq to Dedukti.

• In Chapter 5, we introduce pure type systems and several extensions featuring some
form of subtyping stemming from a cumulativity relation on sorts. We introduce
and discuss previous work on embedding these systems into λΠ≡. Finally we in-
troduce new encoding paradigms which we argue allow to faithfully represent more
complicated features such as non-functionality, floating universes or universe poly-
morphism.

• In Chapter 6, we describe how the Calculus of Constructions can be conservatively
extended with an infinite set of sorts relying on (constrained) algebraic levels. We
investigate how these levels can be encoded in a way compatible with the natural
notions of level equality, inequality and instantiation, allowing their embedding in
λΠ≡ with the previously defined CTS encoding.

• In Chapter 7, we introduce a type system that conservatively extends the Calculus of
Constructions with universe polymorphic definitions and declarations in a signature.
We argue that this system remains close enough to a subset of the one implemented
in our target system Coq and make safe assumptions to simplify the definition of
our translation to λΠ≡ which is defined on typing derivations rather than on terms.

• In Chapter 8, we introduce an encoding of CC∀ω into λΠ≡ relying on a private rep-
resentation of lambda terms to ensure preservation of conversion. The translation
function is defined on typing derivations rather than on terms. We prove the preser-
vation of typing and conversion of the translation mechanism.

• In Chapter 9, we describe how the previously defined embedding can be adapted and
extended to represent other features of Coq such as inductive types and fixpoints.
These practical techniques allowed to implement a Coq plugin exporting proofs and
definitions into Dedukti which was used to translate several Coq developments, in
particular from the GeoCoq library.

Part I

Confluent Rewriting in the Logical
Framework

16

Chapter 2

Higher-Order Term Rewriting in
the Lambda-Pi-calculus

We start by introducing basic concepts and notations at the core of type theories, as well as
several known properties referred to in the rest of the manuscript. Our presentation relies
on Klop’s Combinatory Reduction Systems (CRS) [Klo80, KvOvR93] which is particularly
well-suited for the study of higher-order rewrite rules together with the usual β-reduction.
In the context of shallow embedding of logics, which is the main focus behind the devel-
opment of the lambda-Pi-calculus modulo (λΠ≡), term-rewriting is often required to be
higher-order and support rewriting of functional terms called λ-abstractions. However,
since term rewriting allows to define the type system, it is difficult, in its study, to rely on
the well-typedness of the terms it operates on. Therefore it should instead be considered
on all terms, enforcing a merely syntactical study of its properties.

In that endeavor, we take a particular care in annotating rewrite steps with the position
at which they occur in a term and use this annotation to help characterize rewrite steps.
We provide several known properties of terms and of this annotated higher-order rewriting
relation on them.

In Section 2.3, the λΠ≡ type system is formally defined and we recall the usual prop-
erties of this system introduced by Cousineau and Dowek [CD07] and later studied and
successively improved by Saillard [Sai15a, Sai15b], Assaf [Ass15b], Thiré [Thi20] and Gen-
estier [Gen20b].

Finally, we discuss several other formalisms fit to extend λΠ with higher-order term
rewriting while preserving the properties of the type system. The main challenges are
that term rewriting needs to be type preserving, confluent and considered in an untyped
setting before it can be used to extend the typing relation of λΠ. In particular we argue
that the choice of Klop’s CRS allows to better rely on positional rewriting.

2.1 Terms
We define in this section the usual notions of terms of the λ-calculus, positions, α-
conversion and substitution.

17

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 18

2.1.1 Syntax

We consider the terms of the pure λ-calculus enriched with a set F of symbols called a
signature.

Definition 2.1.1 (Term). Terms are generated from an infinite set X of variables and
a set F of symbols. The set of terms TX ,F (usually written T) is inductively defined as
follows:

s, t, u, v, . . . := x ∈ X | f ∈ F | u v | λx : t. u

As mentioned, even though they are meant to be dependently typed, terms shall not
rely on the type of symbols as it is defined independently and properties like conflu-
ence or product compatibility are often needed before defining a usable type system.
Therefore no typing relation is considered in the definition of terms which is purely syn-
tactical. In particular all symbols in F have arity 0 and can only be applied using an
application construction to form a currified algebraic expression. For instance the term
λx : s t. u v = λx : (s t). (u v) is an abstraction and t = f x (g y) λx : t. x is the application:
t = ((f x) (g y)) (λx : t. x). To ease readability, we may, on some occasions rely on the
traditional function application notation, f(t, u) := (f t) u = f t u, or use infix notations,
t+u = (+ t) u, or even more complex notations for symbols with many arguments: if
�
�↑�� ∈ F then we write s2

s1↑
t2
t1 for the term (((↑ s1) s2) t1) t2 = ↑ s1 s2 t1 t2.

Definition 2.1.2 (Subterm). The subterm relation, C, on terms is defined as the smallest
reflexive, transitive relation such that: uC u v, v C u v, tC λx : t. u and uC λx : t. u.
It is a well-founded partial order on terms.

Definition 2.1.3 (Free Variables). We write Var(t) := {x ∈ X |xC t} the set of variables
occurring in a term t. The finite set FVar(t) ⊆ Var(t) of variables free in a term t ∈ T
is inductively defined as follows:

FVar(x) := {x} FVar(u v) := FVar(u) ∪ FVar(v)
FVar(f) := ∅ FVar(λx : t. u) := FVar(u) \ {x} ∪ FVar(t)

Terms without free variables are closed. A variable x occurring in the body u of the
corresponding binder λx : t. u is said to be bound (or bound above).

Definition 2.1.4 (α-equivalence). Renaming of the variable x with y in a term t, written
t{y/x}, is the syntactical replacement of all occurrences of x with y, ignoring capture:

f{y/x} := f (u v){y/x} := (u{y/x} v{y/x})
x{y/x} := y (λx : t. u){y/x} := λx : t{y/x}. u
z{y/x} := z (λz : t. u){y/x} := λz : t{y/x}. u{y/x} if z 6= x

The α-equivalence, written ≡α is the smallest reflexive, symmetric and transitive relation
on terms such that for all terms t and y /∈ Var(t) λx.t ≡α λy.t{y/x} and if u ≡α v, then
t u ≡α t v, u t ≡α v t, λz : t. .u ≡α λz : t. .v and λz :u. .t ≡α λz : v. .t.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 19

From now on, all terms are considered equal when α-equivalent. This means that
functions and relations defined on terms are all compatible with α-equivalence even though
we usually choose to omit the proof of this property. We could show, by induction, that
α-equivalent terms have the same set of free variables or that if t ≡α r C v, then there is
some u such that tC u ≡α v. From this last implication we easily deduce that C extends
to a well-founded partial order modulo α.

2.1.2 Meta-terms

Meta-terms are terms enriched with meta-variables from an infinite set Z . Meta-variables
are equipped with arities in N and may be applied to meta-terms.

Definition 2.1.5 (Meta-terms). Meta-terms extend terms with a family Zn of infinite
sets of meta-variables indexed by their arity n. The set of meta-terms,MTX ,F ,Z , usually
writtenMT , is defined inductively as follows:

MTX ,F ,Z : t, u, v := x ∈ X | f ∈ F | u v | λx : t. u | Z[t1, . . . , tn] for Z ∈ Zn

If X ∈ Z0, we write X instead of X[]. Note that T ⊆MT .

Definition 2.1.6. We define the finite set MVar(t) := {Z ∈ Z | Z[u] C t} of meta-
variables in a meta-term t ∈MT . The notions of subterm, free variables and closedness
extend to meta-terms.

2.1.3 Substitutions

Definition 2.1.7 (Substitute). An n-ary substitute is an expression λx1 . . . λxn.u (or
λx1 . . . xn.u or λx.u) where u is a meta-term and x1, . . . , xn are pairwise distinct variables.

Note that the new symbol λ means that substitutes are neither terms nor meta-terms
but different objects. In other presentations such as Nipkow’s HORS, substitutes are
included in the meta-terms and substitution is seen as the (meta) β-reduction.

Definition 2.1.8 (Substitution). A substitution σ is defined as a function mapping vari-
ables x ∈ X to meta-terms and meta-variables X ∈ Zn to n-ary substitutes, such that its
domain Dom(σ) := {x ∈ Z ∪ X | σ(x) 6= x} is finite. Substitutions are usually written
σ = {x1 7→ u1, . . . , xn 7→ un}, or σ = {x 7→ u}.

The definitions of (free) (meta-)variables and closedness extend to substitutes and sub-
stitutions in a natural way, FVar(λx.t) := FVar(t)\x and FVar(σ) := FVar(σ(Dom(σ))).

The range of a substitution σ is defined as Ran(σ) := Var(σ)]MVar(σ).
A meta-substitution is a substitution Θ such that Dom(Θ) ⊆ Z .
A valuation is a meta-substitution which range contains no meta-variables.
A term-substitution is a substitution σ such that Dom(σ) ⊆ X ⊇ Ran(σ).

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 20

Definition 2.1.9. A substitution σ inductively defines a capture-avoiding homomorphism
on meta-terms.

fσ := f
xσ := σ(x)

(u v)σ := (uσ vσ)

(λx : t. u)σ := λy : tσ. uσy/x

Z[u]σ :=
{
t{x 7→ uσ} if σ(Z) = λx.t

Z[uσ] otherwise

with Dom(σy/x) := Dom(σ) ∪ {x}, σy/x(x) := y and ∀z 6= x, σy/x(z) := σ(z) for some
fresh variable y of same arity than x outside Ran(σ) ∪ Var(t).

Note that whenever x /∈ Ran(σ), (λx : t. u)σ = λx : tσ. uσ and (λx.t)σ = λx.(tσ).
A term tΘ ∈ T is an instance of the meta-term t if Θ is a meta-substitution.
This homomorphism naturally extends to sequences of (meta-)terms as well as to sub-

stitutions themselves:

στ :=
⊎

x∈Dom(σ)∪Dom(τ)

{
x 7→

{
σ(x)τ if x ∈ Dom(σ)
τ(x) otherwise

}

Meta-terms implicitly represent the set of their instances. Note that valuations are
enough to define the instances of a meta-term t.

The application of substitutions is inductive well-defined since meta-terms syntactically
forbid non-terminating substitutions such as the infamous X[X]{X 7→ λx.X[x]} which is
invalid since no arity can be assigned to the variable X.

Lemma 2.1.10. The application of a substitution Θ is well-defined.

Proof. We define the order of Θ, ord(Θ) to be 0 if Dom(Θ) ⊆ X ∪Z0 and 1 otherwise. We
label every application tΘ with the pair (ord(Θ), t) in {0, 1} × T which is equipped with
the well-founded order (≤,C)lex. The definition of the application tΘ of a substitution
relies exclusively on applications of lower label: for the first two rules it relies on nothing.
For the following two and the very last, it relies on the application of a substitution of the
same order to strict subterms. Finally for the remaining second to last rule, it relies on
both the application of the same substitution to a strict subterm and the application of a
substitution or order 0 while Θ is of order 1.

Lemma 2.1.11. Given u, σ, τ , (uσ)τ = u(στ) (written uστ).

As an example, assume t = λx : f y. Z[x], Θ = {Z 7→ λu.u x y} and σ = {y 7→ x},
then

(tΘ)σ = (λz : f y. z x y)σ = λz : f x. z x x
(tσ)Θ = (λz : f x. Z[z])Θ = λz : f x. z x y
t(Θσ) = t{Z 7→ λz.z x x, y 7→ x} = λz : f x. z x x

Lemma 2.1.12. Term-substitutions define capture-avoiding homomorphisms of terms:
t ∈ T ⇒ tσ ∈ T . Besides if σ, τ are term-substitutions so is στ .

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 21

2.1.4 Positions

The subterms of a term t can be referenced by the position at which they occur inside t.
We define here usual sets of positions.

Definition 2.1.13 (Position). We define positions as usual position in a tree.
Positions are words on the alphabet N of natural numbers.
The empty word is written Λ and is called the root.
Positions are naturally equipped with a well-founded order ≤P such that p ≤P p · q and

its strict part is written <P .
Their inverse versions are respectively written ≥P and >P .
When p ≤P q, we write that q is below p or that p is above q which may seem odd but

is natural as bigger positions in a term correspond to deeper subterms.
This order is not total. We write p#q when neither p ≤P q nor q ≤P p, in which case

we say that p and q are parallel or incomparable.
This means that for all p and q either p = q or p <P q or q <P p or p#q.
p 6≤P q means that p ≤P q does not hold, so that p 6≤P q ⇒ p#q ∨ q <P p.

Definition 2.1.14 (Sets of positions). A set of positions P is said to be parallel if ∀p, q ∈
P, p 6= q ⇒ p#q. Concatenation extends to sets of positions to the right, p ·Q := {p ·q | q ∈
Q} and preserves parallelism. We also extend the ≤P order to sets of positions:

• P ≤P Q iff ∀q ∈ Q,∃p ∈ P, p ≤P q; Note that this does not mean that all words in
P have an extension in Q. In particular we have P ≤P ∅.

• p ≤P Q iff {p} ≤P Q i.e. ∀q ∈ Q, p ≤P q;

• P ≤P q iff P ≤P {q} i.e. ∃p ∈ P, p ≤P q;

• P#Q iff ∀p ∈ P,∀q ∈ Q, p#q.

• P 6≤P Q iff ∀p ∈ P,∀q ∈ Q, p 6≤P q. This implies but is not equivalent to ¬(P ≤P Q);

• P 6≤P q and p 6≤P Q are shortcuts for P 6≤P {q} and {p} 6≤P Q respectively.

All definitions extend to their strict version, <P . We sometimes write Q ≥P P to mean
P ≤P Q. Note that this does not correspond to the above extension of the ≥P relation to
sets of positions.

Definition 2.1.15. Given a position p and a set of positions Q, we define the set of
positions p−1(Q) := {q | p · q ∈ Q}.

Definition 2.1.16 (Orthogonal Union). Given sets of positions P and Q such that P is
parallel and Q >P P , the disjoint union P]Q is called orthogonal and written P ⊗Q.

Lemma 2.1.17. If O = P ⊗Q, then P ≤P O and Q = ⊎
p∈P p ·

(
p−1(O) \ {Λ}

)
= O \ P .

Proof. Straightforward since Q >P P by definition.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 22

Lemma 2.1.18 (Orthogonal Decomposition). Given a set of positions O there exists a
unique (P,Q) such that O = P ⊗Q.

Proof. We define P := {p ∈ O | ∀q ∈ O, q 6<P p} and Q := ⊎
p∈P p ·

(
p−1(O) \ {Λ}

)
. We

check that P ⊗ Q = O. Let P ′ ⊗ Q′ = O be another candidate, then, by Lemma 2.1.17,
P ′ ≥P P ≥P P ′. Assume p ∈ P then p = p′ · o for some p′ ∈ P ′ and p′ = p′′ · o′ for some
p′′ ∈ P . Since P is parallel and p ≥P p′′, we conclude p = p′′, o = Λ, p = p′ ∈ P ′ and
finally P ⊆ P ′. We conclude P = P ′ and by Lemma 2.1.17 we deduce Q = Q′.

P is called the parallel part of O, written O, while Q is called the residual part of O,
written O. Note that O = O]O and that whenever O 6= ∅, O 6= ∅ and O O.

Lemma 2.1.19. Orthogonal decomposition satisfies the following properties:

• If O1 = P1⊗Q1 and O2 = P2⊗Q2 with P1#P2 then O1]O2 = (P1]P2)⊗ (Q1]Q2)

• If O1#O2 then O1]O2 = O1]O2 and O1]O2 = O1]O2

• If S >P O then O ∪ S = O and O ∪ S = O ∪ S

Proof. All are straightforward by definition.

Definition 2.1.20. The set of positions Pos(t) in a term t is defined as follows:

Pos(x) = Pos(f) := {Λ}
Pos(u v) := {Λ}] 1 · Pos(u)] 2 · Pos(v)

Pos(λx : t. u) := {Λ}] 1 · Pos(t)] 2 · Pos(u)

This definition naturally extends to meta-terms, Pos(Z[t1, . . . , tn]) := {Λ}]⊎i i · Pos(ti).
Definition 2.1.21. Assume t is a (meta-)term and p ∈ Pos(t). The subterm of t at
position p, t|p, is inductively defined as follows: t|Λ := t, (u v)|1·p := u|p, (u v)|2·q := v|p,
(λx : t. u)|1·p := t|p, (λx : t. u)|2·p := u|p and Z[t1, . . . , tn]|i·p := ti|p.

We define the symbol at position p in t, t(p) ∈ F ∪X ∪Z ∪{@,λ}, as the head of t|p.

As not all positions are valid in a term, writing t|p implicitly means that p ∈ Pos(t).

Definition 2.1.22. Assume u is a term. We define the following subsets of Pos(u):

• Pos(x, u) := {p ∈ Pos(u) | u|p = x} for x ∈ X , which is parallel;

• VPos(u) := ⋃
x∈X Pos(x, u), which is parallel;

• Pos(Z, u) := {p ∈ Pos(u) | u(p) = Z} for Z ∈ Z ;

• MPos(u) := ⋃
Z∈Z Pos(Z, u).

We define the set of variables bounded above p in u, bv(u, p) := FVar(u|p) \ FVar(u).

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 23

2.1.5 Splitting

Positions are useful to characterize several term transformations. In particular they allow
to define the splitting of a term into an “above” contextual term and a “below” higher-order
substitution.
Definition 2.1.23 (Replacement). Replacement at position p in a (meta-)term t, written
t[w]p, is defined as follows:

t[w]Λ := w Z[u1, . . . , un][w]i·p := Z[u1, . . . , ui[w]p . . . , un]
(λx : t. u)[w]1·p := λx : t[w]p. u (u v)[w]1·p := (u[w]p v)
(λx : t. u)[w]2·p := λx : t. u[w]p (u v)[w]2·p := (u v[w]p)

If we write t[u]p, it is always assumed that p ∈ Pos(t). Replacement at a position p is
not an homomorphism and it is not compatible with α conversion. It should not be seen
as an operation on terms but rather as a way to refer to syntactical changes in a term as
it is done in the definition of splitting.
Definition 2.1.24 (Splitting). Let t be a meta-term and p ∈ Pos(t). We define the
splitting of t at position p as the pair (tp, t

p) formed with a meta-term tp ∈ MT called
the above splitting of t at p and a meta-substitution t

p called the below splitting of t at
p. Assume x = Var(t|p) \ Var(t) ⊆ bv(t, p), then tp := t[Z[x]]p and tp := {Z 7→ λx.t|p}
for a fresh meta-variable Z ∈ Z |x|.

We assume a canonical choice of meta-variables Z and Xi such that the splitting (tp, t
p)

is uniquely defined.
Our use of splitting in this manuscript will be systematic unless it alters readability

for no good reason. This invention permitted by Klop’s notion of meta-variable, is the
only technique we know of which allows to manipulate terms with binders safely, in case
renaming of variables needs to take place independently in a term and in its context, as
will often be the case here.
Lemma 2.1.25 (Properties). For terms t, u, substitution σ and positions p, q ∈ Pos(t):

1. u = u[u|p]p and (u[t]p)|p = t
2. Assuming variables of σ are not bounded in t, (tσ)|p = t|pσ and t[u]pσ = tσ[uσ]p
3. if p#q, t[u]p[v]q = t[v]q[u]p
4. t[u]p·q = t[t|p[u]q]p
5. u = upu

p

6. FVar(up) ∪ FVar(up) = FVar(u) andMVar(up) ∪MVar(up) =MVar(u)
7. if p#q then we have up

q
= uq

p
, t

p
uq = t

q
up, up|q = u|q and up

q = uq

8. up·q
p

= up and upσ = up·q for some σ.

Proof. (1.) By a simple induction on p in both cases. (2.) and (3.) by induction on t.
(4.) By induction on p. (5.) Since Z is fresh in t, by (2.), tpt

p = t[Z[x]]ptp = t[Z[x]tp]p.
We conclude by (1.) since Z[x]tp = t|p{x 7→ x} = t|p. (6.) ⊇ follows from (5.) and ⊆
by definition. (7.) Follows from (3.) and the fact that the introduced meta-variables are
both fresh. (8.) Using (4.) and (5.), σ := tp·q

p.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 24

These properties allow to generalize splitting to parallel sets of positions unambigu-
ously.

Definition 2.1.26 (Parallel Splitting). Given a term u and a set P = {p1, . . . , pn} of
parallel positions in u, we define the splitting of u along P as the meta-term and meta-
substitution (uP , uP) such that uP := u[Z1[x1]]p1 . . . [Zn[xn]]pn (u is cut above P) and
uP := {Zi 7→ λxi.u|pi | 1 ≤ i ≤ n} (u is cut above P) where, for all i, xi is the list of all
variables of u|pi bound in u above pi and Zi is a fresh meta-variable or arity |xi|.

Lemma 2.1.27. If P#Q both parallel, then uPQ = uP]Q, uQuP = uP]Q and uPQ = uQ.

Example 1: Assume u := λx : T. f x 0, P = {21} and Q = {22}. We have:
uP = λx : T. X[x] 0 uP = uQ

P
= {X 7→ λx.f x}

uQ = λx : T. f x Y uQ = uP
Q

= {Y 7→ 0}
uPQ = uQ

P
= λx : T. X[x] Y uP]Q = {X 7→ λx.f x, Y 7→ 0}

2.2 Higher-order term rewriting

2.2.1 Abstract rewriting

Given a binary relation −→ on an abstract set A, we denote with ←− its inverse, ←→ its
symmetric closure, −→= its reflexive closure, −→−→ its reflexive and transitive closure (also
called derivation or rewrite sequence) and ←→←→ or ≡ its closures by reflexivity, symmetry
and transitivity (called convertibility). Relations are identified with a name below such as
−→
β

, −→
L→R

or−→
R

. A triple u−→ v is called a step and chain of steps u1−→ u2−→ · · ·−→ un

is called a sequence.
A element s ∈ A is normal, or in normal form, if there is no t such that s−→ t. If

t is normal and s−→−→ t then s has a normal form, or is weakly normalizing. If there
is no infinite rewriting sequence t−→ t1−→ . . .−→ tn−→ . . ., we say that t is strongly
normalizing or terminating. If for all t ∈ A, t is weakly (resp. strongly) normalizing, then
we say that −→ is weakly (resp. strongly) normalizing.

A local peak is a triple of terms (s, u, t) such that s←− u−→ t; u is the source and
s, t are its reducts. Two terms s, t are joinable, written s ↓ t, if and only if s−→−→ v←−←− t
for some v. If ←−

a
−→
b
⊆ −→

b

= =←−
a

we say that −→
a

and −→
b

sub-commute. If −→
sub-commutes with itself then it is said to have the diamond property. If −→−→a and −→−→

b
sub-commute, then we say that −→

a
and −→

b
commute. If ←→←→ ⊆ −→−→←−←− then we say

that −→ has the Church-Rosser property. If −→−→ has the diamond property then −→ is
said to be confluent and if ←− −→ ⊆ −→−→←−←− we say that −→ is locally confluent. A
relation both confluent and strongly normalizing is convergent.

We assume well-known the following facts:
• Strong normalization implies weak normalization;
• The confluence and Church-Rosser properties are equivalent;

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 25

• Confluence implies the unicity of normal forms for every term;
• In confluent and weakly normalizing systems, (such as convergent systems), all t ∈ A

have exactly one normal form written t↓;
• If −→

a
⊆ −→

b
⊆ −→−→

a
then −→

a
is confluent if and only if −→

b
is confluent;

• Local confluence and strong normalization imply confluence (Newman’s Lemma,
[New42]);

• If −→
a

and −→
b

commute and are both confluent, then −→
a
∪−→

b
is confluent (Hindley-

Rosen, [Hin64, Ros73]);
• If ←−

a
−→
b
⊆ −→

b

=←−←−
a

then −→
a

and −→
b

commute.

2.2.2 Positional term rewriting

We will consider in this manuscript the particular case of relations on the terms, T and
meta-terms, MT . These relations naturally extend to sets of terms, substitutes and
substitutions:

Definition 2.2.1. σ−→ τ iff Dom(σ) = Dom(τ) and ∀X ∈ Dom(σ), σ(X)−→ τ(X).

Definition 2.2.2 (Monotonicity). A relation −→ on terms is monotonic iff for all terms
s, t, u ∈ T and position p ∈ Pos(u), s−→t implies u[s]p−→u[t]p.

Monotonic relations on (meta-)terms will often be represented with arrow signs, −→.
Since monotonic relations have good properties with the positions of a term, they will
often be decorated above by a position p, as in p−→

β
, a set of positions P , as in s p−→

R
t or

by a property that this position or set of positions satisfies, as in u ≥Pp−→−→
R

v. Mentioning a

position in a rewrite step u
p−→
β
v indicates that the reduction operates on the term u at

position p and it is assumed that p ∈ Pos(u).
Relations may also be annotated above with a label. When a relation is annotated

with both a label and a (set of) position(s), we write the label first: l,p−→. We allow to
omit either or both if they are irrelevant or clear from context.

Before labeling steps with an exact position, it is possible to characterize, more gener-
ally, steps that occur below a position or parallel set of positions P .

Definition 2.2.3. Given a term u such that u −→ v and a parallel set P ⊆ Pos(u). If

uP−→σ and v = uPσ, we say that the rewrite step occurs below P and we write u≥PP−→v.

Rewriting below a set of positions P leaves all positions above and incomparable un-
touched. This property will be particularly useful in the study of the critical peak.

Lemma 2.2.4. If u≥Pp−→v, then q ≤P p⇒ u|q−→v|q and q#p⇒ u|q = v|q.

Lemma 2.2.5. If p ≤P q then ≥Pq−→ ⊆ ≥Pp−→ ⊆ ≥PΛ−→ = −→.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 26

Lemma 2.2.6. Assume −→
r

monotonic and s≥Pq−→
r
t. Then ∀u ∈ T , p ∈ Pos(u), u[s]p

≥Pp·q−→
r
u[t]p.

Proof. Since (u[s]p)|p·q = s|q and u[s]p = up{Z 7→ λx.s}.

Definition 2.2.7 (Stability). A relation −→
r

on terms is stable iff for all terms u, v ∈ T
such that u−→

r
v and for all substitution σ, we have uσ−→

r
vσ.

Lemma 2.2.8. If −→
r

is stable, then so is ≥Pp−→
r
.

In this thesis, we insist on using rewrite relations on terms that are both monotonic
and stable. From here on, we will therefore reserve the arrow symbol for relations on
terms that are proven to be both monotonic and stable. Besides, for all relations P−→

r

defined directly with a positional annotation, we write −→
r

:=
⋃
P

P−→
r

and we check that

P−→
r
⊆ ≥PP−→

r
.

2.2.3 Functional rewriting

Two different kinds of reductions coexist, functional and higher-order reduction. Both are
meant to operate on terms. However, rewriting meta-terms will sometimes be needed, in
which case rewriting is intended to rewrite all their ground instances at once. Functional
reduction is defined as follows

Definition 2.2.9 (β-reduction). The β-reduction at position p, p−→
β

, is defined as the

smallest monotonic relation on meta-terms such that (λx : t. u) v Λ−→
β

u{x 7→ v}.

Proof. To justify the use of the annotated arrow symbol, we need to prove that for all p,
β-reduction at position p is stable (monotonicity is already assumed by definition).

By induction on p. If u p−→
β
v then, by definition, we have either:

• p >P Λ and u = u[s]q
p−→u[t]q = v so that sq

−1(p)−→ t and, by induction hypothesis,

sσ
q−1(p)−→ tσ so we can conclude uσ = uσ[sσ]q

p−→uσ[tσ]q = vσ by monotonicity;
• or p = Λ, u = (λx : t. s) w, v = s{x 7→ w} and w.l.o.g. x /∈ Dom(σ) ∪ Ran(σ). It is

then clear, by definition, that uσ Λ−→sσ{x 7→ wσ} = vσ.

2.2.4 Higher-order reductions

The root of a meta-term refers to the root of the tree representing it. Since variables and
symbols have arity 0 in our setting, they only occur at the root of themselves (seen as
terms). We distinguish the root from the more interesting notion of head which refers to
the first non-applicative node encountered while systematically searching the left branch
of applications from the root.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 27

Definition 2.2.10 (Head of a term). Assume a meta-term t. We define:
• its head arity, ha(t), the smallest natural number such that t(1ha(t)) 6= @;
• its head position, hp(t) := 1ha(t);
• its head symbol , hs(t) := t(hp(t)) ∈ F ∪ X ∪ Z ∪ {λ};

For instance t = f x y z has a head arity of 3 and its head symbol is f. Considering the
head of a term plays a key role when defining efficient matching algorithms. The notion
of head symbol is already required to define a safe notion of pattern.

Definition 2.2.11 (Pre-pattern). A pre-redex is a meta-term Z[x] which arguments x are
pairwise distinct variables. A meta-term L is a pre-pattern if and only if its meta-variables
occurrences are all pre-redexes.

Example 1: The meta-terms f λx :Y.X[x, x], f X[a] and f X[Y] are no pre-patterns
since one of their meta-variables is applied to meta-terms different from a variable or more
than once to the same variable.

Pre-redexes in pre-patterns occur at parallel positions which set plays a key rôle.

Definition 2.2.12 (Fringe). The fringe FL of a pre-pattern L is the set of parallel positions
of its pre-redexes. We denote by FPos(L) = {p ∈ Pos(L) | p 6≥P FL} the set of functional
positions of the pre-pattern L. We also define Fβ = {11, 12, 2} for convenience.

Note that the functional positions coincide with the usual notion for first-order terms
and corresponds to positions of potential overlap with other rules.

Lemma 2.2.13. If L is a pre-pattern, σ a meta-substitution and p ∈ Pos(Lσ), then either
p ≥P FL or p ∈ FPos(L) but not both.

Closed pre-patterns, whose variables are all locally bounded, are a particularly conve-
nient class of meta-terms to define unambiguous matching and unification:

Lemma 2.2.14. Assume closed pre-patterns L and G and substitutions σ, τ .
If Lσ = t then we say that t matches L with σ. In that case there exists a unique γ

such that Lγ = t and Dom(γ) ⊆MVar(L).
If Lγ = Gγ then we say that L and G are unifiable and that γ is an unifier.
If Lσ = Gτ andMVar(L) ∩MVar(G) = ∅, then there is a closed unifier γ of L and

G such that Dom(γ) ⊆MVar(L) ∪MVar(G).

Proof. We can chose τ the restriction of σ to MVar(L). Assuming Lγ = Lτ such that
Dom(σ) ⊆ MVar(L) ⊇ Dom(τ) and X ∈ MVar(L). Then L|p = X[x] for some p. If
σ(X) = λz.u and τ(X) = λz.v, we have u{z 7→ x} = L|p = v{z 7→ x} and since the x are
distinct and locally bounded, we have u = v = L|p{x 7→ z}. Therefore γ = τ .

Using the first point, we can assume σ and τ have disjoint domains and can be merged
into γ′ := τ ∪ σ. If Ran(γ′) = x, then we define γ := γ′{x 7→ X} which works.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 28

Computing a matching substitution for L and t (resp. a unifier for L and G) or deciding
it does not exist can be done in polynomial time [FJ19a].

Note that subterms of a pre-pattern are pre-patterns and that if u is a term and
P ⊆ Pos(u) is parallel then uP is a linear closed pre-pattern matching u with uP .

Closed pre-patterns are enough to define higher-order term rewriting.

Definition 2.2.15 (Rewriting). Assume L a closed pre-pattern and R such that Var(R) ⊆
Var(L). We define rewriting with (L,R) at position p such that u p−→

(L,R)
v if and only if

u|p = Lγ and v = u[Rγ]p for some substitution γ. The pair (L,R) is called a rule, a set
of rules R is called a system and if L is linear then (L,R) and −→

(L,R)
are called left-linear.

We write p−→
R

:=
⋃

(L,R)∈R

p−→
(L,R)

.

Closedness of both side and non-introduction of meta-variables are both required to
ensure compatibility with the α-conversion.

To make our splitting notations fully explicit, if u p−→
i
v, we have:

• up = u[X[x]]p and up = {X 7→ λx.u|p} with x variables bound above p in u

• u = upu
p = up{X 7→ λx.u|p} = up{X 7→ λx.Lγ}

• v = up{X 7→ λx.Rγ}, hence vp = up, vp = {X 7→ λx.Rγ} and v|p = Rγ.

It is clear by definition that ≥Pp−→
(L,R)

=
⋃
q≥Pp

q−→
(L,R)

which justifies our positional annotation.

Lemma 2.2.16 (Monotonicity/Stability). Rewriting −→
(L,R)

is the smallest stable monotonic

relation on meta-terms such that L−→
(L,R)

R.

Proof. Let s p−→
(L,R)

t and σ be a substitution. We have both (sσ)|p = s|pσ = Lγσ and

tσ = s[Rγ]pσ = sσ[Rγσ]p, therefore sσ p−→
(L,R)

tσ and −→
(L,R)

is stable. If s p−→
(L,R)

t then, by

Lemma 2.1.25 and definition, (u[s]q)|q·p = s|p = Lγ and u[t]q = u[s[Rγ]p]q = (u[s]q)[Rγ]q·p
and therefore −→

(L,R)
is monotonic. Finally it is easy to see that L Λ−→

(L,R)
R using the identity

substitution for γ.
Let be the smallest stable monotonic relation on meta-terms such that L R.

We’ve already checked that check that ⊆ −→
(L,R)

.

If u−→
(L,R)

v, then, by definition, u|p = Lγ and v = u[Rγ]p for some p. We have L R

and, by stability, Lγ Rγ and, by monotonicity, u = u[u|p]p = u[Lγ]p u[Rγ]p =
v.

Note that functional reduction can be seen as a particular rewriting.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 29

Lemma 2.2.17. Assuming Lβ := (λx :T.U [x]) V and Rβ = U [V], we have p−→
β

= p−→
(Lβ ,Rβ)

.

We can now define proper higher-order reduction which results from rewriting of rules
which left-hand sides are higher-order patterns in Miller’s or Nipkow’s sense [MN98],
although they need not be typed. In contrast with HORS, in our setting, the root of
a term is often an application which is not considered a symbol. In order to define the
proper notion of pattern, forbidding overlaps with the β rule, we need the head term of a
pre-pattern to be a symbol.

Definition 2.2.18 (Rewriting). A pattern is a F-headed β-normal closed pre-pattern
which pre-redexes are unapplied. If L is a pattern then (L,R) is written L → R and is
called a (higher-order) rewrite rule. Systems of rewrite rules are called rewrite systems.
The relation −→

L→R
is called higher-order rewriting.

Example 2: The term L = f (λx : N. λy : N. λz : N. g X[x, z] X[x, y]) is a pattern. Its
pre-redexes are the terms X[x, z] and X[x, y]. Its fringe is the set FL = {2412, 242}.

The term L = f (λx : N. λy : N. λz : N. g X[x, y, z]) (a X) is also a pattern, FL = {125, 22}.
The meta-terms λx : N. X, f ((λx : N. x) a), f x, f λx :Y.X[x, x], f X[a], f X[Y] and

f (X Y) are no patterns. The first one is headed with an abstraction, the following one
is not β-normal, the one after is not closed, the next three are not even pre-patterns and
the last one contains an applied pre-redex.

All the conditions on patterns are required to prevent overlaps of rewrite rules with
β-reduction. Left-hand sides not in β-normal forms contain a β-redex within. If applied,
λ-headed pre-pattern overlap below β at position 1 6≥P Fβ. Finally, applied meta-variables
create β redexes if instantiated with abstractions such as (f (X t)){X 7→ λz : N. z}.

This presentation allows to clearly separate the object language of terms (which has
no meta-variables), from the meta-language of meta-terms (which has meta-variables).
Rules, critical pairs and splittings belong to the meta-language, which serves analyzing
the properties of the object language. For instance, rules are pairs of closed terms. They
may contain meta-variables, but do not admit free variables. The role taken by variables
in first-order rules is therefore taken here by meta-variables of arity zero.

In the following, R (resp. Rll) is always a finite set of (resp. left-linear) rewrite rules.

Example 3: Let L=der (λx : R. times A F [x])→ times A (der λy : R. F [y])=R be
a rule. If we chose σ = {A 7→ 2, F 7→ λx.x} then we have Lσ = der (λx : R. times 2 x)
and Rσ = times 2 (der λy : R. y), hence der (λx.times 2 x) Λ−→

L→R
times 2 (der λy : R. y).

Note that, for instance, der (λx : R. times x x) is a normal form.

Definition 2.2.19 (Head reduction). Assume t p−→u. We say that t rewrite at the head
to u if p ≤P hp(t). Otherwise we say that t rewrite below the head to u.

For instance, assuming R = {f X → X}, then f (λx.x) c x 11−→
R

(λx.x) c x 1−→
β

c x both
rewrite steps occurring at the head.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 30

Lemma 2.2.20. If a term t rewrites to u below the head, then t and u have the same
head symbol and arity: ha(t) = ha(u) and hs(t) = hs(u).

If a term t β-rewrites at the head, then hs(t) = λ and ha(t) > 0.
If a term t rewrites at the head with rule l→ r, then hs(t) = hs(l) and ha(t) ≥ ha(l).

Lemma 2.2.21. If −→ is stable and monotonic and σ−→τ then uσ−→−→uτ .

Proof. By induction on u. The u = x and u = f cases are both straightforward. If
u = u1 u2, u = λx :u1. u2 or u = X[u] with X /∈ Dom(σ) then, by induction hypothesis,
∀i, uiσ−→−→uiτ and we conclude by monotonicity. Otherwise u = X[u] with Xσ = λx.w,
Xτ = λx.w′ and either w = w′ or w−→w′. By induction hypothesis, uσ−→−→uτ and
uσ=w{x 7→uσ}−→−→w{x 7→uτ} (by monotonicity) −→w′{x 7→uτ} (by stability) = uτ .

Corollary 2.2.21.1. Let u−→−→
R1

v and σ−→−→
R2

τ . Then, uσ −→−→
R1∪R2

vτ .

Proof. We have both uσ−→−→
R2

uτ −→−→
R1

vτ and uσ−→−→
R1

vσ−→−→
R2

vτ by stability.

2.2.5 Parallel rewriting

We define parallel rewriting as the simultaneous rewriting at a parallel set of positions.
Note that it is weaker than Tait’s notion of parallel rewriting which we call here orthogonal
rewriting.

Lemma 2.2.22. If p#q then p−→ and q−→ commute: p−→ q−→ = q−→ p−→.

Proof. By definition since u[Rγ]p|q = u|q and u[Rγ]p[Dθ]q = u[Dθ]q[Rγ]p. Both properties
are proven by induction on u and definition of replacement.

Definition 2.2.23. Assume P = {p1, . . . , pn} a parallel set of positions, we define parallel
rewriting at positions P as the relation P=⇒ := p1−→· · · pn−→.

Proof. By Lemma 2.2.22, P=⇒ does not depend on the ordering of the elements of P .

Lemma 2.2.24. Parallel rewriting satisfies the following properties:
• Monotonicity: if s P=⇒t and q∈Pos(u) then u[s]q

q·P=⇒ u[t]q.

• Stability: if s P=⇒t then sσ P=⇒tσ.

• {p}=⇒ = p−→.

• If u P=⇒v then uP Λ−→σ such that v = uPσ.

• If P#Q then P=⇒ Q=⇒ = Q=⇒ P=⇒ = P]Q=⇒.

Proof. By definition and simple properties in Lemma 2.1.25.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 31

Parallel rewriting can be done simultaneously with a set R of rewrite rules written
=⇒
R

. Note that ⋃r∈R=⇒
r
⊆ =⇒

R
but the latter may mix several rules of R in a single

rewrite step.

Definition 2.2.25. A set V ⊆ X ∪ Z is self-nested in u if there is p >P q such that
u(p) ∈ V and u(q) ∈ V . In that case we say that u itself is also self-nested.

Example 4: The set {X,Y } is self-nested in f X[g Y] but not in f Z[X,Y] X[Z].

Lemma 2.2.26. If σ=⇒τ and Dom(σ) is not self-nested in u then uσ=⇒uτ .

Proof. By induction on u, similar to Lemma 2.2.21. The u = x ∈ X case is straightforward.
In the u = u1 u2 and u = λx :u1. u2 cases, the uiσ=⇒uiτ steps from induction hypothesis
can be grouped together in a single uσ=⇒uτ . This also works for the case of u = X[u]
with x /∈ Dom(σ). If u = X[u] and X ∈ Dom(σ) then we have σ(X) = λz.t for some
t−→s. Since Dom(σ) is not self-nested in u, Dom(σ) and Var(u) ∪MVar(u) are disjoint
and uσ = u. Therefore, by stability, uσ = t{z 7→ u}=⇒s{z 7→ u} = uτ .

Corollary 2.2.26.1. If σ a term-substitution such that σ=⇒τ then uσ=⇒uτ .
If L is a pre-pattern and σ a meta-substitution such that σ=⇒τ then Lσ=⇒Lτ .

2.3 The lambda-Pi-calculus modulo
The lambda-Pi-calculus modulo (λΠ≡) is an extension of the Logical Framework (λΠ)
[HHP93b]. In λΠ≡, typing judgments are considered on a pre-defined signature, Σ, which
not only introduces globally defined typed symbols but also extends the conversion rule
with type-preserving higher-order rewrite rules. This means that the conversion rule is
replaced with a convertibility modulo βR and the axiom rule may introduce symbols from
the signature (cf Figure 2.1).

Several formalisms were suggested to define an extension of the lambda-Pi-calculus
with rewrite rules from Cousineau and Dowek’s λΠ-modulo [CD07] where rules are first
order (in a higher-order setting) and defined with a context of types, to Blanqui’s Reduc-
tion Type Systems [Bla01] adapted by Saillard [Sai15b] and in more recent work by Assaf
[Ass15b]. We stick here to Assaf’s presentation which is burdened with fewer syntactical
restrictions on the considered terms. Our criteria for signature well-formedness are how-
ever closer to the ones introduced by Saillard. Whenever our choices significantly vary
from other presentations, we will be careful to point it out. The many subtleties concealed
in these variants are very well covered in the in-depth work of Saillard which we strongly
recommend.

The expressiveness of rewriting makes this extended logical framework ideal to encode
other logics. An encoding of a system in λΠ≡ is nothing more than a well-formed signature
Σ. Whenever all rewrite rules in a signature Σ are type preserving and the correspond-
ing rewrite system is confluent, then type checking in the signature Σ is decidable. In

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 32

particular, the Dedukti software, developed in the Deducteam (Inria) implements a type
checking algorithm for this type system.

https://deducteam.github.io/

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 33

2.3.1 Typing in the Logical Framework

Definition 2.3.1 (λΠ≡ Syntax). The syntax of λΠ≡ is as follows:
(Variable) x, y ∈ X ∪ Z
(Symbol) c ∈ F

(Sort) s ∈ {∗,�}
(Term) t, u,A, l, r := x | s | t u | λx :A. t | Πx :A. t

(Context) Γ := ∅ | Γ, x : A
(Signature) Σ := ∅ | Σ, c : A | Σ, l→ r

(Typing Judgment) := Σ; Γ `D t : A
(Context WF Judgment) := Σ `D Γ WFD

(Signature WF Judgment) := Σ WFD

Judgments are identified with the property that they are derivable using the corre-
sponding set of inference rules. The signature Σ can often be inferred from context in
which case it may be omitted.

The list of rewrite rules l → r in a signature Σ is called its rewrite system, written
RΣ or R if Σ can be inferred. The list of all symbol declarations (c : A) ∈ Γ is called its
signature, written SΣ or S.

For this system and all other featuring a dependent product, we allow the notations
A→ B := Πx :A.B if x /∈ Var(B) and Πx1 . . . xn :A.B := Πx1 :A. · · ·Πxn :A.B. Note
that dependent product types was not syntactically incorporated in our definition of terms.
It can either be seen as an applied special symbol, Πx :A. t := pi λx :A. t or as an extra
symbol of arity 2, like λ or @, Πx :A. t := π(A, (x)t). In either case, the symbol π
representing product types may not be the head of rewrite-rules left-hand sides.

Definition 2.3.2 (Conversion). Assume Σ a signature and R the set of rewrite rules in
Σ. Then two terms t and u are convertible, written t ≡βR u, if t←→←→

βR
u.

We avoid the notation ≡βΣ to emphasize the fact that only rewrite rules from the
signature define the conversion, as opposed to other relations, such as η, where typing and
conversion are somewhat intertwined.

Definition 2.3.3 (Well-Typed Term). A term t has type A in the signature Σ and context
Γ if the judgment Σ; Γ `D t : A is derivable using the inference rules of Figure 2.1.

Definition 2.3.4 (Well-Formed Context). A context Γ is well-formed with respect to a
signature Σ if the judgment Σ `D Γ WFD is derivable by the inference rules of Figure 2.2.

For a given signature Ω, for instance encoding another system, we define the system
D[Ω] as exactly D with a prefix signature Ω so that we have:

Σ; Γ `D[Ω] t : A ⇐⇒ Ω,Σ; Γ `D t : A
Σ `D[Ω] Γ WFD[Ω] ⇐⇒ Ω,Σ `D Γ WFD
Σ WFD[Ω] ⇐⇒ Ω,Σ WFD

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 34

Σ; Γ `D ∗ : �
P∗

(c : A) ∈ Σ
Σ; Γ `D c : A

PΣ
(x : A) ∈ Γ

Σ; Γ `D x : A
PΓ

Σ; Γ `D A : ∗ Σ; Γ, x : A `D B : s s ∈ {∗,�}
Σ; Γ `D Πx :A.B : s

PΠ

Σ; Γ `D Πx :A.B : s Σ; Γ, x : A `D t : B s ∈ {∗,�}
Σ; Γ `D λx :A. t : Πx :A.B

Pλ

Σ; Γ `D t : Πx :A.B Σ; Γ `D u : A
Σ; Γ `D t u : B{x 7→ u}

P@

Σ; Γ `D t : A Σ; Γ `D B : s s ∈ {∗,�} A ≡βR B
Σ; Γ `D t : B

P≡

Figure 2.1: Inference rules for typing in λΠ≡

Σ `D ∅ WFD
WF∅

Σ `D Γ WFD Σ; Γ `D A : ∗ x /∈ Γ
Σ `D Γ, x : A WFD

WFX

Figure 2.2: Inference rules for context well-formedness in λΠ≡

Lemma 2.3.5 (Weakening). The following holds for all Σ, Σ′, Γ, Γ′, t and A.
If Σ; Γ `D t : A then Σ; Γ,Γ′ `D t : A.
If Σ; Γ `D t : A then Σ,Σ′; Γ `D t : A.
If Σ `D Γ WFD then Σ,Σ′ `D Γ WFD.

Proof. By simple inductions on the derivation.

Lemma 2.3.6 (Substitution). Assume Σ; Γ `D t : A and Σ `D Γ, x : A,Γ′ WFD.
Then Σ `D Γ,Γ′{x 7→ t} WFD and for all u, B such that Σ; Γ, x : A,Γ′ `D u : B, we also
have Σ; Γ,Γ′{x 7→ t} `D u{x 7→ t} : B{x 7→ t}.

Proof. We first prove the typing of u{x 7→ t} by induction on typing the derivation of u
then deduce the well-formedness of Γ,Γ′{x 7→ t} by induction on the length of Γ′. The
typing derivation of t provides, together with the weakening lemma, the base case PΓ
for the introduction of the x variable. The introduction of a variable (y : B) ∈ Γ is
straightforward since Σ `D Γ, x : A,Γ′ WFD ensures that x /∈ FVar(B). All other cases
follow by induction hypothesis.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 35

2.3.2 Checking rules and signatures

Definition 2.3.7 (Product Compatibility). A signature Σ satisfies the product compati-
bility property, written PC(Σ), if for any well-formed context Γ and derivable judgments
Σ; Γ `D Πx :A1. B1 : s and Σ; Γ `D Πx :A2. B2 : s such that Πx :A1. B1 ≡βR Πx :A2. B2,
we have A1 ≡βR A2 and B1 ≡βR B2.

Lemma 2.3.8. If Πx :A.B−→−→
βR

t, then t = Πx :A′. B′ such that A−→−→
βR

A′ and B−→−→
βR

B′.

Proof. By induction on the length of the reduction. Since no rewrite rule matches a
product at the head, reduction steps occur in either its domain or its codomain.

Lemma 2.3.9. If −→
β
∪ −→

Σ
is confluent, then PC(Σ).

Proof. We assume confluence of −→
β
∪ −→

Σ
. Assuming Πx :A.B ≡βR Πx :C.D, then

Πx :A.B−→−→
βR

t←−←−
βR

Πx :A′. B′. By Lemma 2.3.8, t = Πx :C.D such that A−→−→
βR

C←−←−
βR

A′

and B−→−→
βR

D←−←−
βR

B′ which allows to conclude.

Definition 2.3.10 (Type Preservation). A rewrite rule l→ r is type preserving or well-
typed in a signature Σ, written Σ �D l → r, if, for any valuation σ, any context Γ
well-formed in Σ and any term T , if Σ; Γ `D lσ : T , then Σ; Γ `D rσ : T .

Definition 2.3.11 (Well-Formed Signature). A signature Σ is well-formed, WF(Σ), iff

• PC(Σ)

• for all c : A ∈ Σ, Σ;∅ `D A : s for s ∈ {∗,�}

• for all l→ r ∈ Σ, Σ �D l→ r

Definition 2.3.12 (Subject reduction). A well-formed signature Σ has the subject re-
duction property, written SR(Σ), iff for all terms u, v, A and context Γ if u−→

βΣ
v and

Σ,Γ `D u : A then Σ,Γ `D v : A.

Definition 2.3.13 (Uniqueness of Types). A well-formed signature Σ has the uniqueness
of types property, written UT(Σ), iff for all terms u, A, B and context Γ if Σ,Γ `D u : A
and Σ,Γ `D u : B then A ≡βR B.

Theorem 2.3.14. For all signature Σ, if WF(Σ) then UT(Σ) and SR(Σ).

Lemma 2.3.15 (Decidability of Type-Checking). Assume Σ is a signature which set R
of rewrite rules is such that −→

βR
is confluent and strongly normalizing when restricted to

the subset of terms which are well-typed in a context well-formed in Σ. Then type checking
is decidable.

In practice, confluence is often required to prove the strongly-normalizing condition
that allows type checking to be decidable.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 36

Lemma 2.3.16 (Inversion). If WF(Σ), Σ `D Γ WFD and Σ; Γ `D t : T , then:

t = x ∈ X ⇒ ∃A. (x : A) ∈ Γ ∧A ≡βR T
t = c ∈ F ⇒ ∃A. (c : A) ∈ Σ ∧A ≡βR T
t = s ∈ {∗,�} ⇒ s = ∗ ∧ T ≡βR �
t = Πx :A.B ⇒ ∃s. Σ; Γ `D A : ∗ ∧ Σ; Γ, x : A `D B : s ∧ T ≡βR s
t = λx :A. t ⇒ ∃B, s. Σ; Γ, x : A `D t : B ∧ Σ; Γ `D Πx :A.B : s ∧ T ≡βR Πx :A.B
t = u v ⇒ ∃A,B. Σ; Γ `D u : Πx :A.B ∧ Σ; Γ `D v : A ∧ T ≡βR B{x 7→ v}

Lemma 2.3.17 (Subterm). Assume Σ well-formed, Σ `D Γ WFD, Σ; Γ `D t : A and
uC t. Then Σ; Γ,Θ `D u : B for some context extension Γ,Θ well-formed in Σ.

Proof. By induction on t using Lemma 2.3.16.

Our presentation differs from the usual presentation of the λΠ≡ as it allows terms
to be well-typed in an ill-typed context or signature. Considering typing judgment with
an ill-typed context or signature is not usually useful however removing this constraint
defines a system closer to the implementation, where contexts are assumed and maintained
well-typed rather than checked at every occurrence of a variable.

Definition 2.3.18. We define λΠWF
≡ the variant of λΠ≡ where the P∗, PΣ and PΓ rules

have the extra Σ `D Γ WFD premise and the WF∅ rule has the extra WF(Σ) premise.
Judgments in this system are written with `WF

D .

Lemma 2.3.19. Σ `WF
D Γ WFD if and only if WF(Σ) and Σ `D Γ WFD.

Σ; Γ `WF
D t : A if and only if WF(Σ), Σ `D Γ WFD and Σ; Γ `D t : A.

Proof. ⇒ is done by induction on the derivation of Σ `WF
D Γ WFD. The base case is

covered with the extra premise in WF∅. ⇐ is done by induction on the derivation of
Σ `D Γ WFD using WF(Σ) for base case.

Both sides are again done by induction on the typing derivation. ⇒ uses either induc-
tion hypothesis on typing premise or the extra premise together with previous point.

We reuse the same notation for all other type systems featuring typing and well-
formedness judgments.

2.3.3 Checking signature well-formedness

The type preservation property of a rewrite rule depends on the signature Σ in which
this rule is considered. In order to check the well-formedness of a extended signature it is
therefore not only necessary to check the added rules and declarations but also the recheck
all previously introduced rewrite rules. This definition is therefore highly unpractical and
calls for a stronger but more stable criteria to use in practice.

Definition 2.3.20 (Permanent Type Preservation). A rewrite rule l→ r is permanently
well-typed in a signature Σ, written Σ `D l → r, if it is well-typed for any signature
extension that satisfies product compatibility: ∀Σ′,PC(Σ,Σ′) =⇒ Σ,Σ′ �D l→ r.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 37

Note that permanently well-typed rules are also well-typed in the same signature if it
satisfies product compatibility.

Lemma 2.3.21. Both Σ; Γ `D t : A and Σ `D l → r, seen as properties of the signature
Σ, are stable by signature extension.

Proof. By definition for Σ `D l → r. By induction on the derivation for Σ; Γ `D t : A.
A signature extension extends the conversion relation, by adding new rules, and therefore
extends the well-typedness relation, by extending the P≡ and PΣ inference rules.

Note however that the type preservation property, Σ �D l → r, is not preserved since
the assumption that the left-hand side is well-typed gets weaker as the typing relation is
extended.

Example 1: Consider the signature Σ := {A : ∗, B : ∗, a : A, f : B → ∗, f a−→ a}.
No instance of the rewrite rule’s left-hand side is well-typed hence the rule itself is well-
typed and Σ is well-formed. However, the signature extension Σ, B→ A is ill-formed. This
ill-formedness is not due to the added rewrite rule, which is well-typed. It rather comes
from the previously defined rule which becomes ill-typed by adding the new rule since its
left-hand side now matches some well-typed terms.

∅ WFD
WF∅

Σ WFD Σ;∅ `D A : s s ∈ {∗,�} c /∈ Σ
Σ, c : A WFD

WFF

Σ WFD −→
βΣΞ

confluent Ξ = (li → ri)i ∀i, Σ `D li → ri

Σ,Ξ WFD
WFR

Figure 2.3: Typing rules for signature strong well-formedness

Definition 2.3.22 (Strong Well-formedness). If Σ WFD can be derived using the rules
of Figure 2.3, then Σ is said to be strongly well-formed.

Lemma 2.3.23. If Σ is strongly well-formed, then it is well-formed.

Proof. Assume Σ WFD and R is the set of rewrite rules in Σ. Then −→
βR

is confluent and
by Lemma 2.3.9, PC(Σ). By induction on the derivation of Σ WFD, for all c : A ∈ Σ
(resp. l → r ∈ Σ), ∆;∅ `D A : s for some s ∈ {∗,�} (resp. ∆ `D l → r) for some ∆
prefix of Σ. By Lemma 2.3.21, we have Σ;∅ `D A : s (resp. Σ `D l → r and therefore
Σ �D l→ r).

Dedukti relies on these inference rules to check the well-formedness of signatures.
This criterion is an approximation of the signature well-formedness property. It is further

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 38

approximated by the fact that rule (strong) well-formedness is undecidable and can only
automatically be checked using an incomplete criteria.

The study of the (strong) well-typedness property of higher-order rewrite rules is a
whole research area which we cannot describe in detail here. In Saillard’s [Sai15b] and
Assaf’s [Ass15b] presentations, rewriting is defined using HORS which relies on a “meta” λ-
calculus of substitution where meta-variables are treated quite similarly to usual variables.
It is tempting, in that setting, to infer and assign (dependent product) types to the meta-
variables of a rewrite rule, using the fact that we are considering exclusively well-typed
instances of the left-hand sides. An occurrence X[x, y] in the left-hand side of a rewrite
rule can be seen as the application of X to locally bounded variables x and y, yielding a
term X x y which allow to infer a type for X from the declared types of x and y and the
expected type of the pre-redex. These typing assumption could then be used to ensure the
well-typedness of occurrences of these variables in the right-hand side, just like we would
do for the first order case where matching variables from rewrite rules are little more than
simple variables.

Lemma 2.3.24. Let Σ be a signature such that −→
βΣ

is confluent and l → r a rewrite

rule. If ∆ is a context such that Dom(∆) =MVar(l), Σ `D ∆ WFD, Σ; ∆ `D l : A and
Σ; ∆ `D r : A, then Σ `D l→ r.

This easy criteria is already enough to check the well-formedness of many signatures,
including the encoding of most type systems. Saillard’s implementation already offers a
more complete criteria relying on constraints inferred from the well-typedness of left-hand
sides and used to type-check the right-hand side while still heavily relying on the typing
of meta-variables.

This criteria is far from complete for several reasons:
• First of all, the order of the arguments of a meta-variable is not supposed to be

relevant, X[x, y] and X[y, x] are two equivalent pre-redex matching the same terms,
yet one of them may be typable while the other is not.

• Second of all, substitutes are λ-meta-terms, not λ-terms. In particular their abstrac-
tions are not annotated. It could be tempting, for instance, to allow partially applied
meta-variables, either on the RHS or the (non-linear) LHS: f (λx.X[x]) X → X.
However these extensions do not behave well with, respectively, the logic of λΠ≡ and
the meta theory of term rewriting.

• Finally, we need to consider the cases where a meta-variable is not applied to all
the available locally bounded variables. In a local context, inside a pattern, where
both x and y are locally bounded, the partially applied F [y] is a valid pre-redex.
However, because of dependent types, the type of y and F [y] may both very well
depend on x and therefore it is impossible to provide a type for F .

In most cases, however, meta-variables are used in their fully applied version and variables
can always be assumed ordered by depth making the first and third point.

In all generality the correct way to assign types to meta-variable is to consider substi-

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 39

tutes: X : (λx.T) rather than (dependent) product types.

Example 2: Consider the following signature.

Σ :=


A : ∗ , T : A→ A→ ∗ , a : A , b : A ,
f : Πa : A. (Πx : A. T a x→ T x a)→ T a b→ T b a
f a (λx : A. λy : T a x. Z[x, y]) T −→ Z[b, T]
f a (λx :X.λy :Y [x]. Z[y]) T −→ Z[T]

The first rewrite rule is well-typed by Lemma 2.3.24 using the context of meta-variables
∆ := {Z : Πx : A : T a x→ T x a. , T : T a b} well-typed in Σ and in which both sides of
the rule are well-typed.

The second rule is trickier as the left-hand side is ill-typed in all context of meta-
variables. We consider a well-typed instance of the left-hand side with valuation σ in a
context Γ and signature extension Σ′. By inversion (Lemma 2.3.16) we are able to deduce
the following typing relation in signature Σ′ and context Γ:

`D Tσ : T a b x : Xσ `D Y [x]σ : ∗ Xσ ≡βR A
`D Xσ : ∗ x : Xσ, y : Y [x]σ `D Z[y]σ : T x a Y [x]σ ≡βR T a x

Using the conversion properties together with the substitution lemma 2.3.6 on the last
typing condition, we get y : T a b `D Z[y]σ : T b a and then `D Z[T]σ : T b a which is the
same type as the left-hand side, therefore the rule is permanently type-preserving.

We implemented an extension of the existing criteria with Genestier (unpublished) in
order to check the well-formedness of the encodings of Coq (this manuscript) and Agda
for which the usual criteria was not powerful enough. All the above criteria are subsumed
by the more general criteria found in the work of Blanqui [Bla20] but not yet implemented
in Dedukti. The type preservation property of all the λΠ≡ signatures considered from
here on have been checked using the Dedukti tool and the proof of this property will
therefore be left to the reader. While Lemma 2.3.24 is often too restrictive to apply, the
proof using definition is seldom more complicated than Example 2.

2.3.4 Syntactical Stratification

Lemma 2.3.25 (Stratification). Assume Σ; Γ `WF
D t : A. Then either

• Σ; Γ `D A : ∗, in which case we say that t is an object,
• Σ; Γ `D A : �, in which case we say that t is a type,
• A = �, in which case we say that t is a kind.

Proof. By induction on Σ; Γ `D t : A.
• P∗: A = � and t is a kind.
• PΣ: Σ = Σ1;x : A; Σ2. Since WF(Σ), either Σ1;∅ `D A : ∗ or Σ1k;∅ `D A : �. By

weakening, t is either an object or a type.
• PΓ: Since Σ `D Γ WFD, by weakening, t is an object.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 40

• PΠ: Either A = � and t is a kind or A = ∗ and t is a type.
• Pλ, P≡: Either `D A : � and t is a type or `D A : ∗ and t is an object.
• P@: By Lemma 2.3.16 (inversion), Σ; Γ, x : A `D B : s and by Lemma 2.3.6 (substi-

tution), Σ; Γ `D B{x 7→ t} : s ∈ {∗,�} and t is either an object or a type.

This classification of well-typed terms can actually be done syntactically. In fact some
presentations, such as Saillard’s [Sai15b], syntactically enforce it in the definition of terms
by separating object symbols and type symbols of the signature.

Definition 2.3.26. Assume a partition F = FO] FT of symbols.
A term t is syntactically well-formed, written SWF(t), if either t = � or t is repre-

sented by the following grammar:

(Syntactical Object) t, u, v := x ∈ X | c ∈ FO | u v | λx :U. t
(Syntactical Type) T ,U, V := C ∈ FT | U v | λx :U. T | Πx :U. T
(Syntactical Kind) K := ∗ | Πx :U.K

A context Γ is syntactically well-formed, written SWF(Γ), if all its type annotations
are syntactical types.

A signature Σ is syntactically well-formed, written SWF(Σ), if symbols in FO have
syntactical types, symbols in FT have syntactical kinds and rewrite rules (l → r) ∈ Σ are
such that l and r are both syntactical objects or both syntactical types.

Lemma 2.3.27 (Level Reduction). If t p−→
β
u and t is a syntactical object (resp. type, resp.

kind) then so is u. Besides, SWF(t|p) and either
• t|p is a syntactical object and the reduction is at the type level, written t p−→

β∗
u;

• t|p is a syntactical type and the reduction is at the kind level, written t p−→
β�

u.

Proof. By a simple induction, the SWF property is stable by subterm and β-redexes can
only be syntactical objects or types.

It is possible to consider exclusively syntactically well-formed terms. This would define
a restricted system in which both β-reduction and Σ-rewriting are restricted to syntac-
tically well-formed terms. The corresponding conversion is a bit better behaved since
pathological terms, such as (max ∗ Nat) or λx : 0.� are syntactically forbidden. Such
terms may therefore no longer interfere as middle-steps in the conversion between two
well-typed terms.

Restricting the set of terms defines a more constrained system which may however be
less expressive. However if −→

βΣ
is confluent, then both systems enjoy subject reduction,

their conversion relations coincide and, therefore, they also define the same typing relation:

Lemma 2.3.28. Assume −→
βΣ

confluent and WF(Σ), then the following holds for some
symbol partition F = FO] FT .

1. If SWF(Σ) and SWF(Γ) and Σ; Γ `WF
D t : A then SWF(t) and

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 41

(a) if t is an object, then t is a syntactical object with relation to FO and FT ;
(b) if t is a type , then t is a syntactical type with relation to FO and FT ;
(c) if t is a kind , then t is a syntactical kind with relation to FO and FT ;

2. If SWF(Σ) and Σ `WF
D Γ WFD then SWF(Γ).

3. SWF(Σ).

Proof. We choose FO and FT such that for all (c : A) ∈ Σ, Σ;∅ `D A : ∗ if and only if
c ∈ FO. The three proofs are done by induction on the derivation of the λΠWF

≡ judgment.
1. Using SWF(Σ) for PΣ, SWF(Γ) for PΓ. Case P≡ requires confluence, SR and

Lemma 2.3.27. All other cases use induction hypothesis.
2. By induction hypothesis and using (1.).
3. By induction hypothesis and using (1.) and (2.).

This means that in confluent and well-formed signatures, the restricted syntax of syn-
tactically well-formed terms is actually large enough to encompass all possible well-typed
terms and well-formed signatures and contexts of the (unconstrained) λΠ≡.

Confluence of −→
βR

usually needs to be proven first as it is required to ensure many
critical properties of a λΠ≡ signature. Since subject reduction is usually derived from
confluence, the proof of confluence cannot rely on typing and must hold for the full untyped
λ-calculus.

Even if we cannot rely on well-typedness to prove confluence, syntactical well-formedness
is stable by (untyped) rewriting and β-reduction in syntactically well-formed contexts. Re-
stricting the λ-calculus to syntactically well-formed terms allows to define a variant of λΠ≡
just as well-behaved and offering more syntactical guarantees that can be used in the proof
of properties of the rewrite system, such as confluence.

Lemma 2.3.29. When restricted to syntactically well-formed terms:
1. −→

β
, −→

β∗
and −→

β�
are confluent;

2. p−→
β

= p−→
β∗
] p−→

β�
;

Proof. 1. By confluence of β on all terms, preservation of syntactical well-formedness and
preservation of redexes syntactical category.

2. By case analysis on t|p, since neither syntactical kinds nor � can be β-redexes.

Lemma 2.3.30. Syntactically well-formed terms are β� strongly normalizing.

Proof. The proof is done by induction on well-formed terms t. We assume, by contradic-
tion, an infinite sequence of β�-reductions originating from t.

This sequence necessarily contains a step at the root, otherwise they would all take
place in either immediate subterms of t allowing to extract an infinite sub-sequence of steps
occurring exclusively in one of these strict subterms which are all strongly normalizing by
induction hypothesis. This means that the assumed infinite sequence eventually reaches
a term that is a β�-redex: t = A b

>PΛ−→−→
β�

(λx :U. T) w Λ−→
β�

T{x 7→ w} = t′. By induction

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 42

hypothesis, A and b are strongly normalizing. So are their respective reducts, λx :U. T
and w, and therefore so is T .

We consider the set, S 3 t′, of terms built from a β�-reduct, T ′, of T in which instances
of x are substituted with (possibly distinct) β�-reducts of w:

S :=
{
T ′[u1]p1 · · · [un]pn | T −→−→

β�
T ′ ∧ ∀i, pi ∈ Pos(T ′, x) ∧ w−→−→

β�
ui

}

Since the ui are objects, even if they are λ-abstractions, they cannot create new β�-
redexes at the kind level when substituted in T ′. Therefore, S is stable by β�-reduction.
Assuming that S 3 T ′[u1]p1 · · · [un]pn

p−→
β�

s, then either

• p ≥P pi for some i and s = T ′[u1]p1 · · · [vi]pi · · · [un]pn for some vi such that ui−→
β�

vi;

• or ∀i, pi#p or pi ≥P p · Fβ and s = S[v1]q1 · · · [vn]qn for some S such that T ′ p−→
β�

S.

In both cases, s ∈ S.
Since T is strongly normalizing, there can only exists a finite number of steps of the

latter kind which means that, starting from a certain term s = T ′[u1]p1 · · · [un]pn , all
subsequent steps occur in one of the n subterms u1, . . . , un of s. We conclude since these
subterms are all reducts of w and therefore strongly normalizing.

Note that the number of β�-redexes in t may be non-decreasing due to upward-created
β-redexes. For instance, assume the well-formed signature Σ = A : ∗, a : A, we have
(λx : A. λy : A. A) a a −→

β�
(λy : A. A) a −→

β�
A and the first reduction step does not decrease

the number of β�-redexes. In fact that number may greatly increase when considering the
duplication of potential redexes in the lambda annotations of the substituted term.

2.4 Term rewriting formalisms

2.4.1 Existing formalisms

There exists several formalisms in the literature fit to properly represent term rewriting in a
way compatible with the usual functional β-reduction, and rewrite reduction defined as the
instances of rewrite rules. Terms of the lambda-Pi calculus modulo (λΠ≡, see Section 2.3)
are dependently typed but rewritten in an untyped setting. Therefore we focus here on
formalisms where the definition and study of term rewriting is purely syntactical and does
not rely on any form of typing condition of the rewritten terms. Besides, types, just like
any other term, can be rewritten meaning that dependently typed symbols may not have
a fixed arity. A symbol f may have a total number of expected arguments depending on
the value of the first ones, which would therefore not be stable by substitution.

Example 1: Consider, for instance, a dependent type T : N→ ∗ and f : Πn : N. T n. It
may seem like f expects a single argument n and is therefore a symbol of arity 1. However
the user may very well extend conversion with rewrite rules so that T (S x)←→←→ N→ T x.

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 43

In that case, the term f (S x) actually expects an extra argument of type N and f (Sk x)
expects (at least) k more arguments. Finally there is no reason to forbid rewriting of
partially applied symbols, such as the unapplied f, or any other terms with a product
type.

Saillard studied term rewriting in the lambda-Pi-calculus [Sai15a, Sai15b] using the
formalism introduced by Müller [Mü92]. This formalism comes with some drawbacks in a
dependently typed setting as it forces a fixed arity on the symbols. The first versions of
Dedukti heavily relied on this property in its implementation as it allowed to get conflu-
ence of β together with rewriting from the confluence of rewriting alone which is better
understood. This formalism forbids the use of β steps in the confluence of R and it forces
rewritten symbols from the signature to have an arity. We we will show in the next chapter
that similar confluence results and others can be achieved even when symbols are curried
and can therefore be applied to arbitrarily many arguments.

Assaf [Ass15b] relies instead on Higher-Order Rewrite Systems (HRS), introduced by
Nipkow [MN98]. As explained in [vO94], HRS and CRS are both particular cases of the
more general HORS framework where only first order arities for meta-variables are con-
sidered. This presentation is quite expressive as it relies on the power of simply typed
(meta-)lambda-calculus as so-called “substitution calculus”. This typed meta-language is
quite rich but does not clearly distinguish the respective roles of meta-variables, represent-
ing the set of their instances, and free or locally bounded term-variables, which are meant
to bind names in expressions. It also requires matching, rewriting and even terms to be
considered modulo the meta-β and meta-η conversions which can become cumbersome.
The mechanism of substitution calculus is however quite expressive in general and allows,
for instance, to simply define simultaneous reduction steps, called orthogonal rewriting in
Chapter 3 (see Section 3.1), with a simple quite elegant substitution criterion: u⊗=⇒ v
iff u =lηβ t, v =lηβ s and t−→ s.

Other formalisms were studied by Blanqui (IDTS) [Bla06] and Miller [Mil91] both
developed in slightly different setting and for different purposes. In a joint work with
Jouannaud, we introduced a particular formalism in [FJ19a] which is quite close to the
one presented here except that it featured unannotated λ-abstractions. The results in
this paper are quite similar to those developed in the following chapter but the differences
between both settings forbid to simply reuse them here.

Our choice is to define the terms of the λΠ≡ as a particular case of Combinatory Reduc-
tion Systems (CRS). CRS were introduced by Klop [Klo80, KvOvR93] as a general way
to represent higher-order term rewriting. In this formalism, the functional β-reduction
is a particular case of rewrite rule in an encoding of the λ-calculus. Our presentation
adapts this formalism to represent annotated lambda-abstractions while keeping the bi-
nary application operator, @, which is therefore the root symbol of most terms even
though it does not necessarily show. The link with Klop’s CRS will not be made ex-
plicit everywhere in the following presentation however the reader should have no problem
to infer the correspondence between constructions and properties from one setting to
the other. In particular, adopting the notations of [KvOvR93] : λx :A. t := λ(A, [x]t),

CHAPTER 2. HIGHER-ORDER TERM REWRITING IN LP 44

t u := @(t, u), symbols f ∈ F are symbols of arity 0, the notions of positions, subterm,
free variables, substitutions all match and the β reduction corresponds to a particular
rewrite rule: @(λ(A, [x]T (x)), U)−→ T (U). Our setting is in fact directly equivalent to a
particular CRS in which @ and λ are two symbols of arity 2 and all other symbols are of
arity 0.

Finally our notion of rewrite rules will rely on Miller’s notion of pattern for the left-
hand sides, preventing overlap between rewrite rules and β-reduction. This will ease the
proofs of confluence by allowing to consider exclusively so-called critical pairs between
rewrite rules.

2.4.2 Confluence of untyped rewriting

There are three main tools for analyzing confluence of a term rewrite relation: Newman’s
Lemma [New42], Hindley-Rosen’s Lemma [Hin69], and van Oostrom’s Theorem which
generalizes the two previous ones [vO08]. Since β-reduction does not terminate in pure
lambda calculus, Newman’s Lemma does not apply. And if the rules have non-trivial
critical pairs, then Hindley-Rosen’s Lemma does not apply either. Even the subtle use of
Hindley-Rosen’s Lemma allowing development-closed critical pairs [vO97] is too restrictive
for practical use. The way out is the use of van Oostrom’s decreasing diagrams [vO94].
The fact that β reduction does not terminate on untyped lambda terms is no obstacle
since that criterion does not rely on termination for showing confluence. A further reason
for considering pure lambda terms is that it is then easy to deduce confluence for any type
system, including dependent type systems, for which the rules enjoy type preservation.

Van Oostrom’s theorem is abstract, its application to term rewriting relations conceals
many difficulties, especially in an untyped higher-order setting where the usual properties
of type systems, such as product compatibility, subject reduction, unicity of typing or
termination, are unavailable. Further, neither confluence nor termination are preserved by
adding a confluent and terminating set of rewrite rules to the pure λ-calculus. A counter-
example to termination in the simply typed λ-calculus is given in [Oka89]. Numerous
counter-examples to confluence in the pure λ-calculus are given in [Klo80].

It is therefore essential to develop confluence criteria for non-terminating systems. This
is the subject of the coming Chapter 3, focusing on left-linear systems, and Chapter 4
including non-left-linear rules.

Chapter 3

Confluence of Left-Linear Systems

Term rewriting is seldom deterministic. Several redexes may coexist in the same term
which therefore has several reducts depending on the chosen evaluation strategy. These
redexes may be either at parallel positions, nested one below the other or overlapping.
Parallel redexes do not interfere with one another, nested redexes are trickier but can still
be handled in the left-linear case and overlapping redexes require some guarantees on the
so-called critical pairs of the rewrite system. The confluence property allows to ignore
this non-determinism. In a confluent system, evaluation may be considered forward only,
removing the need for costly backtracks and all evaluation strategies will eventually reach
the same normal form if it exists.

In this chapter, we introduce several general purpose confluence criteria for confluence
of left-linear higher-order rewrite systems together with β.

A left-linear higher-order rewrite systems R that is confluent alone remains confluent
when considered together with β, this is Theorem 3.5.3. Showing that R is confluent
can be done using techniques relying, for instance, on better known first-order techniques,
if the rules are simple enough, or on strong normalization. This was done for instance
by Barbanera, Fernàndez and Geuvers [BFG94] to extend [GN91] and show strong nor-
malization and confluence of rewriting together with β in all the pure type systems of
the λ-cube. In the case of non-overlapping sets of rewrite rules, the result is immediate,
Corollary 3.5.3.1. Otherwise, as in first order, it is necessary that all critical pairs have a
closing sequence in order for rewriting to be even locally confluent. In the case of strongly
normalizing systems, Newman’s lemma applies and this condition is actually sufficient,
see Theorem 3.5.5. Otherwise it is necessary to provide decreasing diagrams joining the
critical pairs.

Van Oostrom decreasing diagrams [vO94] have allowed the analysis of confluence for
first-order rewriting relations that are non-terminating, in the left-linear case first [Fel13],
and then in the notoriously much more difficult non-left-linear case [LJO15]. More pre-
cisely, they have allowed to reduce the confluence property to the existence of decreasing
diagrams for all (parallel [Fel13] or rational [LJO15]) critical pairs. Van Oostrom has
used his technique to show the confluence of a particular higher-order calculus with ex-
plicit substitutions [vO08]. But to our knowledge, the only existing attempts to reduce

45

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 46

the confluence property of an arbitrary higher-order system to the existence of decreasing
diagrams for its critical pairs have been by [ADJL16], [Dow19] and [FJ19a], which all as-
sume left-linearity. Further, all these results apply to λ-calculi without type annotations,
possibly making their application problematic, in particular to dependently typed theories
for which type erasures are unsound. Our goal here is to generalize [FJ19a] to a λ-calculus
with type annotations, more precisely the one defined in Chapter 2.

In first order setting, already, rules that are not right-linear may duplicate existing
redexes occurring below and therefore it is natural to consider parallel rewrite steps in
order to close peaks with a single (multi-)step. For example the rule f X −→ g X X may
duplicate redexes below: f (f t) −→ g (f t) (f t). In a higher-order setting, some rules,
such as β, may nest redexes below other redexes by substituting locally bounded variables
with terms. In particular, two redexes occurring at parallel positions and meant to be
reduced simultaneously can be moved one below, or rather “inside”, the other, therefore
forbidding their simultaneous reduction. For instance, (λx. f x) (f t) −→ f (f t). Because
of this, we often need to consider a stronger simultaneous multi-step reduction allowing
to group together both

• parallel steps, played in any order: if u⊗=⇒ u′ and v⊗=⇒ v′, then u v⊗=⇒ u′v′ ;
• nested steps provided they do not overlap with the above steps (which is never the

case for β): if u⊗=⇒ u′, v⊗=⇒ v′, then (λx : t. u) v⊗=⇒ u′{x 7→ v′}.
This relation is called orthogonal rewriting.

Since −→ ⊆ ⊗=⇒ ⊆ −→−→, the confluence of −→ is deduced from that of this extension
of simple rewriting. In left-linear systems, ⊗=⇒ is particularly well-behaved. In particular,
in the absence of non trivial critical pairs, it satisfies a stronger version of the diamond
property: if s⇐=⊗u⊗=⇒ t, then s,u and t all reduce in one step to a common reduct. This
property allowed Cockx, Tabareau and Winterhalter [CTW20] to devise a very convenient
practical confluence criteria requiring only that the ancestor of all critical pairs reduces in
a single orthogonal step to a common optimal reduct. Besides the fact that this criteria can
easily be checked, automatically, completing the system if necessary, it also allows some
form of modularity of confluence between blocks of rewrite rules that have no pairwise
critical pairs.

Using these two techniques, decreasing diagrams and multi-step rewriting, we show
two general purpose confluence criteria. In the case where the systems is not self-nested
and β-steps can be avoided in the decreasing diagrams, we only need to consider parallel
critical pairs and ensure decreasing diagrams do not interfere with non-overlapping parts,
Theorem 3.5.8. This last condition comes from Toyama [Toy81] and extends Huet’s criteria
for first-order TRS [Hue80] which requires the systems to be parallel closed: critical pairs
(s, t) must satisfy s=⇒t. In some cases, R is not enough to close critical peaks which
require β steps. Our last criterion requires then to show the existence of decreasing
diagrams for all orthogonal critical pairs to retrieve confluence with β. In that case β
steps are considered of low weight so they can be used for free in the closing diagrams.

Variants of most of the following results can be found in the recent work of Jouannaud
and several other collaborators, [JL12a, LDJ14, ADJL16, Dow19, FJ19b, FJ19a] including
the author but in a setting that forbid their application to the particular case of the

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 47

lambda-Pi-calculus modulo, for the most part because of the handling of type annotations
in λ-abstractions. We adopt here a presentation better befitting our needs and take extra
care in providing all the confluence criteria that we deem the most useful in order to prove
the confluence of practical rewrite systems.

We prove that if one of the four following condition is satisfied, then the left-linear
higher-order rewrite systems R is confluent together with β-reduction:

• Theorem 3.5.3: R has no critical pair ;

• Theorem 3.5.5: R is strongly normalizing and its critical pairs are joinable with R ;

• Theorem 3.5.8: R is not self-nested, satisfies Toyama’s Variable Condition [Toy81]
and is labeled so that all parallel critical pairs have a decreasing diagram using rules
in R ;

• Theorem 3.5.9: R is labeled so that all orthogonal critical pairs have a decreasing
diagram allowing β steps.

3.1 Orthogonal rewriting
In the case of left-linear rules, confluence proofs sometimes require to consider a safe
multi-step extension of rewriting. As introduced in Tait’s confluence proof of the lambda-
calculus, we define orthogonal reductions (called parallel reductions in [Bar81]) as the
grouping of steps both at parallel positions and nested below, provided they do not overlap
with the above steps. Our definition is essentially Tait’s, but makes the rewriting positions
explicit. All positions orthogonally rewritten correspond to a redex in the rewritten term.
Note that rather than defining simultaneous reduction, our definition relies on the grouping
of compatible sequential steps: reductions at parallel subsets can be grouped in any order
(horizontal grouping) while steps nested below a redex must be played before the redex
itself (vertical grouping).

Definition 3.1.1 (Orthogonal Rewriting). Assume a set R of left-linear rules and a set O
of positions. Orthogonal rewriting with R at positions O, written u

O
⊗=⇒
R

v, is the smallest

reflexive (u
∅
⊗=⇒u) relation satisfying the following properties:

• if P#Q then
P
⊗=⇒
R

Q
⊗=⇒
R
⊆

P]Q
⊗=⇒
R

;

• if (L,R) ∈ R and O ≥P p · FL then
O
⊗=⇒
R

{p}−→
(L,R)

⊆
{p}]O
⊗=⇒
R

.

Parallel steps are played in any order however nested steps must be played before the
above step to preserve the set of positions. The sets R of rules and O of positions are
omitted if irrelevant or clear from context. We write

O
⊗=⇒
L→R

:=
O
⊗=⇒
{L→R}

and
O
⊗=⇒
β

:=
O
⊗=⇒
{(Lβ ,Rβ)}

.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 48

3.1.1 Properties

Among many other key properties, sequential orthogonal rewriting steps can, under some
conditions, be grouped together or split into orthogonal steps at compatible subsets of
positions.

Lemma 3.1.2. Orthogonal rewriting satisfies the following properties:
• Monotonicity: if s

O
⊗=⇒ t and q∈Pos(u) then u[s]q

q·O
⊗=⇒ u[t]q

• Stability: if s
O
⊗=⇒ t then sσ

O
⊗=⇒ tσ

•
{p}
⊗=⇒ = p−→ and if P parallel,

P
⊗=⇒ = P=⇒

• −→ ⊆ =⇒ ⊆ ⊗=⇒ ⊆ −→−→

•
O
⊗=⇒ ⊆

≥PO
⊗=⇒ Therefore if s

q·O
⊗=⇒ t then s|q

O
⊗=⇒ t|q and sq = tq

• If P#Q,
P
⊗=⇒

Q
⊗=⇒ =

P]Q
⊗=⇒

• If P parallel and Q ≥P P · FL then
Q
⊗=⇒ P=⇒ =

P]Q
⊗=⇒

Proof. The first two are done by induction on O. The first case is easy, the second requires
induction hypothesis and the last one the monotonicity and stability properties of simple
rewriting. Third and fourth are by definition. Fifth is again by induction on O using
monotonicity. Sixth’s ⊆ is by definition and ⊇ by induction on P ∪Q. Seventh’s ⊆ is also
by definition and previous points while ⊇ is done by commuting parallel subsets of steps.

If s
P]Q
⊗=⇒ t for some Q = ⊎

p∈P (p · Qp), then by previous point s
p1·Qp1
⊗=⇒ p1−→· · ·

pn·Qpn
⊗=⇒ pn−→t

we then commute parallel steps s
p1·Qp1
⊗=⇒ · · ·

pn·Qpn
⊗=⇒ p1−→· · · pn−→t and conclude.

Definition 3.1.3. The set O is compatible with F if ∀p, q ∈ O, p <P q ⇒ p · F ≤P q.

Lemma 3.1.4. If O 6= ∅ is compatible with FL then
O
⊗=⇒
L→R

O=⇒
L→R

=
O
⊗=⇒
L→R

.

For instance, assuming F = Fβ = {11, 12, 2}, then the set O = {Λ, 1} is not compatible
with F . Therefore a “below” step at position O = {1} and an “above” step at position
O := {Λ} cannot be merged into a single orthogonal step: (λx. λy. y) s t {1}−→ (λy. y) t {Λ}−→ t.

Note that if O is compatible with F , then so are all its subsets. Besides if s
O
⊗=⇒
L→R

then O is compatible with FL. The compatibility condition guarantees that the residual

orthogonal reduction below
O
⊗=⇒
β

neither creates nor interfere with the above parallel

redexes O=⇒
β

.
A set of positions compatible with the fringe FL of a rewrite rule L → R allows a

simple criterion for orthogonal rewriting at position O with that rule. In particular, any

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 49

functional orthogonal rewriting step
O
⊗=⇒
β

can be decomposed this way if O is compatible
with Fβ.

The following properties of orthogonal step splitting and merging will be needed for
the coming analysis of orthogonal ancestor peaks.

Lemma 3.1.5. If Q 6≥P P and P ∩Q · FPos(L) = ∅ then
P
⊗=⇒
(L,R)

Q
⊗=⇒
(L,R)

=
P]Q
⊗=⇒
(L,R)

.

Proof. By induction on the size of P] Q. The P = ∅ and Q = ∅ cases are immediate.
Otherwise Q 6≥P P and therefore P = P1] P2 with P1 >P Q and P2#Q.

P
⊗=⇒

Q
⊗=⇒ =

P
⊗=⇒ P=⇒

Q
⊗=⇒

Q
=⇒ (by Lemma 3.1.2)

=
P
⊗=⇒ P1=⇒ P2=⇒

Q
⊗=⇒

Q
=⇒ (by Lemma 2.2.24)

=
P
⊗=⇒ P1=⇒

Q
⊗=⇒ P2=⇒

Q
=⇒ (by definition Q#P2)

=
P]P1]Q
⊗=⇒ P2=⇒

Q
=⇒ (by induction hypothesis P 6≤P P1 6≤P Q)

=
P]P1]Q
⊗=⇒

P2]Q=⇒ (by Lemma 2.2.24)

=
P]Q
⊗=⇒

P]Q
=⇒ =

P]Q
⊗=⇒ (by Lemma 2.1.19 and Lemma 3.1.2)

Since P2]Q parallel and P2]Q <P P] P1]Q.

The hypothesis simply states that P contains exclusively positions disjoint with Q and
positions strictly below Q · FL, therefore guaranteeing that the disjoint union P] Q is

compatible with FL. For instance (λx.(λy.y) x) t ((λz.z) t)
{111,2}
⊗=⇒ (λx.x) t t

{1}
⊗=⇒ t t

can be merged into a single (λx.(λy.y) x) t ((λz.z) t)
{1,111,2}
⊗=⇒ t t and split back into

(λx.(λy.y) x) t ((λz.z) t)
{111}
⊗=⇒ (λx.x) t ((λz.z) t)

{1,2}
⊗=⇒ t t. However, playing the above

step first, (λx.(λy.y) x) t ((λz.z) t)
{1}
⊗=⇒ (λy.y) t ((λz.z) t)

{1,2}
⊗=⇒ t t, yields a decomposition

at positions which union is not the entire set of redexes.
This very general lemma ensures, for instance, that orthogonal β-steps can be split

into subsets of positions played sequentially and merged back as long as the positions of
the first step are not above the second (either below or incomparable). This lemma will be
used extensively, sometimes without notice. In particular it allows to prove the following
crucial lemma.

Lemma 3.1.6 (Orthogonal pasting). If u
O
⊗=⇒ v and σ⊗=⇒ τ , then uσ

P
⊗=⇒ vτ for some

P ≥P O ∪ {p ∈ Pos(u) | u(p) ∈ Dom(σ)}.

Proof. It is clear by induction on u and monotonicity that if Dom(σ) ⊆ X , then uσ
P
⊗=⇒uτ

for some P ≥P VPos(u). We prove the result by induction on u and |O|.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 50

If Λ /∈ O, then in the u = u1 u2, u = λx :u1. u2, u ∈ F and u ∈ X ∪ (Z \ Dom(σ))
cases, the result is straightforward by induction hypothesis and grouping of parallel steps.

In the u = X[u] with X ∈ Dom(σ) case, we have by assumption σ(X) = λz.s and
τ(X) = λz.t with s⊗=⇒ t. By induction hypothesis, we have {z 7→ u}⊗=⇒{z 7→ v} and

by our preliminary result and stability, uσ = s{z 7→ u}
P
⊗=⇒ s{z 7→ v}⊗=⇒ t{z 7→ v} = uτ

which can be grouped into a single step by Lemma 3.1.5.
If O = {Λ}] O′, then u

O′

⊗=⇒u′
Λ−→

(L,R)
v and by induction hypothesis and stability,

uσ
P ′

⊗=⇒u′τ
Λ−→

(L,R)
vτ for some P ′ ≥P O′ ∪ {p ∈ Pos(u) | u(p) ∈ Dom(σ)}. To conclude

with Lemma 3.1.5, we only need to show P ′ ∩ FPos(L) = ∅. By definition of orthogonal
rewriting, we already have O′ ≥P FL. Assume p ∈ FPos(L) and u(p) ∈ Dom(σ). Since
p 6≥P O′, p ∈ Pos(u′) and since u′ = Lγ and p 6≥P FL, p ∈ Pos(L). Therefore L(p) ∈ Z∪X
is either a meta-variable of L or a locally bound variable and u(p) /∈ Dom(σ).

Lemma 3.1.7. Assume q ∈ Pos(u) and O = P]Q]R ⊆ Pos(u) with P#q, q ≤P Q and

R <P q. Then u
O
⊗=⇒
β

v iff u
P
⊗=⇒
β

Q
⊗=⇒
β

R
⊗=⇒
β

v iff u
Q
⊗=⇒
β

P
⊗=⇒
β

R
⊗=⇒
β

v.

Proof. Since P#Q and P]Q 6≤P R.

Lemma 3.1.8. (λx :A. t) u
O
⊗=⇒
β

v with Λ ∈ O if and only if O = {Λ}]12·P]2·Q]11·R,

t
P
⊗=⇒
β

t′, u
Q
⊗=⇒
β

u′ and v = t′{x 7→ u′}.

3.1.2 Left-linear systems

The most important property of left-linear pre-patterns is that they still match the splitting
of their instances below their fringe.

Lemma 3.1.9. Assume L a linear pre-pattern and P ≥P FL a parallel set of positions.
Then LσP = Lσ′ for some σ′ such that σ = σ′Lσ

P .

Proof. We assume P = {o · p} for some o ∈ FL. Then L|o = X[x] for some meta-
variable X and variables x bound above o in L. Necessarily σ(X) = λx.t such that
(Lσ)|o = t and we have Lσo·p = Lσ[Z[z]]o·p = Lσ[t[Z[z]]p]o = Lσ′ for σ′ identical to
σ except that σ′(X) = λx.t[Z[z]]p. Since Lσo·p = {Z 7→ λz.(Lσ)|o·p}, we check that
(σ′Lσo·p)(X) = λx.t[Z[z]]pLσo·pλx.t[(Lσ)|o·p]p = λx.t = σ(X).

Lemma 3.1.10. If L a linear pre-pattern and Lσ ≥PFL−→ u then σ−→τ and u = Lτ .

Proof. By definition, LσFL−→γ such that u = LσFLγ. By Lemma 3.1.9, LσFL = Lσ′ such

that σ = σ′Lσ
FL . We conclude since, by stability, σ−→σ′γ =: τ .

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 51

Note that we can choose −→ to be any reduction, including orthogonal rewriting, ⊗=⇒
R

.

Lemma 3.1.11 (Preservation). If u p−→
(L,R)

v and p·FPos(L) 6≥P q (i.e. q#p or q ≥P q ·FL),

then uq
p−→

(L,R)
w for some w such that v = wuq.

Proof. We have u|p = Lγ. If q#p, this is easy since uq|p = up = Lγ and w = uq[Rγ]p and
therefore wuq = u[Z[z]]q[Rγ]puq = u[Rγ]p[Z[z]]qvq = v[Z[z]]qvq = vqv

q = v. Otherwise,
q ≥P p · FL. Assuming p = Λ, by Lemma 3.1.9, we have uq = Lγ

q
= Lγ′−→

(L,R)
Rγ′ = w and

wuq = Rγ′Lγ
q = Rγ = v. We extend to the case p 6= Λ by monotonicity.

Corollary 3.1.11.1. Assume L a linear pre-pattern and Q parallel such that O ·FL 6>P Q.
If u

O
⊗=⇒
(L,R)

v, then uQ
O
⊗=⇒
(L,R)

w for some w such that v = wuQ.

Proof. The case where O and Q are singleton sets is Lemma 3.1.11. We extend it to any
parallel Q by induction on Q and then to any O by induction on O.

Lemma 3.1.12 (Orthogonal splitting). Assume u
O
⊗=⇒
(L,R)

v such that O = P] Q with

P 6≥P Q. Then uQ
P
⊗=⇒
(L,R)

w, uQ⊗=⇒
(L,R)

σ and v = wσ.

Proof. By Lemma 3.1.5, u = uQu
Q

Q
⊗=⇒
(L,R)

v′
P
⊗=⇒
(L,R)

v. By Lemma 3.1.10, uQ⊗=⇒
(L,R)

σ such

that v′ = uQσ. Since O is compatible with FL and P 6≥P Q, P · FL 6>P Q and, by

Corollary 3.1.11.1, uQ
P
⊗=⇒
(L,R)

w for some w such that v = wuQ.

3.2 Decreasing Diagrams
When rewriting terminates, it is well-known that the joinability of all local peaks implies
the confluence property, this is the so-called Newman’s lemma. When it does not, it is
then necessary to strengthen joinability, this is the rôle of decreasing diagrams, introduced
by van Oostrom [vO94] then extended to the more general version that we present here. In
the following, we consider abstract rewrite relations which elementary steps are equipped
with a label belonging to some well-founded set which strict partial order is written B.

Our definition of decreasing diagram was developed by Jouannaud and van Oostrom
and generalizes the one introduced by van Oostrom [vO08] to allows bidirectional steps in
the side and middle steps.

Definition 3.2.1 (Generalized Decreasing diagram [JvO09]). Given a labeled relation
−→ on an abstract set, we denote by DS(m,n) the set of decreasing sequences of the
form u

δ←→←→ v or u γ−→−→ s
n−→t δ←→←→ v such that the labels in γ are strictly smaller than m

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 52

and the labels in δ are strictly smaller than m or n. The steps labeled by γ, n and δ, are
called the side steps, facing step and middle steps of the decreasing sequence, respectively.

Given a local peak v m←−u n−→w, a (locally) decreasing diagram is a pair of derivations
from v and w to some common term t, belonging to DS(m,n) and DS(n,m), respectively.

Decreasing diagrams are represented in Figure 3.1 and abbreviated as DDs. Note that
a facing step of a decreasing diagram may be missing, its side steps are then absorbed by
the middle ones.

u

v w

s s′

t t′

m n

γ Cm nB γ′

n

=
m

=δ Cm,n

This is a
decreasing
diagram

Figure 3.1: Decreasing diagram

Theorem 3.2.2 ([vO94]). A labeled relation is Church-Rosser if all its local peaks have
decreasing diagrams.

The existence of decreasing diagrams is a very general criterion for confluence of ab-
stract relations. It is even complete for weakly normalizing relations and relation on
countable sets of objects, such as subsets of terms, [vO94]. For a more in-depth presenta-
tion of decreasing diagrams with relation to confluence and commutation properties, we
highly recommend [EKO19].

The decreasing diagram technique allows to consider exclusively local peaks to prove
the confluence of a relation. In the particular case of term rewriting, many kinds of local
peaks s p←−

R
u

q−→
R
t correspond to rewrite steps at disjoint and compatible position(s) p and

q. In order to prove the confluence of −→
R

, we need only to define a labeling of rewrite steps
such that all local peaks have a decreasing diagram. The study of all possible local peaks
of −→

R
∪ −→

β
is critical to find the correct labeling function which depends on properties

of the set of rules R. A labeling function may rely on the whole reduced term, on the
position of the redex in this term, on the redex itself (independently of its position) or
simply on the reducing rule.

Van Oostrom’s theorem generalizes to rewriting modulo an equational theory =E in
which case B must be compatible with the equational theory [JL12b]. This is for example
the case when rewriting terms of the λ-calculus for which α conversion is built-in and must
be compatible with the chosen definition of reduction over terms. Equational steps are
considered to have a minimal label and often ignored.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 53

3.3 Critical peaks
A key property of plain first-order rewriting is that there are three possible kinds of local
peaks depending on the respective positions of the rewrites that define them. Either they
occur at parallel positions, one is nested below the other, or they overlap and form a so-
called critical peak. This property generalizes trivially to positional higher-order rewrites.

The most problematic case of local peak is when the redexes in u overlap in the sense
that they both rely on the same part of u to be fired. Positional rewriting allows to simply
characterize these overlaps: they occur if q = p · o for some o ∈ FPos(L), i.e. o 6≥P FL.
This property can even be generalized to local peaks of orthogonal multi-step reductions.

3.3.1 Simple critical peaks

In the case of single step reductions, the critical peaks are generated by the existing
overlaps between pairs of left-hand sides.

Definition 3.3.1. If o ∈ FPos(L) (i.e. o 6≥P FL) we say that s p←−
(L,R)

u
p·o−→

(G,D)
t is an

overlapping peak of (G,D) onto (L,R) at position o and that the rules overlap.

Lemma 3.3.2. If s p←−
(L,R)

u
q−→

(G,D)
t then, there are three possibilities:

• p#q (disjoint peak case);
• q ≥P p · FL or p ≥P q · FL (ancestor peak case);
• p = q ·o with o ∈ FPos(L) or q = p·o with o ∈ FPos(G) and the peak is overlapping.

(overlapping peak case).

Lemma 3.3.3. A rewrite rule L→ R does not overlap with β.

Proof. A pattern L is not an abstraction so L → R may not overlap onto β at position
1. For all p, if L|p = u v then u is neither an abstraction nor a meta-variable, therefore β
does not overlap onto L→ R at position p.

Definition 3.3.4. Let L → R and G → D be two left-linear rules, o ∈ FPos(L) and x
the variables bound above o in L. Consider Gx := Gσx for the lifting substitution σx such
that ∀X ∈ Zn, σx(X) := λzλx.X ′[z, x] for some fresh X ′ ∈ Zn+|x|.

If the unification of the closed pre-patterns λx.L|o = λx.Gx has a most general solution
σ, then the peak Rσ Λ←−

L→R
Lσ

o−→
G→D

Lσ[Dσxσ]o is called a critical peak of G→ D onto L→ R

at position o. Its associated critical pair is 〈Rσ,Lσ[Dσxσ]o〉.

Proof. Since o ∈ FPos(L), then (Lσ)|o = L|oσ = Gσxσ−→Dσxσ.

Critical pairs of left-linear rewrite systems are in finite number and computing them
is done in polynomial time [FJ19a]. Using standard techniques, we then get the analog of
Nipkow’s critical pair lemma developed for the case of simply typed higher-order rewrite
rules:

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 54

Lemma 3.3.5 (Critical peak lemma). Assume s p←−
L→R

u
q−→

G→D
t is an overlapping peak at

position o ∈ FPos(L) such that q = p · o. Then, there is a critical peak s′ Λ←−
i
u′

o−→
j
t′ and

a substitution θ such that u′θ = u|p, s′θ = s|p and t′θ = t|p.

Proof. As usual we assume that p = Λ and q = o. By definition of higher-order rewriting,
there exists some substitutions γ and σ such that Lγ = u, Gσ = u|o = (Lγ)|o, s = Rγ
and t = u[Dσ]o. Let x be the set of variables bound above o in L. We cannot merge γ
and σ into a substitution that can be applied to L as the x variables may be in Ran(σ).
However, we can define σ′ such that if σ(X) = λz.t, then σ′(X ′) = λzλx.t and we have
both x ∩ Ran(σ′) = ∅ and Gxσ′ = Gσ = (Lγ)|o. Since σ′ and γ have disjoint domains
(note that even in the particular case of G = L, we consider the unification of L|o and
G∅ which has fresh meta-variables) we can define γ′ := γσ′ and have both Lγ′ = u|p
and Gxγ′ = (Lγ′)|o = u|q. Besides, since o ∈ FPos(L) and Ran(γ′) ∩ x = ∅ we have
(Lγ′)|o = L|oγ′. Therefore, γ′ is a solution of the equation L|o = Gx. Let ω be its
most general unifier, there exist a substitution θ such that ωθ = γ′. The critical peak
is s′ = Rω

Λ←−
i
Lω = u′ = Lω[Gxω]o o−→

j
Lω[Dσxω]o = t. We check that we have indeed

s′θ = Rωθ = Rγ′ = Rγ = s, u′θ = Lγ = u and t′θ = Lγ[Dσxγ′]o = u[Dσ]o = t.

3.3.2 Orthogonal critical peaks

We consider the generalization of overlaps between two single reduction steps to overlaps
between two orthogonal reduction steps, as illustrated in Figure 3.2.

Definition 3.3.6. If L is a pre-pattern, we write FPos∗(L) := FPos(L) \ {Λ}.

Definition 3.3.7 (Orthogonal overlap). Assume two left-linear rules (L,R) and (G,D)
and sets of positions P and Q compatible with FL and FG respectively.

We say that P and Q overlap for these rules iff there is a root position o ∈ P ∪Q such
that P ⊆ {o} ∪Q · FPos∗(G) and Q ⊆ {o} ∪ P · FPos∗(L).

An orthogonal local peak s
P
⇐=⊗
(L,R))

u
Q
⊗=⇒
(G,D)

t is an overlapping peak at positions P and Q

iff P and Q are overlapping positions for these rules.

⊗
(L,R)

⊗
(G,D)

Figure 3.2: Orthogonal critical peak

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 55

If P and Q overlap, then any p ∈ P is either the root, o, of the overlap, or there exists
q ∈ Q strictly above p such that p ∈ q · FPos(G). Things are symmetrical for any q ∈ Q.

Note that the overlapping peaks at singleton positions {p} and {q} are exactly the
overlapping peaks at these positions in which case they are called simple. If P and Q are
both parallel, the overlapping peak is called parallel. If Q = ∅ then P = {p} and the peak
is trivial: it originates from any term matching L at position p.

Lemma 3.3.2 generalizes to orthogonal overlaps. Local peak can be split into either
two disjoint steps which can be played in either order or into an above overlap and nested
steps below its fringe. If the overlap is trivial, then we are actually in the case of an
ancestor peak.

Lemma 3.3.8. Assume two left-linear rules (L,R) and (G,D) and P and Q compatible
with FL and FG respectively. Then P = P1] P2 and Q = Q1]Q2 such that either

• (P1 ∪Q1)#(P2 ∪Q2) and both sets are strictly smaller in size than P ∪Q;
• or (P2 ∪Q2) ≥P (P1 · FL ∪Q1 · FG) and P1 and Q1 overlap.

Proof. If P ∪Q can’t be split into parallel strict subsets then necessarily P ∪Q ≥P o for
some o ∈ (P ∪Q). We define P1 and Q1 the smallest subsets of P and Q respectively such
that P ∩ ({o} ∪ Q1 · FPos∗(G)) ⊆ P1 and Q ∩ ({o} ∪ P1 · FPos∗(L)) ⊆ Q1. We define
P2 := P \P1 and Q2 := Q\Q1. It is clear by definition that P1 and Q1 overlap. Let p ∈ P2.
If p ∈ P1 · FPos(L) then P is not compatible with FL. If p ∈ Q1 · FPos∗(G) then p ∈ P1.
If p <P p1 ∈ P1, we pick the smallest such p1 and we have p1 ∈ q · FPos∗(G) for some
q ∈ Q1. If q <P p then p ∈ q · FPos∗(G), impossible. Otherwise p ≤P q ∈ p′1 · FPos∗(L)
for some p′1 ∈ P1 in which case p <P p′1 <P p1 contradict the minimal choice for p1 and
p ≥P p′1 implies p ∈ P1 ·FPos(L), impossible. This proves p ≥P P1 ·FL and P2 ≥P P1 ·FL.
Similarly, we prove P2 ≥P Q1 · FG, Q2 ≥P P1 · FL and Q2 ≥P Q1 · FG and conclude.

Example 1: Assume two rewrite rules f X −→X and g (f X)−→ f (g X). We have

the following local peak: h x (g x)
{12,22,222}
⇐=⊗ h (f x) (g (f (f x)))

{2}
⊗=⇒ h (f x) (f (g (f x))).

The two sets of positions can be split into {22, 222}∪ {2} and {12}∪∅ which are parallel
and have both strictly less steps. The first pair of sets can in turn be decomposed into
{22}∪{2} and {222}∪∅ such that {22} and {2} overlap since 22 = 2 ·2 with 2 a functional
position in g (f X) and the remaining steps are below the fringe of the above steps.

Definition 3.3.9. An overlapping peak s
P
⇐=⊗
(L,R)

u
Q
⊗=⇒
(G,D)

t is minimal if u is a closed pre-

pattern and Λ ∈ P .

Lemma 3.3.10. If s
O
⇐=⊗
(L,R)

u
O′

⊗=⇒
(G,D)

t is an overlapping peak then there exists a minimal

overlapping peak S
P
⇐=⊗
(L,R)

U
Q
⊗=⇒
(G,D)

T such that O = o · P , O′ = o ·Q, u|o = Uσ, s = u[Sσ]o
and s = u[Tσ]o for some o ∈ Pos(u) and substitution σ.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 56

Proof. By definition of local peak, O = o · P , O′ = o ·Q such that Λ ∈ P and since both
steps are below o, we have s|o

P
⇐=⊗
(L,R)

u|o
Q
⊗=⇒
(G,D)

t|o.

We consider the set of positions of free variables and meta-variables in u|o: R :=⋃
x∈Var(u|o) Pos(x, u|o)]MPos(u|o).
We have P ·FL 6>P R and Q·FG 6>P R since L and G are pre-pattern and cannot match

meta-variables or free variables. The meta-terms U := u|oR, S := s|oR and T := t|oR are

all closed pre-patterns and, by Corollary 3.1.11.1, S
P
⇐=⊗
(L,R)

U
Q
⊗=⇒
(G,D)

T . Besides, if σ := u|o
R,

they satisfy Uσ = u|o, Sσ = s|o and Tσ = t|o.

Definition 3.3.11 (Orthogonal critical pair). Two rules that overlap at positions P 3 Λ

and Q have a most general minimal overlapping peak s
P
⇐=⊗
(L,R)

u
Q
⊗=⇒
(G,D)

t at these positions

called a critical peak. The pair (s, t) is the corresponding orthogonal critical pair.

Proof. By induction hypothesis on |P |+ |Q|.

If Q = ∅, then the critical peak is simply R
{Λ}
⇐=⊗
(L,R)

L
∅
⊗=⇒
(G,D)

L.

Otherwise we choose a position o ∈ P ∪ Q such that P ∪ Q 6>P o 6= Λ. We assume
o ∈ P (the case o ∈ Q is symmetrical). If the rules overlap at positions P and Q, so
do they at positions P \ {o} and Q and by induction hypothesis, there is a most general

minimal overlapping peak s′
P\{o}
⇐=⊗
(L,R)

u′
Q
⊗=⇒
(G,D)

t′.

By assumption, there is an instance of that peak such that s′σ
P
⇐=⊗
(L,R)

u′σ
Q
⊗=⇒
(G,D)

t′σ for

some closed substitution σ. By definition of an overlapping peak, o = q · o′ ∈ Q · FPos(G)
and since u′|q matches G, o 6≥P Fu′ and therefore (u′σ)|o = u′|oσ = Lγ for some substitu-
tion γ such that (w.l.o.g.) Var(γ) ⊆ Var(u′|o) = x where x are the variables bound above
o in u′. The closed pre-patterns λx.u′|o and λx.Lx are therefore unifiable. Their most
general unifier θ is such that s′[Rθ]o

P
⇐=⊗
(L,R)

u′θ
Q
⊗=⇒
(G,D)

t′θ is a minimal overlapping peak.

It is most general since any overlap at positions P and Q is an instance of the critical
peak at positions P \{o} and Q such that u|o and L are unifiable, therefore it is an instance
of the built minimal overlapping peak.

The proof provides an algorithm to enumerate all orthogonal critical pairs which may
not be in finite number.

Example 2: The single rewrite rule F (F X)−→X has an infinite set of orthogonal

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 57

critical pairs with itself:

Z
{Λ}←− F (F Z) ∅−→ F (F Z)

F Z {Λ}←− F (F (F Z)) {2}−→ F Z

Z
{Λ,22}←− F (F (F (F Z))) {2}−→ F (F Z)

· · ·

F(1−(−1)n)/2 Z
{22k | 2k≤n}←− Fn Z {22k+1 | 2k+1≤n}−→ F1+(1+(−1)n)/2 Z

3.4 Non-overlapping local peaks
Even if rewrite rules have no overlapping peaks, we still need to consider the cases of
ancestor and disjoints peaks, see Lemma 3.3.2. We prove in this section several com-
mutation lemmas between β-reduction and R-rewriting. While the disjoint case is easy
(Lemma 3.4.1) the nested case requires more work. The main property we need to prove
is that ⇐=⊗

β
−→
L→R

⊆ =⇒
L→R

⇐=⊗
β

(Lemma 3.4.7). To prove this property we will need to

study the cases where β steps occur above (Lemma 3.4.6) and below (Lemma 3.4.3.1) the
rewrite step.

There are two kinds of local ancestor peaks, homogeneous ones, where reductions are
either both β or both higher-order rewriting, and heterogeneous ones, which mix both
kinds. We analyze here which local ancestor peaks enjoy decreasing diagrams for free, and
which do not.

In the case of plain rewriting, two non-overlapping rewrite steps issuing from a same
term commute, a major component of any confluence proof. When the steps occur at
disjoint positions, this property, which holds for any monotonic relation, remains true for
rewriting modulo a theory, hence all disjoint peaks have decreasing diagrams for free.

Lemma 3.4.1. If P and Q parallel sets of such that P#Q, then ≥PP←− ≥PQ−→ ⊆ ≥PQ−→ ≥PP←−.

Proof. Directly follows from Lemma 2.1.27 and monotonicity.

This is not the case, however, when the steps occur at positions which one is an
ancestor of the other, because the above rewrite may interact with and duplicate the
rewrite below. Our definition of higher-order rewriting, however, enjoys a similar property,
in the particular cases where the fringe of a rewrite step guards the positions of rewrites
below it.

In the coming lemmas, “LAP” stands for linear ancestor peak. Both simple
and Orthogonal β-step, above and below higher-order rewrite steps are considered.

Lemma 3.4.2 (LAPβa). Let u be a term, p, q ∈ Pos(u) such that q ≥P p · Fβ and
s

p←−
β
u

q−→t. Then s Q=⇒ p←−
β
t for some set Q of parallel positions of s such that Q ≥P p.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 58

Proof. Note that −→ can be any monotonic and stable relation on terms. Assuming p = Λ,
we have u = (λx :A.M) N , and s = Mσ, where σ={x 7→ N}. There are three cases:

1. q ≥P 2 and t = (λx :A.M) P with N−→P . This requires several rewrite steps at

the parallel positions of x in M . Then s = Mσ=⇒M{x 7→ P} Λ←−
β

(λx :A.M) P = t.

2. q = 12 · q′ and M q′−→P . Then, by stability, s = Mσ
q′−→Pσ while on the other hand,

t = (λx :A.P) N Λ−→
β
Pσ.

3. q = 11 · q′, A q′−→A′ and t = (λx :A′.M) N Λ−→
β
Mσ = s.

In the case where p > Λ, we have by definition of positional rewriting up = sp = tp and

s|p
Λ←−
β

u|p
p−1(q)−→
L→R

t|p. We conclude using monotonicity of −→ and β.

A similar result holds as well for homogeneous local peaks s p←−
L→R

u
q−→
R
t where the above

higher-order step is left-linear and the below step occurs below its fringe. This property,
called (LAPRa), is illustrated in Figure 3.3. As already said, (LAPRa) requires the
linearity assumption.

Lemma 3.4.3 (LAPRa). Let (L,R) be a left-linear rule, u be a term and p, q ∈Pos(u)
such that q ≥P p · FL and s p←−

(L,R)
u

q−→ t. Then s ≥Pp=⇒ p←−
(L,R)

t.

Proof. Assuming p = Λ, we have by definition, u = Lγ−→Rγ = s. By Lemma 3.1.10,
γ−→τ and t = Lτ . By Lemma 2.2.26, s = Rγ=⇒Rτ and by stability, Lτ−→Rτ .

If p >P Λ then we use the lemma on s|p Λ←−
L→R

u|p
p−1(q)−→ t|p and conclude by stability.

We move on to the linear ancestor peak properties of orthogonal β-reductions. Unlike
the “above case”, the “below case” listed first follows easily from Lemma 3.4.2 (LAPβa).

Corollary 3.4.3.1 (LAPOb). If R is left-linear and O >P q, then
q←−
R

O
⊗=⇒
β
⊆
≥Pq
⊗=⇒
β

q←−
R

.

Proof. Assuming s q←−
L→R

u for some L→ R ∈ R, Since L and Fβ do not overlap, O ≥P q ·FL
and we can apply Lemma 3.4.3 (LAPRa). Parallel ⊗=⇒

β
steps merge into a single step.

Definition 3.4.4. A non-empty set of positions O ⊆ Pos(u) is said to be rigid in u if
there exists q ≤P O such that Var(u|O) ⊆ Var(u|q).

Note that we can always choose for q, the greatest lower bound of O w.r.t. ≤P and
that a position q∈Pos(u) is a singleton set of rigid positions in u.

Example 1: Consider the term u := (f x) (λy. (λz. (f y) (f z)) (f x)) and the
positions p1, p2, p3 and p4 corresponding to the successive occurrences of an applied f

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 59

L

G

R

GGG

L

D

R

DDD

p

p

≥P p·FL

≥P p

Figure 3.3: Non-overlapping peak of left-linear L →R above G →D: Lemma 3.4.3
(LAPRa).

symbol. The set {p1, p4} is rigid since the only free variable in u|p1 and u|p4 is x which is
free in u. The set {p2, p4} is rigid too since the variable y is bounded above both positions
and so is {p2, p3} for the same reason. However {p1, p2} is not rigid since the only possible
q ≤P {p1, p2} is q = Λ and y is not free in u|Λ = u. Similarly, {p3, p4} is not rigid because
of the variable z which is free in u|p3 but not bound above p4. Note that a singleton set
of a position of u is always rigid in u.

As illustrated in Figure 3.4, the property for a (set of) meta-variable(s) to not be
self-nested is preserved by ⊗=⇒ if they occur at a rigid set of positions. This property is
particularly useful to ensure that rewrite steps at a set of rigid parallel positions remain
parallel (but not rigid) when β reduced.

Lemma 3.4.5. Assume a meta-variable Z not self-nested in u such that Pos(Z, u) is rigid
in u. If u

O
⊗=⇒
β

v, then Z is not self-nested in v.

Proof. Since Pos(Z, u) is rigid in u, there exists a position q ≤P Pos(Z, u) such that if
Z[x]C u, then x ⊆ Var(u|q).

We prove the result by induction on the set of positions O using the well-founded
multiset extension�mul of the usual ordering≤P on positions (a set is of course a multiset).

If O#q then the rewrite steps leaves u|q and therefore all occurrences of Z in u un-
touched. If O ≥P q, then the variables x occurring in a subterm of u|q of the form Z[x]
are all bound above q in u. These subterms may be moved around, deleted, duplicated or
reduced by β-steps occurring below q but they are never “substituted into”. In particular
they cannot become self-nested, therefore Z is not self-nested in v. Otherwise q >P O.
There are two cases:

If O = O1]O2 for some O1#O2 such that q >P O1, then Z only occurs below O1 and

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 60

we have u
O1
⊗=⇒
β

u′
O2
⊗=⇒
β

v. By induction hypothesis, Z is not self-nested in u′ and since
O1#O2, neither is it in v.

If O = {p}] O′ for some O′ >P p · Fβ, If p >P Λ, then u|p
p−1(O)
⊗=⇒
β

v′ and by induction

hypothesis, Z is not self-nested in v′ and since v = u[v′]p and Z only occurs below p in
u neither is it in v. Assuming p = Λ, then u = (λx :A.M) N and, by Lemma 3.1.8,
O= {Λ}] 11·OA] 12·OM] 2·ON , where M

OM
⊗=⇒
β

vM , M
ON
⊗=⇒
β

vN and v = vM{x 7→ vN}.

The meta-variable Z only occurs in u|q which is a subterm of either A, M or N .
• If q ≥P 11, then all occurrences of Z are in A and are deleted by the β step.
• If q ≥P 12, then by induction hypothesis, occurrences of Z in vM are not self-nested.

Since Z /∈MVar(N), Z /∈MVar(vN) and Z is not self-nested in v either.
• If q ≥P 2, then by induction hypothesis, occurrences of Z in vN are not self-nested.

Since all occurrences of Z in v are duplicated versions of the ones in vN they are not
self-nested either.

Lemma 3.4.6 (LAPOa). If O 6≥P q then
O
⇐=⊗
β

q−→
L→R

⊆ ≥P(O∪{q})=⇒
L→R

O
⇐=⊗
β

.

Proof. Assume s
O
⇐=⊗
β

u
q−→

L→R
t. By Corollary 3.1.11.1, since O 6≥P q, s′

O
⇐=⊗
β

uq and s = s′uq.

By Lemma 3.1.10, uq−→
L→R

σ such that t = uqσ. and by stability, s′σ
O
⇐=⊗
β

t. Besides

uq = u[Z[z]]q so Pos(Z, uq) = {q} is rigid in uq and Z is obviously not self-nested in uq.

Therefore, by Lemma 3.4.5, Z is not self-nested in s′ and, by stability, s = s′uq
Pos(Z,s′)=⇒ s′σ.

Lemma 3.4.7 (LAPO). If L→ R is a left-linear rule, then ⇐=⊗
β
−→
L→R

⊆ =⇒
L→R

⇐=⊗
β

.

Proof. The proof is illustrated in Figure 3.5. We assume s
O
⇐=⊗ u

q−→
i
t. By Lemma 3.1.7

we can sequentialize the β-step into s
R
⇐=⊗ v

Q
⇐=⊗u′

P
⇐=⊗u with O = P]Q]R such that

P#q, Q ≥P q and R <P q. Since β and rules do not overlap, q /∈ O and Q ≥P q · FL. By
commutation we easily get u′ q−→

L→R
t′

P
⇐=⊗
β

t. By Lemma 3.4.3.1 we have v q−→
L→R

r
≥Pq
⇐=⊗
β

t′ and

by Lemma 3.4.6 we have s=⇒
L→R

w
R
⇐=⊗
β

r. Finally, by Lemma 3.1.7 again, all three β-steps

can be merged into a single orthogonal w⇐=⊗
β

t.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 61

λx

@

Z

Z

x

λx

Z

Z

@

x

Z

Z

λx

@

Z Z

xx

λx

Z Z

xx

@

Z Z

⊗

>P Λ ⊗
>P Λ

Λ

Λ

⊗
⊗

Figure 3.4: Preservation of unnestedness with β: Lemma 3.4.5

3.5 Confluence of rewriting
The commutation of simple R-rewriting step and orthogonal β-reduction, as stated in
Lemma 3.4.7, only provides a decreasing diagram if β steps are labeled above R since a
multi-step is facing the R single step. If we try to extend it to parallel R-rewriting, then
we need to consider an orthogonal step to close : ⇐=⊗

β
=⇒
L→R

⊆ ⊗=⇒
L→R

⇐=⊗
β

. However, when
considering orthogonalR-rewriting, then we get a commutation diagram, see Lemma 3.5.1.
In fact it generalizes to orthogonal reduction with any two non-overlapping sets of left-
linear rules. This strong commutation property allows to deduce two crucial properties:
modularity of confluence for non-overlapping systems [vOvR94] and confluence of systems

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 62

u t

u′ t′

v r

s w

Rll
q

Rll
q

Rll
q

Rll

β P#q

⊗

β P#q

⊗

β Q>P q

⊗

β ≥P q

⊗

β R<P q

⊗

β R<P q

⊗

⊗ ⊗

Le
m

m
a

3.
1.

7

Le
m

m
a

3.
1.

7

Lemma 3.4.1

Corollary 3.4.3.1

Lemma 3.4.6

Figure 3.5: Construction of a decreasing diagram for heterogeneous local peaks. See
Lemma 3.4.7

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 63

without critical pairs [Ros73].
In presence of overlaps between the rewrite rules of R, confluence can only be obtained

if critical pairs are joinable. However, this property suffices to guarantee local confluence
but we need extra hypotheses in order to achieve confluence. In the case where R defines
a strongly normalization relation, Newman’s lemma allows to conclude, [New42].

In the case of non-terminating systems, we can still prove confluence provided the
rules’ right-hand sides are not self-nested, as defined in Definition 2.2.25 and therefore
behave like first-order rewrite rules. In that case we also require the rules to be labeled
such that the critical pairs are joined with a decreasing diagram and extra conditions on
critical peaks akin to Toyama’s Variable Condition.

While the above criteria already allow to prove the confluence of many rewrite systems,
they fail to do so in the case where critical pairs of rewrite rules require β-steps to be joined.
To build a decreasing diagram for such cases, it is necessary to label (orthogonal) β-steps
with a lower label than rewriting which, in turn, forces to consider orthogonal rewrite
steps and therefore orthogonal critical pairs.

3.5.1 Confluence of non-overlapping systems

Lemma 3.5.1. Assume R1 and R2 two sets of left-linear rules such that rules of R1 do
not overlap with rules of R2. Then ⊗=⇒

R1
and ⊗=⇒

R2
sub-commute: ⇐=⊗

R1
⊗=⇒
R2
⊆ ⊗=⇒

R2
⇐=⊗
R1

.

More precisely, if s
P
⇐=⊗
R1

u
Q
⊗=⇒
R2

t then s
≥PP∪Q
⊗=⇒
R2

v
≥PP∪Q
⇐=⊗
R1

t and u
P∪Q
⊗=⇒
R1∪R2

v.
In particular, −→

R1
and −→

R2
commute.

Proof. Assuming s⇐=⊗
R1

u⊗=⇒
R2

t, we prove, as in Lemma 3.4.5, by induction on O using

�mul, that s⊗=⇒
R2

v⇐=⊗
R1

t for some v.
If Λ /∈ P ∪Q, then assuming, for instance, u = X[u] (the u = u1 u2 and u = λx :u1. u2

cases are similar), we have P = ⊎
i · Pi, Q = ⊎

i · Qi and si⇐=⊗
R1

ui⊗=⇒
R2

ti such that

s = X[s] and t = X[t]. Induction hypothesis gives si⊗=⇒
R2

vi⇐=⊗
R1

ti and ui ⊗=⇒
R1∪R2

vi

which can be merged into that s⊗=⇒
R2

v⇐=⊗
R1

t and u ⊗=⇒
R1∪R2

v for v := X[v].

Otherwise, w.l.o.g. P = {Λ}] P ′ and, by definition, s = Rγ
Λ←−
R1

Lγ
P ′

⇐=⊗
R1

u for some

(L,R) ∈ R1 and P ′ ≥P FL. By assumption we also have Q ≥P FL otherwise there would
be a R2-redex at position q ∈ FPos(L), an overlapping peak. By induction hypothesis,
Lγ
≥PFL
⊗=⇒
R2

v′
≥PFL
⇐=⊗
R1

t and u
≥PFL
⊗=⇒
R1∪R2

v′. By Lemma 3.1.10, since L linear, v′ = Lτ for τ such

that γ⊗=⇒
R1

τ . We have s = Rγ⊗=⇒
R2

Rτ = v and we group together u
≥PFL
⊗=⇒
R1∪R2

Lτ ⊗=⇒
R1∪R2

Rτ

into u ⊗=⇒
R1∪R2

v and Rτ ←−
R1

Lτ
≥PFL
⇐=⊗
R1

t into v⇐=⊗
R1

t.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 64

A simple corollary is the modularity of confluence when two left-linear systems do not
overlap, [vOvR94].

Corollary 3.5.1.1. Assume R1 and R2 two sets of left-linear the rules such that rules
of R1 do not overlap with the rules of R2 and such that −→

R1
and −→

R1
are both confluent.

Then −→
R1∪R2

is confluent.

Left-linear system without critical pair are sometimes called orthogonal even though
we will steer clear of this denomination to avoid confusion with orthogonal relations. Their
confluence follows easily from Lemma 3.5.1.

Lemma 3.5.2. If R is a left-linear system without critical pair (for instance R = {β}).
Then ⊗=⇒

R
has the diamond property and therefore −→

R
is confluent.

Proof. By Lemma 3.5.1 with R1 = R2 = R.

Theorem 3.5.3. Assume R a left-linear rewrite system such that −→
R

is confluent. Then
−→
R
∪ −→

β
(written −→

R∪β
or −→
Rβ

) is confluent.

Proof. By Lemma 3.5.2, ⊗=⇒
β

is confluent, so is −→
R

and by Lemma 3.4.7, they commute.

Hence they are confluent together and since −→
Rβ
⊆ −→
R
∪ ⊗=⇒

β
⊆ −→−→
Rβ

, so is −→
Rβ

.

Corollary 3.5.3.1. Left-linear rewrite systems without critical pair are confluent together
with β.

Example 1: For instance, the untyped lambda calculus can be encoded with two
symbols lam : (T→ T) → T and app : T → T → T for some declared type T : ∗ in the
signature. The β rule is represented with the rule app (lam λx : T. F [x]) T → F [T] which
is a single rule left-linear system without critical pair, therefore confluent with β.

3.5.2 Confluence of terminating rewrite systems

Lemma 3.5.4. If R is a left-linear set of rules which critical pairs are joinable with −→
R

,
then −→

R
is locally confluent: ←−

R
−→
R
⊆ −→−→

R
←−←−
R

.

Proof. Assume s p←−
R
u

q−→
R
t.

If p#q, then the steps commute by Lemma 3.4.1: s = u[s′]p
q−→
R
u[s′]p[t′]q

q←−
R
u[t′]p = t.

If q ≥P p · FL, then Lemma 3.4.3 (LAPRa) gives the result.
If q = p · o and o ∈ FPos(FL). By Lemma 3.3.5, there is a critical peak obtained by

overlapping G onto L at position o. By assumption, this peak is joinable with rules of R,
hence the pair s, t is joinable by monotonicity and stability, Lemma 2.2.16.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 65

Theorem 3.5.5. If R is a left-linear, terminating rewrite system which all critical pairs
are joinable with R, then −→

Rβ
is confluent.

Proof. By Lemma 3.5.4, −→
R

is locally confluent and since it is also terminating it is
confluent by Newman’s lemma. We conclude by Theorem 3.5.3. The labeling allowing
to have decreasing diagrams for all local peak relies on self-labeling for rewriting steps:
u−→
R
v is labeled with u and these labels are ordered with −→

R
with is well-founded by

assumption. The functional reduction ⊗=⇒
β

is labeled with an extra constant label which
is bigger than all labels of R.

3.5.3 Confluence by decreasing diagram

Rewrite rules which right-hand sides are not self-nested, see Definition 2.2.25, allow to
consider parallel rewriting, and therefore parallel critical pairs in the study of their critical
peaks.

Definition 3.5.6. A rewrite rule L→ R is called self-nested if its right-hand side, R, is.

Definition 3.5.7. Given a parallel critical peak s Λ,m←−
L→R

u
P,n=⇒t, its decreasing diagram is

strict if the decreasing sequence issuing from s has the form s
≥PQ−→−→≥PQ,n=⇒ −→−→ v where Q

is a set of positions such thatMVar(R|Q) ∩ (MVar(L) \MVar(L|P)) = ∅.

The above condition restrict the set of positions Q to those that do not interfere with
the rewrites below meta-variables of R that are not in the scope of P . It is an adaptation of
Toyama’s so-called Variable Condition (TVC) [Toy81] introduced in a first-order setting.

Example 2: Assume the following rewrite systems:

R1 : { g X → X , f (g X) Y → g f (g X) Y }
R2 : { g X → X , f (g X) Y → f X (g Y) }

Both have a single parallel critical peak, g f (g X) Y←−f (g X) Y {12}−→f X Y which is
simple. In order to have a strict decreasing diagram for this peak, the variable Y must not
interfere with the left-hand decreasing sequence. In the case of R1, it is not the case since
g f (g X) Y Q=⇒f X Y with Q = {12, 11} such that Y /∈ R|Q. However, in the case of R2,

f X (g Y) {2}=⇒f X Y is not strict. Note that in both cases it is also possible to label the
first relation with a lower label than the second and consider the joining sequence as the
middle step which is unconstrained. Other rules in the system may however forbid this
labeling.

In systems satisfying this condition, it is possible to prove confluence using parallel
reduction.

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 66

u

s′ t′

s tv′

· ·

Ind. Hyp.

Ind. Hyp.

Lemma 3.4.1 Lemma 3.4.1

≥P

≥Q

≥P

≥Q

v

Figure 3.6: Parallel decreasing diagrams merging in Theorems 3.5.8 and 3.5.9

Theorem 3.5.8. If R is a set of labeled left-linear rewrite rules which parallel critical
pairs have strict decreasing diagrams with −→

R
and no rule in R is self-nested. Then −→

R
and −→

Rβ
are confluent.

Proof. We extend the labels of simple rewriting l−→
L→R

to parallel rewrite steps l=⇒
L→R

. For all
local peaks that can be split into steps at parallel subsets of positions, we conclude with
a diamond diagram, exactly as before.

In the case s p,m⇐=
L→R

u
p·P,n=⇒
G→D

t, we use the assumptions to guarantee that the parallel facing
step can be merged with parallel steps nested below the overlap. Assuming p = Λ, we
have a critical peak s′

Λ,m←−
L→R

u′
Q,n=⇒
G→D

t′ and a substitution θ such that u = u′θ and θ
n=⇒τ .

However, because the right-hand step is parallel u = u′θ
Q,n=⇒
G→D

t′τ = t, necessarily we have
Dom(θ) ⊆MVar(u′)\MVar(u′|P) =MVar(L)\MVar(L|P). By assumption, the right-
hand side closing decreasing sequence in s′ ≥PQ−→−→ v′

Q,n=⇒w′ DS(m,n)←−←− t′ preserves the positions
of the meta-variables Dom(θ) so that we have the following decreasing diagram for the
local peak s′θ ≥PQ−→−→ v′θ

Q′,n=⇒ v′τ
Q,n=⇒ w′τ

DS(m,n)←−←− t′τ = t using, stability and Lemma 2.2.26,
since v′ not self-nested. The parallel steps can be grouped.

3.5.4 Higher-Order confluence by decreasing diagrams

Theorem 3.5.9. Let R be a left-linear labeled rewrite system which orthogonal critical
pairs have decreasing diagrams with ⊗=⇒

Rβ
, then −→

Rβ
is confluent.

Proof. Assume L → R is labeled with l, we extend the labeling of simple rewriting l−→
L→R

to orthogonal steps
l
⊗=⇒
L→R

, similarly to the proof of Theorem 3.5.8. Assume a local peak

s
m,P
⇐=⊗
L→R

u
n,Q
⊗=⇒
G→D

t for some labels m and n, we show, by induction on |P |+ |Q| that this peak

CHAPTER 3. CONFLUENCE OF LEFT-LINEAR SYSTEMS 67

u

s t

s′ t′

v w

θ

τσ

τ ′σ′

δγ
uθ

sσ tτ

s′σ′

s′γ
vγ vδ wδ

t′δ

t′τ ′

Figure 3.7: Nested decreasing diagrams merging in Theorem 3.5.9

has a decreasing diagram containing exclusively rewrite steps at positions below P ∪ Q.
By Lemma 3.3.8, P = P1]P2, Q = Q1]Q2 such that we are in one of the following cases:

• (Disjoint peak) (P1 ∪Q1)#(P2 ∪Q2), as illustrated in Figure 3.6. The peak can be
split into s

m,≥PP2
⇐=⊗
L→R

s′
m,≥PP1
⇐=⊗
L→R

u
n,≥PQ1
⊗=⇒
G→D

t′
n,≥PQ2
⊗=⇒
G→D

t. By induction hypothesis, there is a
decreasing diagram joining s′ and t′. By commutation of steps at orthogonal posi-
tions (Lemma 3.4.1) we have s DS(n,m),≥PQ1−→−→

m,≥PP2
⇐=⊗ v′

n,≥PQ2
⊗=⇒ DS(m,n),≥PP1−→−→ t. The

middle local peak has a decreasing diagram by induction hypothesis. We conclude
by permuting steps at parallel positions and merging, on each side, the facing steps
from the two induction hypothesis together.

• (Ancestor or overlapping peak) (P2∪Q2) ≥P (P1 ·FL∪Q1 ·FG) and P1 and Q1 overlap
as illustrated in Figure 3.7. By Lemma 3.3.10 and Definition 3.3.7, there is a critical
peak s′

P1
⇐=⊗u′

Q1
⊗=⇒ t′ and θ such that u = u′θ. Since P2 ≥P Fu′ , by Lemma 3.1.9,

the local peak can be decomposed as s = s′σ
m,P1
⇐=⊗
L→R

u′σ
m
⇐=⊗
L→R

u′θ
n,
⊗=⇒
G→D

u′τ
n,Q1
⊗=⇒
G→D

t′τ . By

induction hypothesis, there are sequences s′ DS(m,n)−→−→ v′
DS(n,m)←−←− t′ and σ DS(m,n)−→−→ γ

DS(n,m)←−←− τ .
By stability and monotonicity, these steps can be rearranged, and facing steps
merged, into a decreasing diagram for the local peak.

Chapter 4

Confluence of Non-Left-Linear
Systems

The usual techniques for showing confluence of untyped (higher-order) theories are re-
stricted to systems of left-linear rules. In this chapter, we consider the case of rewrite
rules which left-hand sides may be non-linear and study syntactical restrictions that al-
low to have confluence, even in presence of (restricted) functional rewriting and/or non-
terminating systems. Rewriting with rules that are not left-linear may seem inoffensive at
first sight. However, most standard properties simply fail.

For instance a counter-example of termination of the simply typed λ-calculus together
with non-linear rules is given in [Oka89]. Numerous counter-examples to confluence in
the (non-terminating) pure λ-calculus, due to Klop, are given in [Klo80]. A striking one
is provided by the simple rule f X X → a, which interaction with a fixpoint combinator
generates diverging reductions that cannot be joined: confluence of the pure λ-calculus
can’t be preserved when adding rewrite rules which left-hand sides are non-linear, even in
cases where local confluence can be shown.

Example 1: We are, in particular, interested in the following, relatively simple,
examples of non-left-linear systems which can prove useful in the context of the encoding
of universes

F X X → a u X (c X Y)→ Y

F X X Y → Y max X X → X

The main reason for non-left-linear rules to be so ill-behaved is that left-linearity
guarantees that nested rewrite steps do not interfere with the above redexes: if Lσ≥PFL−→ u

then u still matches L. For instance, if f X −→ g, then f (f t) −→ f g and both
left- and right-hand side match the rule at the head with {X 7→ (f t)} and {X 7→ g}
respectively. Steps below the fringe of a redex are played in the matching substitution.
In fact left-linearity even allows steps that do not overlap to commute, yielding some
crucial confluence modularity properties. Without left-linearity the previous properties

68

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 69

no longer hold. Consider for instance a rewrite system containing a non-linear rewrite rule
f X X → a and a term t such that t −→ u. Then the following non-overlapping ancestor
peak no longer commutes.

F t t

a F u tF u u

Besides, its joining sequence cannot be labeled so as to be a decreasing diagram, assuming
the labels for−→ and−→ depend on redexes. Indeed, while the red joining step a←− F u u
has the same label as the facing a←− F t t, the blue joining step must be of strictly lower
label than the preceding F t t −→ F u t which is not the case here.

A natural way to make this diagram decreasing is to merge together the two joining
steps into a single a ←− F u t facing step. For instance if we consider the extension, 7−→,
of −→ such that F u t 7−→ a for all t←→←→ u, then 7−→ is still stable and monotonic but
this time, if a ←− [F u t −→F u′ t′, then a ←− [F u′ t′ which is decreasing. In fact it
can be shown that =⇒ and ⊗=⇒ commute if −→ has no critical pair with the linearized
version of 7−→. As noted in [Klo80], this means that, in particular, =⇒∪−→

β
is confluent.

In this chapter we are going to consider a more conservative extension of 7−→ such that
F u tB−→ a if u−→−→←−←− t. The joining sequence is called an equalization [JL12b], occurs
exclusively below non-linear positions and its labels are strictly smaller than that of the
above non-linear rewrite step.

Our main contribution is the description of conditions under which sets of higher-order
rewrite rules preserve confluence of the λ-calculus, on some restricted subset of the set of
pure λ-terms. These sets of terms, we call them layered, are characterized by a kind of
typing system which types, called here levels, are integers. The idea is that if a higher-
order redex contains a β-redex as a strict subterm, the latter is typed by a strictly smaller
integer, hence defining layers that can be exploited in the confluence proof, in a way similar
to [LJO15]. This technique generalizes confinement as described in [ADJL16], by having
infinitely many layers instead of only two. It also generalizes the left-linear case, since the
whole set of terms can then be considered as forming a single layer at level 0.

Our main result is Theorem 4.4.9 which generalizes Theorem 3.5.5. It states that
terminating rewrite systems are confluent together with β restricted to the subset of
layered terms.

4.1 Confinement and layering
There are two well-known counter examples to the confluence of non-left-linear systems.

Example 1: Klop’s counter example [Kd89] consists of a single non-left-linear rewrite
rule F X X → a considered together with β. It is possible to define, in the untyped λ-
calculus, a fixpoint term Y such that Y t−→−→

β
t (Y t). We write C := Y (λcx. F x (c x)) and

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 70

A := Y C for convenience. We have A−→−→
β

C A−→−→
β

F A (C A)−→−→
β

F (C A) (C A)−→
R

a.
Besides we also have A−→−→

β
C A−→−→

β
C a−→−→

β
F a (C a) which does not reduce to a.

The main idea to forbid this counter-example is to stratify terms into layers in or-
der to limit the occurrences of non-linearly rewritten symbols and forbid a set of terms,
deemed unsafe, that is as small as possible. In Klop’s counter example, the functional
term λx. F x (c x) should be treated carefully since its argument is nested below the un-
safe F symbol. In the example of Section 4.5 this term is simply forbidden since it is
layer-increasing. As discussed in Section 4.6, this criteria could most likely be improved
to allow this particular term. Instead the application of the fixpoint Y operator should be
controlled so as to forbid the term C creating the counter example.

Example 2: Consider the following first-order rewrite system:
F X X −→ a

F X (g X) −→ b
c −→ g c

F c c F c (g c)

F (g c) (g c) F (g c) (g (g c))

· · · · · ·

a b

Rules do not overlap and therefore define a locally confluent system. However, because
some rules are non-left-linear, it is in fact necessary to consider their linearized versions,
F X Y → a and F X (g Y) → b which do overlap. A generalized critical peak must be
considered a ←− F X X

X = g X= F X (g X) −→ b which can be obtained by the so-called
cyclic unification [LJO15], a variant of unification of infinite rational terms [Hue72]. In
this work, we decided to exclude such overlaps by requiring that in any overlap between
two linearized left-hand side patterns, the non-linear variables in each pattern occur at
parallel positions, see Definition 4.3.4. Taking them into account is probably possible but
would require more complex technical developments that are left as future work.

4.1.1 Confinement

The notion of confinement was introduced by Assaf, Dowek, Jouannaud and Liu [ADJL16]
in order to consider a non-left-linear first-order rewrite system together with higher-order
rewrite rules. Non-left-linear rules are meant to operate exclusively on a controlled set
of closed terms representing universes. This confinement was furthermore compatible
with associativity and commutativity of some symbols, such as max and plus. This work
allowed a faithful representation of universe level conversion in presence of abstract uni-
verse variables, either floating or locally bounded, a first step towards supporting universe
polymorphism in Dedukti encodings.

[LJO15] introduces an extra set of confined first-order symbols Fc which arity is no
longer assumed to be 0 as for symbols of F . The full set of symbols is therefore {@,λ}]
F] Fc. We also assume a set of confined variable Xc disjoint from X and we denote by
Tc ⊆ T the set of confined expressions, which are the terms built over symbols of Fc and
variables of Xc. Terms of Tc are first-order as they may not contain any occurrence of @ or

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 71

λ. Variables x ∈ Xc in the confined level may not be bound with the usual λ-abstraction,
λx. x is forbidden, if x is confined. However we allow other binding operators, such as
products Π(x : A).B, to bind confined variables as long as it is guaranteed that such
variables are never substituted in reduction steps. This is the case of binding operators
that do not occur in rewrite rules, such as products.

We consider a rewrite system R = Rfo] Rho made of two sets of rules, Rfo and Rho.
Rules in Rho have a, possibly non-left-linear, pattern as their left-hand side. Rules in Rfo
are confined and operate exclusively on the set Tc of confined first-order expressions. Rfo
may indeed be an arbitrary normal first-order rewriting systems, with rules, simplifiers
and equations [JL12a], as in [ADJL16]. In order to keep away the technicalities associated
with normal rewriting systems, we will instead allow Rfo to be an infinite set of confluent
and terminating first-order rewrite rules on the set of confined expressions without meta-
variables.

Given a pattern L, we denote by Llin its linearized incarnation, obtained by renaming
each occurrence of a non-linear meta-variable X of L to Xp if it occurs at position p
in L. Note that linearization is the identity for linear patterns. We use the notations
MVarnl(L) ⊆ MVar(L) for the set of non-linear meta-variables of L and MVarl(L) :=
MVar(L) \MVarnl(L) for the set of its linear meta-variables. Finally, we also need the
non-linear fringe F nl

L ⊆ FL and linear-fringe F l
L := FL \ F nl

L , both sets of positions in L
corresponding to the pre-redexes in L formed with the non-linear and linear meta-variables,
respectively.

Our purpose in this section is to show the confluence of our rewriting relation −→
Rβ

,
defined as the union of first-order rewriting with Rfo, higher-order rewriting with Rho,
and β-rewrites. Since confluence cannot be obtained for all terms, we first introduce a
denumerable set of sets of terms satisfying some assumptions, on which union confluence
will hold. We then define the rewriting relation which will be used to show the confluence
property by using van Oostrom’s technique. Finally, we show that all local peaks of this
relation admit decreasing diagrams and conclude.

4.1.2 Term layering

We assume a subset L ⊆ T of terms partitioned into pairwise disjoint sets Ln called layers,
where n ∈ N is the level of the terms in Ln. Let also L≤n = ⋃

k≤n Lk.

Definition 4.1.1. A substitution σ is well-layered if x ∈ Ln implies that σ(x) ∈ L≤n.

Note that the well-layeredness condition only mentions the images of variables. Meta-
variables, and meta-terms in general, are not assigned any level.

We assume that the partition into layers satisfies the following properties:

• (H0) L0 = Tc

• (H1) If t ∈ Ln and tB u, then u ∈ L≤n

• (H2) If t ∈ Ln and t−→
Rβ

u, then u ∈ L≤n

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 72

• (H3) If t ∈ Ln and σ is a well-layered substitution, then tσ ∈ L≤n

• (H4) If L→ R ∈ R and Llinσ ∈ Ln, then ∀p ∈ F nl
L (σ(Xp) ∈ L≤n−1)

The stratification allows to consider rules such as lift (univ X) (univ X) T −→ T
provided the non-linear meta-variable X is in Lk while the whole left-hand side of the
rule is at level Ln for some n > k. It also allows abstractions, including non-terminating
λ-terms, to inhabit any layer starting with L1.

The confinement criterion, allows non-left-linear rules to operate at the same level as
their non-linear meta-variables, provided this level is 0. At that level, terms are confined,
that is first-order, no beta-rewrites are possible. For instance max(I, I) −→ I is sup-
ported in the confined level, max being a confined function symbol, hence implying that all
considered instances of max(I, I) are confined. Rewriting at the confined level is however
forbidden to interact with potentially non-terminating higher-order rules such as β.

4.2 Layered sub-rewriting

4.2.1 Layered rewriting

Rewrite steps may now be labeled with the level of their redex, writing the label below
the arrow sign. A step which rewrites several redexes at the same time, such as parallel
or orthogonal rewriting may also be labeled with n if all its redexes belong to the same
level. If they do not, that steps can still be labeled by some condition on the level, such
as ≤ n.

Definition 4.2.1 (Abstract level rewriting). Let u P−→ v for some set P of positions in

u. We say that u rewrites to v at level n, written u P−→
n

v, if ∀p ∈ P, u|p ∈ Ln, and with

level at most n, written u P−→
≤n

v, if ∀p ∈ P, u|p ∈ L≤n).

The arrow P−→ may of course be P=⇒ or
P
⊗=⇒. Naturally, because of (H1) and layer

disjointness, rewriting at a level n does not operate on terms of L<n.

Lemma 4.2.2. If Lk 3 u
p−→
n

v then k ≥ n. Besides, if p = Λ then k = n.

Proof. By definition and disjointness of levels if p = Λ. Follows from (H1) otherwise.

Rewriting at level n is included in rewriting at level ≤ n: −→
n
⊆ −→
≤n
⊆ −→. When

mentioning a rule or relation name is needed, we will write L→ R;n, R;n or β;n instead
of only n. Note that −→

Rfo
and −−−−→

Rfo;0
coincide.

Lemma 4.2.3. Assume −→ is a monotonic relation. Then −→
n

and −→
≤n

are monotonic.

Proof. By definition.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 73

Lemma 4.2.4. Assume −→ is a stable relation. Then −→
≤n

is stable.

Proof. Follows from (H3).

The latter property is not true of −→
n

however, as evidenced by (H3).

4.2.2 Sub-rewriting

The idea of sub-rewriting is introduced in [LDJ14] and developed further in [LJO15].
Assuming that terms are categorized into levels, and that an instance of a left-hand side
of rule belongs to some level, its variables must be instantiated by terms belonging to a
strictly smaller level. Here, we need to assume that property for the non-linear variables
only, which suffices to rewrite recursively with a strictly lower level the different values of
a non-linear variable until they become equal in which case rewriting takes place. This
can be seen as a very controlled way of using matching modulo the equational theory
defined by a set of confluent rewrite rules. Although levels introduced in [LJO15] are
completely different from the levels defined here, and sub-rewriting is slightly different,
similar techniques apply. We hide most of these differences away by using an axiomatic
approach which allows us to replace the level values with the properties (H0) to (H4)
that they satisfy.

Definition 4.2.5 (Sub-rewriting). A term u sub-rewrites to a term v at position p ∈
Pos(u) for some rule L → R ∈ R, written u B

p−→
R
v, if there exists a substitution θ such

that u
≥Pp·Fnl

L
−−−−→−→
Rβ

u[Lθ]p
p−→

L→R
u[Rθ]p = v.

The term u|p is called sub-rewriting redex of u at p, the substitution θ is an equalizer
of L, and the rewrite steps from u|p to Lθ constitute the corresponding equalization.

Note that we could replace sub-rewriting below F nl
L with sub-rewriting below the level

of the redex, which would be more permissive. The present definition eases some techni-
calities, but this alternative might lead to sharper results.

This definition of sub-rewriting allows arbitrary rewriting below the left-hand side of
the rule until a redex is obtained. It relates therefore to rewriting modulo, but differs
from it by being directional and by matching modulo rewrite steps below the non-linear
variables of the left-hand side of the rule exclusively, instead of inside the whole (sub-
rewriting) redex.

We can of course categorize sub-rewriting by levels, with the expected notation. Sub-
rewriting at level 0 should coincide with rewriting with Rfo, which actually follows with
our view of an infinite closed rewriting system.

Sub-rewriting is already a multi-step reduction but it can safely be further extended to
parallel sub-rewriting. It is even necessary to consider orthogonal sub-rewriting in order to
get an equivalent of Theorem 3.5.9 in a non-left-linear setting. Because steps nested below
the non-linear fringe can be considered as part of the equalization steps, it is sufficient to

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 74

consider orthogonal sub-rewriting at positions O such that nested positions are below the
linear fringe of the positions in O which are above: ∀p, q ∈ O, p >P q ⇒ p ≥P q · F l

L.
Level sub-rewriting has the following monotonicity and stability properties:

Lemma 4.2.6 (Monotonicity). Let s[t]p and s[u]p be layered terms such that tB−−−→
R;n

u.

Then s[t]p
p

B−−−→
R;n

s[u]p.

Lemma 4.2.7 (Stability). Assume u
p

B−−−→
R;n

v and that σ is a well-layered substitution.

Then uσ
p

B−−−→
R;≤n

vσ.

Proof. By induction on the level. Stability at level < n allows to have uσ
≥PpFnl

L

B−−−→−→
R;<n

u[Lθ]pσ.

We have by stability of (standard) rewriting (uσ)[Lθσ]p
p−→

L→R
uσ[Rθσ]p = vσ. We conclude

since, by (H3), (uσ)|p = u|pσ ∈ L≤n.

A important property that follows directly from Definition 4.2.5 is that a sub-rewriting
redex is an instance of a linearized left-hand side of rule:

Lemma 4.2.8. Let u
p

B−−−→
Rho;n

v. Then there exist L→ R∈Rho and substitutions σ, τ, δ st:

• Dom(σ)=MVarl(L), Dom(δ) =MVarnl(L), and Dom(τ) =MVar(Llin)\MVarl(L)
• ∀X ∈MVarnl(L) ∀Xp ∈MVar(Llin) (τ(Xp)−→−→

<n
δ(X))

• u|p = Llin(σ ∪ τ) and v|p = R(σ ∪ δ).

Note that σ ∪ τ = στ = τσ since σ and τ have disjoint domains and ranges. The same
applies to σ, δ.

Corollary 4.2.8.1. −→
Rβ;n

⊆ ⊗=⇒
β;n
∪ B−→
R,n

⊆ −→−→
β;n
∪ −−−−→−→
Rβ;<n

−→
R;n

⊆ −−−−→−→
Rβ,≤n

.

This corollary shows that the relation −→
Rβ

is confluent iff the relation ⋃n≥0⊗=⇒
β;n
∪ B

n−→
R

is confluent. We will show that the latter is confluent, providedR satisfies some conditions,
by using van Oostrom’s technique within an induction over n. This however requires some
preparation.

4.3 Overlapping sub-rewriting peaks
Overlapping non-linear patterns is already more complex than in the linear case but unifi-
cation of non-linear patterns can still be done in linear time [DHKP98]. The algorithm is
similar to the linear case with a simple check that X does not occur in t before substituting
a solved equation X[x] = t in the remaining problems. Equations X[x] = t with X a strict
subterm of t simply have no solution and so-called flexible-flexible equation X[x] = X[y]

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 75

are resolved, similarly to the linear case, by introducing a fresh meta-variable Z, local
variables z such that xi = yi ⇒ xi ∈ z and the equation X[x] = Z[z].

Overlaps between sub-rewriting steps are way more complex as nested equations such
as X = S X may now have a solution modulo sub-rewriting if X is a non-linear meta-
variable. In our case, sub-rewriting is done at a smaller level, but this constraint does not
offer much guarantee since each level, starting from L1, contains the usual β-reduction
which is non-terminating and allows the definition of fixpoint combinators.

Adapting the unification algorithm can lead to non-terminating calculations if one is
not careful. Consider for example the following unification problem FX (SX) u = F Y Y v.
The unification algorithm yields {X = Y ∧ Y = S X ∧ u = v} and the first two equations
may be substituted in the remaining unification problem u = v. In the linear case, they
could simply be substituted once in all remaining problems, however, here, substituting
X with Y in u and v introduces the variables Y which may in turn be substituted with
S X, therefore reintroducing the variable X and possibly requiring further substitutions of
equations in solved form. This non-termination is usually avoided in unification algorithms
by performing an occurs-check and failing in case of cyclic unification problems. With sub-
rewriting, this becomes unsound.

We need a condition allowing us to reduce the unification of two higher-order patterns
modulo R∪ β sub-steps to the higher-order unification of the linearized versions of these
patterns.

4.3.1 Linear independence

Our first condition aims at forbidding the potential cyclicity of non-linear unification
problems. We rely on a property of the linearized unifications very much alike Toyama’s
variable condition [AYT09].

Definition 4.3.1 (Linear independence). Two closed pre-patterns L and G are linearly
independent iff ∀p ∈ Pos(L) such that Llin and Glin are renamed apart and unify at p, we
have:

• ∀q ∈ FPos(G) such that p · q ∈ F nl
L ,MVarnl(G) ∩MVar(G|q) = ∅;

• ∀q ∈ FPos(L) such that q ∈ p · F nl
G ,MVarnl(L) ∩MVar(L|q) = ∅;

In particular, if either L or G is linear or if Llin and Glin are not unifiable at any
position, then L is linearly independent from G. Any pattern L unifies with a renaming of
itself at the root, but this never prevents a closed pre-pattern to be linearly independent
from itself (however unification at other positions might).

This criteria is a bit stronger than Toyama’s variable condition and could probably be
relaxed as long as it keeps forbiding cyclicity and therefore removes the need for occur-
checks in the usual unification algorithm of linear pre-patterns.

Lemma 4.3.2. Computing a most general unifier of two linearly independent closed pre-
patterns is done in polynomial time.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 76

Proof. A unifier θ of L|p and Gx (lifting of G where variables bound above p in L are
added to the arguments of the meta-variables of G) is an instance of the most general
unifier σ0 of Llin|p and (Glin)x (which is computed in linear time): θ = σ0τ0, for some
τ0. By linear independence, for all linearized version Xq ∈ Dom(σ0) of some non-linear
meta-variable X ∈ MVarnl(L), there is an occurrence Xq[y] C Llin|p and q ∈ FPos(G)
such that Xq[y]σ0 = G|qσ0 where G|q (and therefore G|qσ0) is linear. If we consider two
such occurrences at positions q and q′, then we have Xq[y]σ0τ0 = Xq′ [y]σ0τ0 = X[y]θ,
therefore τ0 is a unifier of G|qσ0 and G|q′σ0. This unification problem is now linear,
hence has a linear m.g.u. σ1 computable in linear time such that τ0 = σ1τ1 and therefore
θ = (σ0σ1)τ1. We proceed to successively unify this way all meta-variables in Dom(σ)
corresponding to the same non-linear meta-variable in L|p or in G. An easy induction on
the number of occurrences of X in L|p or in G shows therefore that there is a most general
linear substitution σ := σ0 · · ·σn and τn such that θ = στn and all σ(Xq) are equal. We
can therefore uniquely define an unifier σ′ which domain ranges over the meta-variables of
L|p and G by σ′(X) := σ(Xq) if Xq ∈ Dom(σ), otherwise σ′(Y) := σ(Y){Xq 7→ σ(Xq)}.
We have L|pσ′ = (L|p)lin{Xq 7→ X}σ′ = (L|p)linσ = Glinσ = Glin{Xq 7→ X}σ′ = Gσ′.

Example 1: Consider the problem F T (S T) (S (S T)) = F (S X) (S Y) (S Z).
The usual unification algorithm applied to the linearized patterns yields the most general
unifier σ0 := {T1 7→ S X,T2 7→ Y,Z 7→ S T2}. We unify (S X)σ0 = S X and Y σ0 = Y
and get σ1 = {Y 7→ S X} which allows to define σ := σ0σ1 = {T1 7→ S X,T2 7→ S X,Z 7→
S T2, Y 7→ S X}. This substitution is then turned into a unifier for the non-linearized
problem by collapsing meta-variables: σ′ = {T 7→ S X,Z 7→ S (S X), Y 7→ S X}.

Definition 4.3.3. A set of rules is linearly independent if any two of its rules have linearly
independent left-hand sides.

Note that, since patterns are β-normal and the β-rule is left-linear, R ∪ β is linearly
independent if so is R.

4.3.2 Linear compatibility

We also need the equalization steps from both side of a local peak to preserve the functional
positions of the other redex so as to be replayed.

Definition 4.3.4 (Linear compatibility). Two closed pre-patterns L and G are linearly
compatible in a set R of rewrite rules iff ∀p ∈ Pos(L) such that Llin and Glin are renamed
apart and unify at p, we have:

• ∀q ∈ FPos(G) such that p · q ≥P F nl
L , G|q is unifiable with no linearized left-hand

side of a rule in R;

• ∀p · q ∈ FPos(L) such that q ≥P F nl
G , L|p·q is unifiable with no linearized left-hand

side of a rule in R.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 77

In particular, if L and G are linear or if Llin and Glin are not unifiable at any position,
then L is linearly compatible with G in any set R. Any pattern L unifies with a renaming
of itself at the root, but this never prevents a closed pre-pattern to be linearly compatible
with itself (however unification at other positions might).

Lemma 4.3.5. If F nl
L ∩ p · FPos(G) = p · F nl

G ∩FPos(L) = ∅ for all position p at which
Llin and Glin unify, then L and G are linearly compatible in all set R of rewrite rules.

Proof. The criteria ensures that no unification check with rules of R is needed.

Example 2: We assume u is a symbol rewritten by some rule in R. The pre-pattern
L := f X (u X) is linearly compatible with f X Y and f X Y (u X) but neither from
f (u X) Y nor from u (u X) nor even from G := f X X even though G is not unifiable
with L. Indeed, the linearized versions of L and G unify at position Λ and we have both
2 ≥P F nl

G = {12, 2} and Λ · 2 ∈ FPos(L) since L|2 = u X which is unifies with some rule
of R by assumption.

Definition 4.3.6. A set R of rules is linearly compatible if the left-hand sides of any two
rules in R are linearly compatible in R.

Note that, since patterns are β-normal and the β-rule is left-linear, R ∪ β is linearly
compatible if so is R.

Example 3: Let R := {f X (f X Y) → R , f Z Z → D}. Checking linear
compatibility requires considering all three possibilities of unifying one (linearized) left-
hand side with a subterm of the (linearized) other:

• f X (f X Y) with itself at position 2, which gives the linearized solvable equation
f X1 (f X2·1 Y) = f X ′2·1 Y ′. The condition is satisfied without the need for a
check;

• f Z Z with f X (f X Y) at position 2, which gives the linearized solvable equation
f Z1 Z2 = f X2·1 Y for which the condition is, again, satisfied.

• f Z Z with f X (f X Y) at position Λ, which gives the linearized solvable equation
f Z1 Z2 = f X1 (f X2·1 Y). In that case the condition is not satisfied since Z2 must
be unified with a functional subterm f X2·1 Y .

R is thus not linearly compatible, but replacing f X (f X Y) by f X (g X Y) yields a
linearly compatible set of rewrite rules.

4.3.3 Critical peaks

In order to ease the presentation of our critical peak lemma, we will require rules to be
linearly independent as an extra assumption.

• (H5) R is linearly independent and linearly compatible.

Lemma 4.3.7. (H5) is checked in polynomial time.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 78

Proof. The quadratic number of overlaps of linearized left-hand sides can be generated in
quadratic time. Both properties are then check linearly in the total size of these overlaps.

Critical pairs between rules in Rfo do not matter since Rfo is assumed confluent.
However, we still have the case where L is a left-hand side of rule in Rho and G a left-
hand side of rule in Rfo. (H5) must therefore apply in that case.

If a pair of rules in Rho satisfies (H5) (or the above one in Rho and the other in Rfo),
then a non-linear variable of one left-hand side cannot sit above a non-linear variable
of the left-hand side of the other in case they overlap. This is not very restrictive in
practice, but has two important consequences: firstly, unification of two such patterns can
be performed using the linear unification algorithm given in [FJ19a], the result being a
substitution of domain included in MVarl(L) ∪MVarl(G); secondly, equalization steps
from an overlapping peak u

Λ←−C
L→R

s
p
B−→
G→D

v do not take place above FL or p · FG. This
simplifies the proof of the coming critical peak lemma drastically, although we suspect
that this second property is not really needed.

The critical pair lemma comes in two parts: a critical peak lemma that characterizes
the situation under which an overlapping peak may exist; and a lifting lemma that shows
a joinability property of all overlapping peaks provided it is true of all critical peaks.

Lemma 4.3.8 (Critical peak lemma). Assume s q←−C
L→R;n

u
q·p
B−→

G→D;n
t is an overlapping peak.

Then, L|p and Gx have a most general unifier ρ and there is a substitution δ and a critical
peak s′ Λ←−

L→R;n
Lρ = Lρ[Dρ]p

p−→
G→D;n

t′ such that s|q −→−→
<n

s′δ and t|q −→−→
<n

t′δ.

Proof. By monotonicity of sub-rewriting, we can assume without loss of generality that
q = Λ. The proof is illustrated in detail in Figure 9.3, Figure 4.1 oversimplified but conveys
the idea.

By Lemma 4.2.8, u = Llinστ with Dom(σ) ⊆ MVarnl(L), Dom(τ) ⊆ MVarl(L),
σ−→−→

<n
σ′ (using (H4),(H1) and (H2)) and u−→−→Lσ′τ

Λ−→
L→R

Rσ′τ = s. We write v := Lσ′τ .
By the same token, u|p = Glinγθ with Dom(γ) ⊆ MVarnl(G), Dom(θ) ⊆ MVarl(G),

γ−→−→
<k

γ′ and u|p−→−→Gγ′θ
Λ−→

G→D
Dγ′θ = t|p. We write w := Llinστ [Gγ′θ]p and by mono-

tonicity, u−→−→Llinστ [Gγ′θ]p = w
Λ−→

G→D
Llinστ [Dγ′θ]p = t.

We define FH := {o ∈ FL | o ≥P p · F nl
G } ∪ {o ∈ p · FG | o ≥P F nl

L } the positions
from the fringe of either left-hand side which are also below the non-linear fringe of the
other. We define H := uFH , which is, following our notations, the term u in which the
subterms at positions FH are replaced with fresh meta-variables applied to all locally
bounded variables. Since u is ground, FH is the fringe of H.

All steps in the derivation from u to v must be at positions below FH , since otherwise,
the first one falsifying this property would falsify linear independence of R ∪ β, which is
assumed in (H5). This is true as well of the derivation from u to w. Therefore, v and w

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 79

coincide with H at all positions above FH , and since H is linear, v = Hδ and w = Hϕ for
some substitutions δ and ϕ respectively.

We construct now, using our confluence assumption, derivations from v and from w to
a common reduct v ≥PFH−→−→

<n
u′
≥PFH←−←−
<n

w. Since v is an instance of L and FH ≥P FL, so is u′.
Since w is an instance of L[Gx]p and FH ≥P p · FG, so is u′, hence unifying L|p and Gx.
Note that both derivations operate at levels strictly below n. Finally, since both v and w
are instance of H, so is u′. Therefore, L and G are unifiable at position p and we have
u′ = Hδ for some unifying substitution δ.

We are left with routine calculations for commuting the two derivations originating
from v (resp. w), and conclude the proof.

C B

Commutation

Stability Monotonicity

Critical Pair

Figure 4.1: Critical pair lemma: Lemma 4.3.8

The critical pair lemma shows that overlapping peaks are joinable when critical pairs
are joinable.

4.4 Decreasing Diagrams
We assume from now on a set R of rewrite rules satisfying (H5). We will prove that
Theorem 3.5.5 extends to sub-rewriting with non-linear rules. The strong normalization
assumption must be replaced by a last assumption:

• (H6) There is a measure function JuKn mapping a term u and a level n to a set E
equipped with a well-founded partial order � such that

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 80

– If u −→
Rβ;<n

v, then JvKn � JuKn

– If u −→
R;n

v, then JvKn ≺ JuKn

Note that if R is terminating, we can choose an empty set of confined terms, L0 = ∅,
a unique layer containing all terms, L1 = T and define JuKn := u ∈ E := T equipped with
the well-founded −→

R
. When considering more than one non-empty layer, the difficulty is

to define J·Kn decreasing by rewriting at level k < n. One way to achieve this is to consider
JuKn to be the term u where all subterms at level strictly lower than n are replaced by a
special constant �. This erasure mechanism requires however to prove the termination of
rewriting at level n without relying on the shape of subterms at level < n, see Section 4.5
for an example of use of this idea.

We consider the relations ⊗=⇒
β;n

labeled with (n,⊥) and uB−→
R;n

v labeled with (n, JuKn).

The order on labels is the lexicographic ordering (≤,�) where � itself is extended to have
JuKn � ⊥.

The relation −→
Rfo

only operates on L0 and is the only relation operating on this set of
terms. We assume it is confluent, a property that can be proved in practice using standard
first-order techniques since L0 contains first-order terms only.

4.4.1 Joinability of non-overlapping local peaks

We now proceed proving our confluence theorem, Theorem 4.4.9, stated at the end of the
section: assuming critical pairs of Rho and critical pairs of Rfo onto Rho are joinable, −→

Rβ
is confluent. Its proof is by a course-of-values induction and therefore assume in the rest
of this section a level n > 0 such that −→

βR;<n
is already proven confluent and we prove that

−→
βR;n

is confluent.
There are seven cases of local peaks for which we exhibit decreasing diagrams in the

coming lemmas. Eventually we conclude that −→
Rβ

is confluent on well-layered terms. In
the proof the confluence assumption of −→

βR;<n
made in those lemmas is replaced by the

induction hypothesis.
We start with local peaks of B−→R, then move to local peaks of ⊗=⇒

β
, and end up with

mixed local peaks involving both B−→R and ⊗=⇒
β

.
Disjoint higher-order rewrite steps commute, as usual, because of monotonicity:

Lemma 4.4.1. If s
p

←−−−C
R;m

u
q

B−−−→
R;n

t with q#p, then s
q

B−−−→
R;n

v
p

←−−−C
R;m

t for some v.

We check that this is a decreasing diagram, by (H6). If n = m, then JsKn ≺ JuKn and
JtKm ≺ JuKm, otherwise, w.l.o.g., n < m and (n, JsKn) ≺ (m, JtKm) � (m, JuKm).

We now consider R ancestor peaks. The decreasing diagrams for both cases are illus-
trated in Figure 4.2.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 81

t[Lθ]p t[Lσ]p
≥p · F nl

L

β ∪R, <n
t[Rσ]p

p

R, n

Rn

p

t′[Lθ′]p

Rn
q#p
or
q ≥p · F l

L

t′[Lσ′]p
≥ p · F nl

L

β ∪R, <n

Rn
q#p
or
q ≥p · F l

L

t′[Rσ′]p
p

Rn

q#p or q ≥pRn Rn

Rn

p

Figure 4.2: DD for non-critical peaks: ←−
R,n
C B−→
R,n

. See Lemma 4.4.2 and Lemma 4.4.1.

Lemma 4.4.2. If s
p

←−−−C
L→R;n

u
q

B−−−→
R;k

t with q ≥P p·F l
L, then n ≥ k and s

≥Pp
B−−−→−→
R;≤k

v
p

←−−−C
L→R,≤n

t

for some v.

Proof. Assuming p = Λ, by Lemma 4.2.8, u = Llin(σ∪τ) and s = R(σ∪δ), for some σ, τ, δ
such that Dom(σ) ⊆ MVarl(L), Dom(τ) ⊆ MVarnl(L), Dom(δ) ⊆ MVarnl(L), and we

have u = Llin(σ∪τ)
≥Pp·Fnl

L−→−→
<n

L(σ∪δ) −→
R;n

R(σ∪δ) = s. Since q ≥P F l
L, then q = o·q′, where

o ∈ F l
L and L(o) = X. By (H1), n ≥ k. Then, σ(X) B

q′−→
R,k

θ(X), for some meta-substitution

θ such that t = Llin(θ ∪ τ). Since q#F nl
L , the rewrite at q commutes with the equalization

steps, and therefore: s = R(σ ∪ δ)B−→−→
k

R(θ ∪ δ)←−
n
L(θ ∪ δ)

≥PF l
L←−←−

<n
Llin(θ ∪ τ) = t.

Lemma 4.4.3. Let u p←−C
L→R;n

s
q

B−−−→
R;k

v with q ≥P p·F nl
L . Then n > k and u −−−−→−→

R;<n
t

p
←−−−C
L→R;≤n

v

for some t.

Proof. We start as above by using Lemma 4.2.8. This time, q ≥P p ·F nl
L , hence q ≥P p · o,

where o ∈ F nl
L and L|o = Xo. This case will require using the induction hypothesis.

Let γ(X) = v|p·o, hence γ(X)←−
k
τ(Xo)−→−→

<n
δ(X). By (H4), τ(Xo) ∈ L<n, hence, by

(H1), k<n. By induction hypothesis, δ(X)−→−→
<n

θ(X)←−←−
<n

γ(X), hence defining θ(X). Call

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 82

now θ the substitution equal to δ except for the variable X, for which it was just defined.
Then, u = s[L(σ ∪ δ)]p−→−→

<n
s[L(σ ∪ θ)]p←−←−

<n
s[L(σ ∪ γ)]p = v. The result follows.

We now move to the local peaks of orthogonal β-reductions:

Lemma 4.4.4.
O
⊗=⇒
β;≤n

⊆
P
⊗=⇒
β;n

−→−→
β;<n

with P ⊆ O.

Proof. Let t
O
⊗=⇒
β;≤n

u. The proof is by induction on the size of O. There are two cases:
1. Λ 6∈ O. By induction hypothesis, commutation of β-steps occuring at parallel posi-

tions, and finally grouping orthogonal steps occuring at parallel positions.
2. Λ ∈ O, hence t = (λx : t0. t1) t2. If t ∈ Lk for some k < n, the result holds by (H1)

and (H2). Otherwise t1
O1
⊗=⇒
β;≤n

u1 and t2
O2
⊗=⇒
β;≤n

u2 by (H1) and u1{x 7→ u2} = u.

By induction hypothesis, t1
P1
⊗=⇒
β;n

v1−→−→
β;<n

u1 and t2
P2
⊗=⇒
β;n

v2−→−→
β;<n

u2 with P1 ⊆ O1 and

P2 ⊆ O2. Finally, using (H3) with σ = {x 7→ v2}, there is some k such that:

t = (λx : t0. t1) t2
12·P1∪2·P2
⊗=⇒
β;n

(λx : t0. v1) v2
Λ−→
β;k

v1{x 7→ v2}−→−→
β;<n

u1{x 7→ u2} = u

If k < n then the middle step is part of the −→−→
β;<n

sequence, otherwise k = n and it
can be merged with the orthogonal step.

Lemma 4.4.5. ⇐=⊗
β;n
⊗=⇒
β;n

⊆ ⊗=⇒
β;n

β−→−→
<n

β←−←−
<n
⇐=⊗
β;n

Proof. Orthogonal β-reductions are known to be strongly confluent: ⇐=⊗
β
⊗=⇒
β
⊆ ⊗=⇒

β
⇐=⊗
β

.

Hence ⇐=⊗
β;n
⊗=⇒
β;n

⊆ ⊗=⇒
β;≤n

⇐=⊗
β;≤n

by (H2). The result follows then from Lemma 4.4.4.

We are left with mixed local peaks.

Lemma 4.4.6. If s
O
⇐=⊗
β;<n

u
p

B−−−→
R;n

t, then s
p

B−−−→
R;n

←−←−−−C
Rβ;<n

t.

Proof. This proof is illustrated in Figure 4.3. By (H1), O 6≥P p and therefore we can write
O = O1]O2]O3 such that O1#p, O2 ≥P p ·F l

L and O3 ≥P p ·F nl
L . The peak can then be

decomposed into
O3
⇐=⊗

O2
⇐=⊗

O1
⇐=⊗ p

B−→ and the inner peak commutes
O3
⇐=⊗

O2
⇐=⊗ p

B−→
O1
⇐=⊗.

We study the remaining peak assuming w.l.o.g. that p = Λ. By Lemma 4.2.8, we decom-
pose the sub-rewriting step and commute steps occuring at parallel positions:

s = Llinτ ′σ′
O3
⇐=⊗Llinτσ′

O2
⇐=⊗u = Llinτσ

≥PFnl
L−→−→

<n
Lδσ

Λ−→
R;n

Rδσ = t

s = Llinτ ′σ′
O3
⇐=⊗Llinτσ′

≥Pp·Fnl
L−→−→

<n
Lδσ′

O2
⇐=⊗ Lδσ −→

R;n
Rδσ = t

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 83

t[Lθ]p t[Lσ]p
≥p · F nl

L

β ∪R, <n
t[Rσ]p

p

R, n

Rn

p

t′[Lθ′]p

β,<n

⊗ ⊗

O1#p
O2 ≥ p · F l

L

⊗

O3 ≥ p · F nl
L

t′[Lσ]p

β ∪R, <n Q1#p
Q′1 ≥ p · F l

L

t′[Lσ′]p

β ∪R, <n ≥ p · F nl
L

≥ p · F nl
L

β ∪R, <n
t′[Rσ′]p

p

R, n

t′[Rσ]p

β ∪R, <n Q1#p
Q′1 ≥ p · F l

L

β ∪R, <n ≥p

Rn

p

Figure 4.3: DD for the mixed peak: ⇐=⊗
β;k

B−→
R,n

with k < n. See Lemma 4.4.6.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 84

tσ tτ
≥P

β ∪R, <n

uσ

β, n

⊗

t′σ

⊗

n O1#P

⊗

n
O2 ≤ P
O2 6≥ O1

t′τ

⊗

β, n O1#P

β ∪R, <n
≥ P

uτ

⊗

β,≤n O2

β ∪R, <n

⊗
β, n

O′2 6≥ O1

β,<n

⊗

β, n

O1 ∪O′2

Figure 4.4: DD for the mixed peak:
O
⇐=⊗
β,n

≥P−→−→
β∪R;<n

with O 6≥P P . See Lemma 4.4.7.

The assumed confluence of rewriting with label < n allows to collapse τ ′ into δ′ such that
δ′ ←−←−

βR;<n
δ and stability then gives s

≥PFnl
L−→−→

Rβ;<n
Lδ′σ′

≥PFnl
L←−←−

Rβ;<n
Lδσ′ −→

R;n
Rδσ′

O2
⇐=⊗ Rδσ = t.

Finally, stability and (H2) allow the sub-rewriting steps to be grouped into our joining

sequence sB−→
R;n

Rδ′σ′
≥PFnl

L←−←−
Rβ;<n

Rδσ = t which is a decreasing diagram.

Lemma 4.4.7. If u
O
⇐=⊗
β;n

s
q

B−−−→
R;<n

v, then u
Q

B−−−→−→
R;<n

w ←−←−−−C
β;<n

v′ ⇐=⊗
β;n

v.

Proof. This proof is illustrated in Figure 4.4 and follows the same structure as that of
Lemma 4.4.6.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 85

tσ tτ
p

R, k

t′σ t′τ

⊗

β, n O1#p

⊗

β, n O1#p

p

R, k

t′σ′ t′τ ′

⊗

β, n
O2 ≥ p · F l

L

⊗

β, n O′2 ≥ p

p

R,≤ k

uσ′ uτ ′

⊗

β, n
O3 ≤ p
O3 6≥ O2 ∪O1

⊗

β,≤n O3

R,≤k

⊗

β, n

·

⊗

O′3β, n

β,<n

⊗

β, n

O1 ∪O′2 ∪O′3

Figure 4.5: DD for the mixed peak: ⇐=⊗
β;n
−→
R;k

with k ≤ n. See Lemma 4.4.8.

t[Lθ]p t[Lσ]p
≥p · F nl

L

β ∪R, <k
t[Rσ]p

p

R, k ≤ n

Rk

p

u[Lθ′]P

⊗

β, n O 6≥ p · F nl
L ·

u[Lσ′]P

⊗

β, n

β,<n

≥ P · F nl
L

β ∪R, <n

·

t′[Rσ′]P(β,<n) ∪ (R,≤k)

⊗

β, n

β,<n

R,≤k

Figure 4.6: DD for the mixed peak: ⇐=⊗
β,n

B−→
R,k

with k≤n. See Lemma 4.4.8.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 86

Lemma 4.4.8. If u
O
⇐=⊗
β;n

s
p

B−−−→
R;n

v, then u
p

−−−−→−→
R;≤n∪β;<n

w ←−←−−−C
β;<n

v′ ⇐=⊗
β;n

v.

Proof. This proof is illustrated in Figure 4.5 and Figure 4.6 and follows the same structure
as that of Lemma 4.4.6.

We are now ready for our main result:

Theorem 4.4.9. Assume a rewrite system R = Rfo∪Rho and layered sets (Ln)n of terms
such that:

• (H1,2,3,4,5,6) are satisfied,

• Rfo is confluent on confined closed terms,

• critical pairs of Rho and critical pairs of Rfo onto Rho are joinable.

Then −→
Rβ

is confluent.

Proof. As explained at the beginning of the section, we prove the confluence property
of the relation ⊗=⇒

β
∪B−→
R

which satisfies −→
Rβ
⊆ ⊗=⇒

β
∪B−→
R
⊆ −→−→

Rβ
. The orthogonal

β-reduction at level n is labeled with (n,⊥) and uB−→
R;n

v is labeled with (n, JuKn) and the

order on labels is the lexicographic ordering (≤,�).
The proof of confluence is done by course-of-values induction on the maximum level l

of the considered terms. For the base case, the relation −→
Rfo

in the only one operating on
the set of confined terms L0 = Tc. By assumption it is confluent.

We move to the induction case l+ 1 and we show that all local peaks s←−
m
u−→

n
t enjoy

a decreasing diagram with respect to our labeling.
If bothm ≤ l and n ≤ l, we simply conclude by induction hypothesis. Otherwise, there

are 7 cases depending on the labels, positions and kind of rewrite steps in both sides. Note
that we will be able to use our joinability lemmas, since their confluence assumption is
now provided by the induction hypothesis.

1. s p←−C
R;m

u
q
B−→
R;n

t, with p#q. Then, we conclude by Lemma 4.4.1 which yields a DD

since both part of the label are non-increasing in the facing steps, using (H6) .
2. s

p
←−−−C
L→R;l+1

u
q
B−→
R;n

t and q ≥P p ·F l
L. Then, we conclude by Lemma 4.4.2 which yields

a DD using (H6) again.
3. s

p
←−−−C
L→R;l+1

u
q
B−→
R;n

t with q ≥P p · F nl
L . Then, we conclude by Lemma 4.4.3 which

yields a decreasing diagram since, by (H4), n ≤ l.
4. s

p
←−−−−−C
L→R;l+1

u
q
B−→
R;n

t with q ∈ p·FPos(L). Then, by Lemma 4.3.8 and the assumption

that higher order critical pairs are joinable, s−→−→
R;≤l

≥Pp−→−→
R

≥Pp←−←−
R
←−←−
R;<n

t and (H6) ensures
that the unlabeled steps are in fact a DD.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 87

5. s ⇐=⊗
β;l+1

u ⊗=⇒
β;n

t. Then, we conclude by Lemma 4.4.5.

6. s
O
⇐=⊗
β;l+1

q
B−→
R;n

. The case where p#Q has already been considered, hence we can

assume that there is some o ∈ O such that o <P q, hence n ≤ l by (H5). We then
conclude by Lemma 4.4.7.

7. s
p

←−−−C
R;l+1

u
Q
⊗=⇒
β;n

t. We conclude here either by Lemma 4.4.8 if n = l + 1, or by

Lemma 4.4.6 if n ≤ l. The diagram is decreasing since in both cases there is a single
facing sub-rewrite step in the joining sequence.

TheRfo relation is merely assumed to be stable, monotonic and confluent on first-order
terms. The proof of its confluence can be done using better-known first-order techniques
since β-reduction is disabled in the confined layer.

In [ADJL16], the first-order relation Rfo, called normalized rewriting, is generated by
a set of rules R, a set of simplifiers S, and a set of equations E. Rewriting operates on
terms in normal form with respect to S modulo E, and uses pattern matching modulo
S ∪ E. Confluence can be classically reduced to critical pairs joinability (modulo S ∪ E).
Details can be found in [JL12b]. In practice, E is often taken to be associativity and
commutativity, while simplifiers can be identity elimination or idempotency. In [ADJL16],
confined expressions were natural numbers generated by 0 and succ, equipped with several
operations, in particular + (addition) and max (maximum), both being AC, with simplifiers
being identity elimination for both and idempotency for max.

4.5 Example
We carry out an example illustrating how the previous theorem can be applied in practice.
We focus on the particular case of the system R := {F X X Y → Y } of a single non-
left-linear rewrite rule for some F ∈ F . This variant of Klop’s famous example bears
similarities with the rules required for the universe “lifting” operators that we introduce
in Chapter 5. Notice that R satisfies (H5) and that −→

R
is terminating.

Our goal here is to syntactically restrict the set of terms and stratify it with levels so
that the hypotheses (H0) to (H6) are all satisfied. The set of variables X is supposed to
be split into layers X n and we annotate them with their level for readability: xn ∈ X n.

Some terms, but not all of them, can be assigned a level using the following rules:

∀xn ∈ X n , xn ∈ Ln ∀c ∈ Fc , c ∈ L0
∀t, u ∈ Ln , t u ∈ Ln ∀c ∈ F \ {F} , c ∈ L1
∀t, u ∈ L≤n , λxn : t. u ∈ Ln ∀u ∈ Lk, v ∈ Ln , F u v ∈ Lmax(k,n)+1

Note that any (unconfined) layer Ln contains all terms of the pure λ-calculus without
symbols. In particular β-reduction remains non-terminating (on leveled terms) and, for
instance, if x, y ∈ X n then (λx : y. x x) (λx : y. x x) ∈ Ln. We have chosen here to classify
all symbols, except F in the first non-confined layer L1 but we could also have split them

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 88

among distinct layers. Note that the symbol F, however, does not belong to any layer
and every occurrence of it must be applied to at least two arguments to obtain a leveled
term. In a way F is forced to have arity 2. Its two first arguments correspond to non-linear
positions and must belong to a layer strictly lower than that of the whole term.

Lemma 4.5.1. Layers Ln are pairwise disjoint and satisfy (H1), (H2), (H3) and (H4).

Proof. The level of a term is syntactically uniquely defined as only a single level assigning
rule applies to it. All hypothesis are checked by induction on t.

A strong property of this system is that it does not allow unsafe λ-terms such as
λx : t. F x x to belong to any layer. This term is a level-increasing function. If it were
at level n then it could be applied to an other term t ∈ Ln and the application would
β-reduce to F t t ∈ Ln+1 contradicting (H2).

Finally, we need to provide a measure of terms at each level such that the measure at
level n is strictly decreasing with R-rewriting at level n and non-increasing with β ∪R at
level strictly lower than n. As mentioned in Section 4.4, this can be done by means of an
erasing function.

Definition 4.5.2. We define the measure function JuKn from terms to terms such that
JuKn := � ∈ F if u ∈ L<n and otherwise Ju vKn := JuKn JvKn, Jλx : t. uKn := λx : JtKn. JuKn,
JxKn := x and JcKn := c.

Example 1: For instance, assuming t ∈ L1, u ∈ L2 and 0,+ ∈ L0:

R; 1 β; 1

R; 2

F t ((λx.x) (F (0 + 0) 0 t)) u F t ((λx.x) t) u F t t u u

J·K1 F t ((λx.x) (F � � t)) u F t ((λx.x) t) u F t t u u

J·K2 F � � u F � � u F � � u u

The J·K1 measure is invariant by rewriting at the confined level L0 since terms at this level
are erased into a �. Similarly J·K2 is invariant by both β and R rewriting at level 1 and
0.

Lemma 4.5.3. The measure function J·Kn satisfies (H6) with E := T equipped with the
−→
R

+ order which is well-founded.

Proof. By induction on the reduced term, using (H1) for the first case and (H4) for the
second.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 89

4.6 Future work
We conclude with a few remarks on how the work presented in this chapter and the
previous one could be extended. Our confluence result for non-left-linear systems with
β restricted to a layered subset of terms is still too restrictive to show the confluence of
practical rewrite systems. We believe it can be extended in several ways.

4.6.1 Simple type layering

Our layering conditions is still quite constraining and could probably be relaxed while still
guaranteeing confluence of non-left-linear rewriting with β.

In Klop’s counter example, the term f := λx. F x (c x) should be treated carefully
as it is a level-increasing function: if x ∈ Ln then occurrences of x in the body of the
function forces it to be Ln+1. Level-decreasing functions break the guarantee that subterms
belong to a lower level and must therefore be forbidden . The function f , however, is not
necessarily harmful as long as it is considered as a “special” term of Ln+1. In particular
it must only be applied to terms in Ln in order to guarantee that β-redexes (λx. t) u are
reduced with a level-preserving substitution.

In all generality, it should be possible to extend our criteria so that level-increasingness
is more precisely labeled but allowed. This can be achieved, for instance, using simple
types over natural numbers f : Ln → Ln+1. All the above development can be adapted
to ensure level preservation, a work that we have not written down yet.

This technique should of course still allow to type non-terminating λ-terms within
a layer, including fixpoint operators. For this reason we cannot require that all terms
are simply typed, otherwise β would be terminating. Instead applications within a layer
must be allowed, if t, u : Ln, then t u : Ln. Only level increasing functions need to
be typed with a product. However unsafe applications, such as the fixpoint operator in
Klop’s example, can be forbidden using these types. Indeed a fixpoint operator can only
be typed with an atomic level Ln and therefore cannot be applied to f which type is a
sort-increasing product.

Example 1: We consider the example of a signature containing two symbols, a
“coding” symbol, c, and an “uncoding” symbol, u, see 5.5.2 for context. We consider
an empty confined layer, a first layer L1 containing “sort-representing” terms and an
other layer L2 on top. The layering can be defined such that if t ∈ L1 and u ∈ L2
then c(t, u) ∈ L2 and u(t, u) ∈ L2. We consider a single terminating, level-preserving
non-left-linear rewrite rule:

c(S, u(S, T))−→T

It is easy to see that this rule satisfies the conditions for Theorem 4.4.9 using our layering
and syntactical restrictions on c and u. However, our integer-leveled layering is a bit
restrictive and forbids terms such as λs. u(s, t). Indeed, the body of the λ-abstraction is at
level 2 while the variable s and therefore the abstraction itself are both at level 1, breaking
(H1).

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 90

Relying on product layers would allow to consider function building a term in the top
layer L2 from an argument in the lower layer L1, such as λx. λs. u(s, f x), assuming x ∈ L2
and s ∈ L1. Note, however, that the encoding of the prenex universe polymorphism of
definitions, introduced in Chapter 8, does not rely on abstractions over sorts.

4.6.2 Relaxed linear compatibility

The linear compatibility condition (H5) could be relaxed to allow the non-linear fringes
of overlap to intersect. This would make the computation of critical peak more difficult
but should not compromise confluence. Indeed, the commutation step in the Critical
peak lemma 3.3.5, see Figure 9.3, can be replaced with an induction hypothesis using the
confluence of the layer beneath to recreate equalization steps in both overlapping redexes
so that they are instances of a critical pair.

Example 2: The rewrite rule in Example 1 could be considered together with its
counterpart u(S, c(S, T))−→ T . The two rules overlap in the following two critical peaks.

u(S, T) Λ←− u(S, c(S, u(S, T))) 2−→ u(S, T)

c(S, T) Λ←− c(S, u(S, c(S, T))) 2−→ c(S, T)

Both critical pairs are trivial and the system is still terminating yet our criteria does not
apply since the non-linear fringes in the overlap are not parallel.

4.6.3 Orthogonal sub-rewriting

We conjecture that Theorem 3.5.9 also extends to sub-rewriting with non-left-linear rewrite
rules.

Conjecture 4.6.1. Let R = Rfo ∪ Rho be a rewriting system and layered sets (Ln)n of
terms such that

• (H1,2,3,4,5) are satisfied,
• Rfo is confined and confluent on closed terms,
• orthogonal critical pairs of Rho and critical pairs of Rfo onto Rho admit decreasing

diagrams compatible with level labeling, assuming that β-steps have smaller weights
than R-steps when in the same layer.

Then −→
Rβ

is confluent on well-layered terms.

We believe that the proof of Theorem 4.4.9 can be adapted the same way it has been
for Theorem 3.5.5. Considering orthogonal R-rewriting does not change anything in the
cases of peaks at different levels since the lower level multi-steps always occur at disjoint
positions or nested below the higher levels steps. Mixed β-R peaks should not be a problem
either since they do not overlap. Therefore, it only remains to check that the decreasing
diagrams for orthogonal critical pairs extends to any local peak. The technical hypothesis
(H6) is however no longer required to close R-R peaks but we still need to prove the
equivalent of Lemma 4.4.4 for R rewriting.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 91

4.6.4 Linearizing systems

In a typed setting such as the λΠ≡, the non-linearity of a rewrite rule may be enforced
by its well-typedness. It is safe to consider the linearized version of a rewrite rule if the
following conditions are met:

1. its linearized version is type-preserving;
2. it defines a confluent system together with β;
3. all well-typed instances of the left-hand side are such that all the images of the

linearized versions of a same non-linear variables are convertible.

Example 3: Consider the rewrite rule in Example 1 together with the signature:

C : ∗ U� : S → ∗ c : Πs :S. Us → C

S : ∗ s⊥ : S u : Πs :S.C→ Us

Both the non-left-linear and left-linear versions of the rewrite rule are type-preserving
(with type C), the linear version defines a rewrite system confluent with β. Besides,
any instance c(s, u(s′, t)) of the left-hand side must satisfy, by inversion, s ≡βR s′ to
be well-typed which ensures the rule is exclusively used with “almost” instances of the
non-left-linear rule.

Note that this technique cannot be used systematically. The extra rule in Example 2,
for instance, is only well-typed in its non-left-linear version and no information can be
deduced from the well-typedness of left-hand sides instances, contradicting the first and
third items. Considering the extra rules Us⊥ −→ C, c(s⊥, T)−→ T and u(s⊥, T)−→ T
defines a signature in which all rules are still well-typed, however, the linearized rule now
has two non-joinable critical pairs, contradicting the second item:

T
Λ←− c(s⊥, u(S, T)) Λ−→ u(S, T) and T

Λ←− c(S, u(s⊥, T)) 2−→ c(S, T)

It is not clear, however, that the linearized version of the rule, even if the non-linearity
is ensured with typing, has the same behavior as its non-left-linear version. Indeed, the
well-typedness of an instance ensures the joinability of subterms corresponding to the same
non-linear variable in the linearized system. This technique is closer to the confluent 7−→
extension of Klop’s example mentioned before:

F X Y 7−→ a iff X ←→←→ Y

This relation is proven confluent, however it is defined using itself which complicates its
study and makes it impossible to compute in practice.

4.6.5 Rewriting modulo equivalence

It is often useful to consider equivalence relations on terms that are not conveniently
represented as rewrite rules. If this relation behaves well, term rewriting, as defined in
Chapter 2, can be extended to operate on equivalence classes of terms rather than on
syntactical terms.

CHAPTER 4. CONFLUENCE OF NON-LEFT-LINEAR SYSTEMS 92

Definition 4.6.2 (Rewriting modulo ≡E). Assume a stable and monotonic equivalence
relation ≡E, a meta-term u, a position p ∈ Pos(u), and a rule (L,R). We define rewriting
modulo≡E, such that u p−→

(L,R)E
v iff u|p ≡E Lγ for some meta-substitution γ and v = u[Rγ]p.

Lemma 4.6.3. We have p−→
(L,R)

⊆ p−→
(L,R)E

⊆ ≡≥PpE
p−→

(L,R)
.

In the context of encoding common algebras, it is often useful to have some symbols
enjoy the property of being both associative and commutative. This property cannot
however be represented using a terminating rewrite system as defined previously. For this
reason it is convenient to define AC conversion of terms built from a considered subset
FAC ⊆ F of symbols.

Definition 4.6.4 (AC conversion). We define associative-commutative conversion as the
smallest reflexive, symmetric, transitive and monotonic relation on meta-terms such that
for all c ∈ FAC, and terms t, u, v, we have c t (c u v) ≡AC c (c t u) v and c u v ≡AC c v u.

If c is +, ∨ or ∧, we use the infix notation t+u and allow to omit parenthesis whenever
terms are considered “modulo AC”: t+u+ v := t+(u+ v) ≡AC (t+u) + v. If c is max,
we use the multi-ary notation max(t, u, v) := max t (max u v) ≡AC max(v, u, t).

The study of rewriting modulo equivalence is made harder by the fact that equiva-
lences have no reason to preserve positions in a term, or the general shape of a term. In
practice, matching and unification modulo equivalences is much more complicated. In the
case of AC, for instance, matching is decidable but already an NP-complete problem and
unification problems have a computably enumerable but infinite complete set of unifiers
that can be finitely described.

Despite these difficulties, results both from Chapter 3 and Chapter 4 could be adapted
to rewriting modulo well-behaved equivalence classes such as ≡AC.

The rewrite engine of the Dedukti tool has been extended by the author to allow
rewriting modulo the associativity and commutativity of a declared subset of symbols.
For details on how to efficiently implement matching modulo AC, we refer to the work of
Contejean [Con04] adapted to work with Maranget’s compiled decision trees [Mar08].

Part II

Embedding Higher-order Logics
with Universes

93

Chapter 5

Embedding Cumulativity

We move on from confluence criteria to study, in the rest of this manuscript, applications
of higher-order term rewriting to embeddings of logical systems in λΠ≡. Our main target,
described in Chapter 9, is the description and practical implementation of a translator
from Coq to Dedukti. To achieve this goal, we provide a representation of universe
polymorphism, defined, studied and proven correct in Chapter 8 which consists in one of
the main contributions of our work. Prior to this, we introduce in Chapter 6 universe
variables in the Calculus of Constructions, and universe polymorphism in Chapter 7. In
Chapter 5, we review the different existing ways that allow us to encode cumulative systems
in λΠ≡, and develop new techniques of our own that are used in the subsequent chapters.

There are two main challenges of encoding discussed in the following two preliminary
chapters. Rewriting techniques embedding an infinite hierarchy of sorts containing alge-
braic universe expressions are introduced in Chapter 6. In this chapter, we begin our
journey by looking into the more general context of Cumulative Type Systems which al-
ready present some difficulties, the sets of sorts can be potentially infinite or surprisingly
structured, the inference rules are not type-directed and uniqueness of type does not hold
in presence of subtyping.

We begin with a description of the latest developments regarding the embedding of
type systems in λΠ≡. We introduce in this chapter three families of type systems.

• PTS is the simplest, even if its encoding already requires to reflect the β conversion
of the original system which is best done directly using the β conversion of the
encoding system, λΠ≡, therefore defining a shallow encoding.

• PTS� is more evolved and features sort subtyping therefore breaking the uniqueness
of type, which must hold in λΠ≡. As done in Assaf, it can still be encoded by
recovering uniqueness of type by explicitly annotating subtyping in terms.

• CTS extends subtyping covariantly on the product types’ codomain. This system is
the core logic of our long-term target, Coq. As pointed out by Assaf, the encoding
of PTS� can be adapted to CTS provided the η conversion is considered both in the
original and the encoding systems.

94

CHAPTER 5. EMBEDDING CUMULATIVITY 95

We then discuss the challenges of encoding CTS, without η, which were not covered
by previous work:

• the more general subtyping relation can be explicitly annotated using a cast operator
extending Assaf’s lift on sorts. Equivalently, the link between a term’s translation
and its (non unique) typing derivations can be recovered by directly considering a
translation of its typing derivations instead.

• the infinite and complex structure of universes can be represented using predicates
rather than functional sort operators defined with rewrite rules. Relying on provable
predicates in the encoding provides some flexibility but requires to ensure their proof
irrelevance which is achieved here by means of a private encoding.

Many type systems for the “à la Church” λ-calculi, from simple types to System F, the
lambda-Pi-calculus (also known as LF or λΠ) and the Calculus of Constructions, all share
a common syntax and similar typing inference rules. These systems are all well-behaved
and the properties they share made them, or rather extensions of them, particularly fit to
be used as the core logic of several proof systems such as Agda, Matita or Coq. Pure
type systems, PTS, are a parameterized family of type theories encompassing all of them.
Cousineau and Dowek defined [CD07] an embedding of pure type systems in λΠ≡ and a
translation function from terms of PTS to λΠ≡ terms. They showed that this translation
function preserves typing for all PTS satisfying the uniqueness of type property, which
most useful PTS do.

Just like the set of all sets cannot be a set in set theory, Russell’s paradox has shown
that it is inconsistent, in type theories, to type a sort with itself, Type : Type. A natural
way to still reason about types of types, called sorts, is to consider a –potentially infinite–
hierarchy of them Type0 : Type1 : Type2 : Each sort Typen allows to reason about
the one lying directly below. Infinitely sorted type systems are already more of a hassle
to properly translate. The main difficulty is that they require encoding constructions to
be parameterized by a sort rather than (infinitely) duplicated. Dependent types allow to
properly type the expected parameterized operators but it requires to provide a faithful
term representation of sorts.

In Martin-Löf intuitionistic type theory [ML75, ML84] it is suggested that a sort Typen
should not only “contain” (to borrow set theoretic vocabulary) the sort directly below,
this sort should also be a “subset” of it. This means that all types inhabiting Typen
also inhabit any sort above, breaking the uniqueness of type property. Encoding these
extensions in λΠ≡, that does satisfy uniqueness of type, has been extensively studied by
Assaf [Ass15a] which adapted the encoding PTS to support some form of sort subtyping
by means of explicit casting operators as in the “à la Tarski” term representation.

This property of sorts is called cumulativity and can even be extended covariantly on
the codomains of product types to define an even more general family of type systems, the
cumulative type systems, CTS, introduced by Barras [Bar99] and later extensively studied
by Lasson [Las12]. There are many challenges in further extending Assaf’s encoding to
CTS, in particular in the case of specifications featuring an impredicative sort such as in
the Extended Calculus of Constructions (see Chapter 6).

CHAPTER 5. EMBEDDING CUMULATIVITY 96

In this chapter, we first define and recall basic properties of pure type systems. We
then consider several extensions featuring various forms of subtyping all stemming from a
cumulativity relation on sorts. We introduce previous work related to the embedding of
these different systems into λΠ≡ and discuss ways around the difficulties and limitations
associated with these encodings. Finally we introduce new encoding paradigms relying
on private symbols, used to extend the conversion but unavailable to the translation
mechanism. We argue that they better allow to faithfully represent more complicated
universe structures such as non-functionality, floating universes (see Chapter 6) and even
universe polymorphism (see Chapter 7).

5.1 Pure Type Systems
Pure Type Systems are parameterized with a specification representing for each system the
set of its sorts and its associated structure defined by two relations on sorts: the axiom
and the product relations. Properties of these systems can often be reduced to properties
of their specification. Although we quickly introduce it and recall some of its essential
properties, a more extensive presentation of pure type systems can be found in the work
of Geuvers and Nederhof [GN91] and Barendregt [Bar93].

The first challenge when encoding a PTS into λΠ≡ is that types in PTS are also objects.
There is no stratification of terms like the one we must have in λΠ≡. The next challenge
is that PTS may have a lot more sorts than the only-two-sorted λΠ≡. It can even feature
infinitely many sorts although we only consider finite sets of sorts for now. The idea to
overcome both issues is to have two distinct representations of a term’s translation, one as
a type and the other one as a well-typed term. This idea is illustrated in Figure 5.1 where
arrows are used to represent functions on term, such as the translation or the application
of a symbol of the encoding and A B means that A has type B.

CHAPTER 5. EMBEDDING CUMULATIVITY 97

PTS

λΠ≡

λΠ≡ objects λΠ≡ types

U1
U0

Πx :A.B
λx : A.t

u1

u0

π0
0 [A] λx. [B]

U1

U0

Πx : JAK. JBK

translation

T

Figure 5.1: Cousineau & Dowek’s paradigm

5.1.1 Definition

Definition 5.1.1 (Pure Type Systems Specification and Syntax). A PTS specification
is a triple (S,A,R) where S is a set of sorts, A ⊆ S × S is the axioms relation and
R ⊆ S × S × S is the rules relation.

The syntax of PTS(S,A,R) is as follows:
(Variable) x, y ∈ X

(Sorts) s ∈ S
(Terms) t, u,A,B := x | s | t u | λx : A.t | Πx : A.t

(Context) Γ := ∅ | Γ, x : t
(Context WF Judgment) := Γ WFP

(Typing Judgment) := Γ `P t : A
The typing system of PTS(S,A,R) is defined from the inference rules of Figure 5.2.

• A term t has type A in the context Γ if the judgment Γ `P t : A is derivable. We
also say that t is well-typed and that A is inhabited with t in the context Γ.

• A context Γ is well-formed if the judgment Γ WFP is derivable.
• A term A is a well-formed type in Γ if either A = s ∈ S or Γ `P A : s.

Lemma 5.1.2. All PTSs enjoy the following properties
• confluence of the functional reduction β;

CHAPTER 5. EMBEDDING CUMULATIVITY 98

∅ WFP
PWF
∅

Γ `P A : s1 Γ, x : A `P B : s2 (s1, s2, s3) ∈ R
Γ `P Πx :A.B : s3

PΠ

Γ `P A : s x 6∈ Γ
Γ, x : A WFP

PWF
var

Γ, x : A `P M : B Γ `P Πx :A.B : s
Γ `P λx :A.M : Πx :A.B

Pλ

Γ WFP (x : A) ∈ Γ
Γ `P x : A

PX
Γ `P M : Πx :A.B Γ `P N : A

Γ `P M N : B{x 7→ N}
P@

Γ WFP (s1, s2) ∈ A
Γ `P s1 : s2

PS
Γ `P M : A Γ `P B : s A ≡β B

Γ `P M : B
P≡

Figure 5.2: Typing rules for PTS(S,A,R)

• weakening: if Γ ⊆ Γ′ then Γ `P t : A⇒ Γ′ `P t : A;
• inversion properties linking typable terms to the shape of their type;
• correctness of typing: if Γ `P t : A, then A is a well-formed type;
• product compatibility and subject reduction.

Definition 5.1.3. The set S> ⊆ S of top-sorts is such that s ∈ S> ⇔ ∀s′ ∈ S, (s, s′) /∈ A.
A PTS specification is functional if A and R are functional relations. If that is the case,

we write A(s) (resp. R(s1, s2)) the unique sort s′ such that A(s, s′) (resp. R(s1, s2, s
′)).

A PTS specification is full if R is a total relation.
A PTS specification is complete if A is a total relation (S> = ∅).

Lemma 5.1.4 (Uniqueness of type). In a functional specification, if Γ `P t : A and
Γ `P t : B, then A ≡β B.

5.1.2 Embedding in the lambda-Pi-calculus modulo theory

Definition 5.1.5. Assume a finite and functional specification (S,A,R). We define
D[PTS(S,A,R)] as the following signature which is permanently well-typed (see Defi-
nition 2.3.20) in λΠ≡.

Us : ∗ ∀s ∈ S
Ts : Us → ∗ ∀s ∈ S

us1 : Us2 ∀(s1, s2) ∈ A
πs2s1 : Πa : Us1 . (Ts1 a→ Us2)→ Us3 ∀(s1, s2, s3) ∈ R

Ts1 us2 −→ Us2 ∀(s1, s2) ∈ A
Ts3

(
πs2s1 A λx.B[x]

)
−→ Πx : Ts1 A. Ts2 B[x] ∀(s1, s2, s3) ∈ R

CHAPTER 5. EMBEDDING CUMULATIVITY 99

Note that the encoding symbols are duplicated for each possible sort level that they
can be used with. For instance, if S := {∗,�} and R := {(∗, ∗, ∗), (∗,�,�)} then the
encoding features two distinct product encoding symbols, π∗∗ and π�∗ .

Just like in Martin-Löf’s intuitionistic type theory [ML84] this encoding relies on a
“Tarski-style” representation of terms. Whenever a term t is used as a well-typed object
in context Γ, its term representation [t]Γ, a λΠ≡ object, is used. Its type representation,
JtKΓ, a λΠ≡ type, is used to represent t as a type. Well-typed terms that do not correspond
to a type only have a term representation while, for instance top sorts only have a type
representation.

Definition 5.1.6. Assume a well-formed context Γ. We define the translation [t]Γ for all
term t well-typed in Γ as a λΠ≡ object term by induction on t:

[x]Γ := x
[s]Γ := us where s ∈ S

[t u]Γ := [t]Γ [u]Γ
[λx :A. t]Γ := λx : Ts [A]Γ. [t]Γ,x:A where Γ `P A : s

[Πx :A.B]Γ := πs2s1 [A]Γ (λx. [B]Γ,x:A) where Γ `P A : s1 and Γ, x : A `P B : s2

We define JAKΓ for all type A well-formed in Γ as a λΠ≡ type term by induction on A
and JΓK as λΠ≡ context by induction on Γ:

JAKΓ := Ts [A]Γ where Γ `P A : s J∅K := ∅
JsKΓ := Us where s ∈ S JΓ, x : AK := JΓK , x : JAKΓ

The translation is not defined on terms but on terms together with a context in which
they are well-typed. Note that the encoding signature could easily be adapted to non-
functional specifications by having several copies of us1 (and πs2s1) for all (s1, s2) ∈ A.
However the translation function is only well-defined on PTS with a functional specification
since it requires the sort of a type to be uniquely determined. The first rewrite rule from
Definition 5.1.5 ensures that if s ∈ S and, at the same time, Γ `P s : s′, then both possible
translations of s yield convertible terms: Ts′ us ≡βR Us. The second rewrite rule ensures
that JΠx :A.BKΓ ≡βR Πx : JAKΓ. JBKΓ,x:A which allows for a shallow embedding: PTS
functions are translated to λΠ≡ functions.

The proof of correctness of this encoding is done in three steps, usually in that order.

Lemma 5.1.7 (Preservation of substitution). If Γ, x : A,Γ′ `P t : B and Γ `P u : A, then
[t]Γ,x:A,Γ′ {x 7→ [u]Γ} ≡βR [t{x 7→ u}]Γ,Γ′{x 7→u}.

Note that the right-hand side is well-defined by the substitution lemma in PTS. This
lemma is mostly required to prove the following.

Lemma 5.1.8 (Preservation of conversion). If Γ `P t : A, Γ `P u : B and t ≡β u then
[t]Γ ≡βR [u]Γ.

Which is in turn required to prove the compatibility of the translation with the con-
version typing rule P≡.

CHAPTER 5. EMBEDDING CUMULATIVITY 100

Lemma 5.1.9 (Preservation of typing). If Γ `P t : A then D[PTS]; JΓK `D [t]Γ : JAKΓ.

The proofs of these three lemmas are relatively straightforward and can be found in
[CD07].

5.2 Introducing cumulativity
In some cases, functionality of the axiom and rule relations is not strictly required to
define a well-behaved system. Consider for instance the following artificial extension of
λΠ: S = {∗,�,4}, A = {(∗,�), (∗,4)} and R = {(∗, ∗, ∗), (∗,�,�), (∗,4,4), (∗,�,4)}.
In this non-functional specification, all sorts and products of type � are systematically of
type 4 too. In a sense, the sort � is a subtype of the sort 4, which we write � � 4.

The PTS� extends the PTS to allow such a safe form of non-functionality thanks
to a extra cumulativity relation, C ⊆ S × S. This relation represents a “subset” relation
between sorts, just like the axiom relation represents an inclusion relation. In our example,
this means that the subtyping property is extended from sorts and products to any other
terms typable in �, such as applied variables.

Definition 5.2.1 (PTS� Specification). A PTS� specification is a quadruple (S,A,R, C)
where (S,A,R) is a PTS specification and C ⊆ S × S is the cumulativity relation.

Definition 5.2.2. PTS�(S,A,R, C) is the type system defined from the typing rules of
PTS(S,A,R) (see Figure 5.2) together with the extra typing rule

Γ `P A : s1 (s1, s2) ∈ C
Γ `P A : s2

P�

The full set of typing rules can be found in Figure 9.4.

If C is empty, the PTS� is equivalent to a PTS. If it is not, then the new inference
rule naturally breaks the uniqueness of type property even if A, R and C are functional
relations.

However, Assaf showed [Ass14] that in the particular case of the Extended Calculus
of Constructions, ECC, [Luo90, Luo89], introduced in Chapter 6, since the A, R and C
relations are total functions, subtyping can safely be made explicit by means of a lifting
operator ↑s that can be interpreted as a special term constructor such that if Γ `P t : s
then Γ `P ↑st : C(s).

Our presentation of PTS� is “Russell-style” and terms have the same syntactical rep-
resentation whether they play the role of a type or of an inhabitant. This presentation
is considered more practical since it keeps the role of a term implicit. In the alternative
“à la Tarski” presentation, which we write PTS↑, these two roles are syntactically kept
apart. Terms of PTS� that are both a type and well-typed must therefore have two
syntactically different representations in PTS↑. For instance, a sort s can be represented
either as the type Us or the object us inhabiting UA(s). Similarly a product Πx :A.B is
either the type Πx :A.B or the object πs2s1 x : A.B inhabiting UR(s1,s2) if Γ `P A : Us1

CHAPTER 5. EMBEDDING CUMULATIVITY 101

and Γ, x : A `P B : Us2 . The other term constructions, λ-abstraction, application and
variables keep the same representation. Any object term A typed in a sort Us has a type
version written Ts A. The typing rules of PTS↑ are essentially the same as PTS� with
object representations to the left of the : typing operator and type representations to the
right. The usual β conversion is extended so as to ensure type representation is compatible
with their corresponding “à la Russell” representation. In particular it must ensure that
two Russell-equivalent types are convertible.

Making subtyping explicit allows to retrieve the uniqueness of type property as two
terms equivalent in the “à la Russell” style but typed differently correspond to different
object representations in the “à la Tarski” style. Terms typed with explicit subtyping can
be back-translated to terms of PTS� by simply erasing explicit lifts and collapsing type
and object representations. This allows to prove the soundness of explicit subtyping as it
relies on a set of typing rules identical (up to back-translation) to that of PTS�. Assaf
showed that this representation is also complete for the Extended Calculus of Construc-
tions provided the β-conversion ≡ relation is extended to satisfy the following reflection
equations, called as such since they are required to reflect Russell-style equivalence.

Ts′ (us) ≡ Us if (s, s′) ∈ A
TR(s1,s2) (πs2s1 x :A.B) ≡ Πx : Ts1 A. Ts2 B

Ts′ (↑s A) ≡ Ts A if (s, s′) ∈ C

πs2s′1
x :↑s1 A.B ≡↑

R(s′1,s2)
R(s1,s2)

(
πs2s1 x :A.B

)
if (s1, s

′
1) ∈ C

π
s′2
s1 x :A. ↑s2 B ≡↑

R(s1,s′2)
R(s1,s2)

(
πs2s1 x :A.B

)
if (s2, s

′
2) ∈ C

where ↑C
n(s)
s t := ↑Cn−1(s) . . . ↑C(s)↑s t.

Note that this way of encoding only works because the particular specification chosen
here has some useful properties, such as functionality of both A and R as well as com-
patibility of the rules relation with the cumulativity relation: (s1, s

′
1) ∈ C, (s2, s

′
2) ∈ C ⇒

(R(s1, s2),R(s′1, s′2)) ∈ C∗.
Assuming a finite and functional specification, then the “à la Tarski” PTS↑ can be cor-

rectly encoded in λΠ≡ using the same embedding as for PTS extended with the following
extra constructors and rewrite rules

↑s : Us → Us′ ∀(s, s′) ∈ C
Ts′ (↑st) −→ Ts t ∀(s, s′) ∈ C

πs2s′1
(↑s1a) b −→ ↑R(s′1,s2)

R(s1,s2)(π
s2
s1 a b) ∀s2 ∈ S,∀(s1, s

′
1) ∈ C

π
s′2
s1 a (λx.↑s2b[x]) −→ ↑R(s1,s′2)

R(s1,s2)(π
s2
s1 a (λx : Ts1 a. b[x])) ∀s1 ∈ S,∀(s2, s

′
2) ∈ C

The translation is then extended to lift-headed terms in a natural way, [↑s t]Γ := ↑s [t]Γ.
Since it is directly reflected with the rewrite rules of the system, preservation of conversion
is easily extended to equivalence reflection. This encoding of PTS↑ can of course also be
seen as a correct encoding of PTS� for any specifications such that explicit subtyping is
complete.

CHAPTER 5. EMBEDDING CUMULATIVITY 102

PTS�

λΠ≡

≈

PTS↑

λΠ≡ / Tarski objects λΠ≡ / Tarski types

U1 U0 Πx : A.B λx : A.t

u1

u0

π0
0 [A] λx. [B]

U1

U0

Πx : JAK. JBK

translation

T

↑1
0
(
π0

0 [A] λx. [B]
)

Figure 5.3: Assaf’s paradigm

The use of the “à la Tarski” representation and of explicit lifting both come quite
naturally in the context of type system translation. A similar approach was, for instance,
used by Boulier, Pédrot and Tabareau [BPT17] to provide a syntactical model of the strat-
ified Calculus of Construction in which types are represented with inductive-recursively
defined codes like was previously done in [Dyb98] which encompasses cumulativity as well.
These codes are a representation of (small) types which, they showed, can be decoded
to an actual type by means of an, again, inductively defined operator. Just like in our
presentation, the type of codes, their constructors and the decoding operator all have to
be duplicated and annotated with the sort at which they operate. The use of general
rewrite rules, rather than well-founded inductive-recursive definitions, allowed quite some
flexibility in the definition of encoding operators. Inductive-like definitions are however
more natural and provide desirable properties which often make it worth the effort and
probably would have in our setting too.

5.3 Cumulative Type Systems
The primitive form of cumulativity in PTS� is not so well-behaved. Consider, for instance,
a simple cumulativity relation (∗,�) ∈ C. In this system, if `C λx :A. t : A → ∗, then
necessarily x : A `C t : ∗ and `C λx :A. t : A → �. The first product seem to be a

CHAPTER 5. EMBEDDING CUMULATIVITY 103

subtype of the second but exclusively for λ abstractions. In some systems, where the β
conversion is extended with the η rule, reflecting some form of extensionality, these two
types can in fact be seen as subtypes but only modulo η conversion. For instance we
have f : A → ∗ `C λx. f x : A → � yet f : A → ∗ 6` f : A → � even though f
and λx. f x are η-equivalent terms. In order to fix these odd properties of subtyping, the
so-called cumulative type systems were introduced by Barras [Bar99] and later extensively
studied by Lasson [Las12]. They extend sort subtyping to product types covariantly on
their codomains.

Definition 5.3.1 (Cumulative type systems). The syntax of cumulative type systems,
CTS, is the same as that of PTS (Definition 5.1.1) with subtyping judgment: A �C B.

A CTS specification is the same as a PTS� specification.
Assume a CTS specification (S,A,R, C). CTS(S,A,R, C) is the type system defined

from the syntax and typing rules of PTS(S,A,R) (see Figure 5.2) where the conversion
rule P≡ is replaced with a subtyping rule:

Γ `C t : A Γ `C B : s A �C B
Γ `C t : B

P�C
A �C A

�C i
(s, s′) ∈ C∗

s �C s′
�CC

A ≡β A′ A′ �C B′ B′ ≡β B
A �C B

�C≡
B �C B′

Πx :A.B �C Πx :A.B′
�Cπ

The full set of typing rules can be found in Figure 9.5.
We use the same terminology as for PTS. Besides, the type A is said to be a subtype

of the type B if A �C B. Just like conversion, this property is independent from context.

This definition is slightly different, but equivalent to, the usual reflexive, symmetric,
transitive, and covariantly on product codomains, extension of C.

Lemma 5.3.2 (�C characterization). A �C B iff A ≡β B or there exists (s, s′) ∈ C∗
such that A ≡β Πx1 :C1. . . .Πxn :Cn. s and B ≡β Πx1 :C1. . . .Πxn :Cn. s′.

Proof. By induction on the derivation of A �C B.

Corollary 5.3.2.1. We have
• �C is reflexive and transitive and therefore a preorder on terms.
• �C is stable by conversion and substitution.

Lemma 5.3.3. All CTS enjoy several properties such as
• confluence of the functional reduction β
• weakening: if Γ ⊆ Γ′ then Γ `C t : A⇒ Γ′ `C t : A;
• inversion properties linking typable terms to the shape of their type;
• correctness of typing: if Γ `C t : A, then A is a well-formed type;
• product compatibility and subject reduction.

The functionality property of PTS is replaced in CTS with the local minimum property
and the uniqueness of type property with the existence of principal types.

CHAPTER 5. EMBEDDING CUMULATIVITY 104

Definition 5.3.4 (Principal type). We write Γ �C t⇒ A if Γ `C t : A and for all B such
that Γ `C t : B we have A �C B.

Definition 5.3.5. A specification (S,A,R, C) has the local minimum property if
r1 �C s1 ∧ (s1, s2) ∈ A
r1 �C s′1 ∧ (s′1, s′2) ∈ A

}
=⇒ ∃r2, (r1, r2) ∈ A ∧

{
r2 �C s2
r2 �C s′2

and
r1 �C s1 ∧ r2 �C s2 ∧ (s1, s2, s3) ∈ R
r1 �C s′1 ∧ r2 �C s′2 ∧ (s′1, s′2, s′3) ∈ R

}
=⇒ ∃r3, (r1, r2, r3) ∈ R ∧

{
r3 �C s3
r3 �C s′3

Lemma 5.3.6 (Existence of principal type). Assume a specification satisfying the local
minimum property and such that C is well-founded. Then Γ `C t : A ⇒ ∃B,Γ �C t⇒ B.

Definition 5.3.7 (CTS Morphism). Let (S,A,R, C) and (S ′,A′,R′, C′) be two CTS spec-
ifications. A function φ : S −→ S ′ is a CTS morphism if and only if it preserves all
relations: φ(A) ⊆ A′, φ(R) ⊆ R′ and φ(C) ⊆ C′.

In particular, if S ⊆ S ′, A ⊆ A′, R ⊆ R′ and C ⊆ C′, then the identity define a
morphism from (S,A,R, C) to (S ′,A′,R′, C′) which is called a CTS extension.

Lemma 5.3.8. CTS morphisms extend to terms and contexts by substituting all sort
occurrences. They preserve β-equivalence, subtyping and typing.

Corollary 5.3.8.1. Assume there is a CTS morphism from P to a strongly (resp. weakly)
normalizing CTS. Then P is also strongly (resp. weakly) normalizing.

Corollary 5.3.8.2. CTS extensions are conservative.

For instance, C′ := C∗ defines a convenient extension such that subtyping coincides with
cumulativity on sorts. A further extension is the cumulative closure of a CTS, A′ := AC∗
and R′ := {(s1, s2, s3) | (s′1, s′2, s′3) ∈ R∧ (s1, s

′
1) ∈ C∗ ∧ (s2, s

′
2) ∈ C∗ ∧ (s′3, s3) ∈ C∗} which

allows not to use subtyping on sorts and product types. Both extensions are shown to be
actually equivalent to the original CTS.

A more extensive presentation can be found in [Las12] together with the omitted proof
of the previous results.

5.4 Embedding CTS’s in the lambda-Pi-calculus modulo
Having presented the already existing encoding of PTS and PTS� in λΠ≡, we study
now the several challenges in extending these techniques to CTS’s. We consider infinitely
sorted systems and discuss the necessity to properly represent its universe structure. The
simple sort-subtyping of PTS� is also extended to product types in CTS, requiring explicit
lifting of sorts to be extended to subtypes. We informally discuss here several encoding
paradigms and techniques that have been studied to extend Assaf’s encoding of the simple
sort-subtyping of PTS� to the subtyping in infinitely sorted CTS.

CHAPTER 5. EMBEDDING CUMULATIVITY 105

These techniques will be used and studied in the following chapters in the particular
cases of several extensions of the Calculus of Constructions. This section aims at justifying
the encoding design introduced later on through more accessible examples and illustra-
tions. We take particular care in making the reasons behind our successive choices explicit.
Getting the encoding of a complex type system just right is often tedious. Our hope is
that parts of this section can be applied in similar settings.

5.4.1 Infinite set of universes

The embedding of PTS� introduced in the previous section requires a dedicated type,
`D Us : ∗ for all sort s, a type decoder, `D Ts : Us → ∗ for all sort s, a particular
constructor for sorts, `D us1 : Us2 if (s1, s2) ∈ A, for products, πs2s1 if (s1, s2, s3) ∈ R, and
the explicit lift symbol, `D↑s2s1 : Us1 → Us2 if (s1, s2) ∈ C. This no longer works with an
infinite set of sorts as it would require an infinite signature.

First of all, encoding an infinitely sorted system requires to define a representation for
its sorts using a finite signature of constructor symbols. We will assume from now on that
sort representation are all typed with the same type, S. Correctly encoding sorts may
sometimes require to use rewrite rules to properly reflect conversion properties between
equivalent syntactical representations of sorts. In most cases the universe structure is
simple enough so that this can be done using terminating first-order rewrite rules only.

Consider, for instance, the infinite double hierarchy of universes:

CTS


S := N× N

A((i, j)) := (i+ 1, j + 1)
R((i, j), (k, l)) := (max(i, k),max(j, l))
C((i, j), (k, l))⇔ i ≤ k ∧ j ≤ l


(0, 0)

(0, 1)(1, 0)

(0, 2)(2, 0) (1, 1)

⊂⊃

⊂⊃⊃ ⊂

Its set of sorts can be represented with the following convergent and well-typed signature.
S : ∗ 0 : S
R : S → S
L : S → S R (L X) −→ L (R X)


This encoding of sorts supports multiple syntactically different representations for a single
sort such as R (R (L 0)) and L (R (R 0)) for (1, 2). However, in the empty context, all closed
terms of type S reduce to a unique normal form on the shape Ln (Rk 0) which represents
(n, k). The rewrite rule collapses the representations, allowing to encode quotient sets.

When representing universe polymorphism, the set of sorts can be quantified over
and the sort representation should support universe variables and be compatible with the
substitution of these variables. Allowing universe variables usually makes it considerably
more difficult to have a well-behaved representation even for the simplest structures. In
the case of the simple linear hierarchy, it becomes necessary to consider sort expression
such as max(i, j) representing the least upper bound of i and j and encoded with an extra
max operator. The expressions max(x, y) and max(y, x) represent equal sorts so their

CHAPTER 5. EMBEDDING CUMULATIVITY 106

representations, max x y and max y x, should reflect this and be convertible, hinting at
associative-commutative properties for the max symbol. For similar reasons, max i i and i
should be convertible, requiring a non-linear rule and max i (Sn i) should be convertible
with Sn i requiring an infinite set of rewrite rules.

Assuming a correct sort representation, the U, T, u, π and ↑ operators should be finitely
duplicated into parameterized versions. While this is straightforward for U : S → ∗ and
T : Πs :S. Us → ∗, the universe structure, defined by the A, C and R relations, needs to
be reflected to only allow instances of the parameterized u, π and ↑ that correspond to
terms typable in the original system.

In the particular case where A and R are total relations, like in our example, a treat-
ment similar to that of U and T can be applied to u and π:{

A : S → S u� : Πs :S. Us → U(A s)
R : S → S → S π�� : Πs s′ :S.Πa : Us. (Ts a→ Us′)→ U(R s s′)

}

Note here that the u and π symbols are no longer duplicated. We however stick to an
index notation for conciseness: for a term s, us := (u� s) : Us → U(A s).

NaturallyA andR must be fully defined on closed terms, for instance with the rewrite
rules A X−→L (R X) and the following rules defining R:

R 0 X −→ X R (L X) (R Y) −→ L (R X (R Y))
R X 0 −→ X R (R X) (L Y) −→ L (R (R X) Y)

R (R X) (R Y) −→ R (R X Y)
R (L X) (L Y) −→ L (R X Y)


These rules are terminating, create no critical pairs and correctly compute the expected
functions on closed terms of type S.

The case of ↑ is trickier since not all instances of ↑ : Πs1 s2 :S. Us1 → Us2 are legal in
all CTS. A first solution is to rely on a family of pairs generating exclusively the allowed
instances. For instance, we have C = {(s,max(s, s′)) | s, s′ ∈ N} = {(s, s+ s′) | s, s′ ∈ N}
in the case of the single hierarchy so one of the following operator could work provided
the max or plus symbols are defined.

↑�� : Πs1 s2 :S. Us1 → Umax(s1,s2) ↑�� : Πs1 s2 :S. Us1 → Uplus(s1,s2)

With the first one we even have `D ↑s2s1 : Us1 → Us2 for closed terms s1 and s2 such
that s1 ≤ s2, which is quite convenient to use in the translation since the legality of an
explicit lift is directly decided by the rewriting engine. The second requires to provide a
level n such that s2 = s1 + n, acting as a witness that the origin sort is in fact a subtype
of the target sort. This is a bit more cumbersome but spares the rewrite system some
work. In both cases, however, to ensure the well-typedness of the necessary reflection
rules of the encoding, these operators must not only correctly compute on closed terms,
they should also have some convertibility properties on open terms. Consider for instance
the case of the reflection of domain subtyping, πs3s (↑s2s1a) b −→ ↑max s s3

max s1 s3(πs2s1 a b). The

CHAPTER 5. EMBEDDING CUMULATIVITY 107

right-hand side is only well-typed if s ≡βR max s1 s2 and for the rule to be type preserving
we need max s s3 ≡βR max (max s s3) (max s1 s3) which can be achieved, for instance,
with distributivity rules such as max (max s1 s2) s3 −→ max (max s1 s3) (max s2 s3)
or by making max an associative and commutative symbol with the non-linear duplicate
elimination rule: max s s −→ s. To properly represent levels as algebraic expressions in the
{max, S} or {max,+} algebras by means of rewrite rules has already proven to be quite a
challenge, even on closed expressions. When extending to universe polymorphism, universe
variables are needed and it becomes quite hard to devise an efficient and correct rewrite
system that decides when two algebraic expressions are equal and remains confluent on
open expressions.

In Chapter 6 (see 6.1.2), we discuss a practical encoding of the particular case of the
one-dimensional hierarchy of universes of the Calculus of Constructions.

5.4.2 From PTS� embedding to CTS embedding

The main challenge when encoding CTS is that, just as in PTS�, subtyping breaks the
uniqueness of type property which must however still hold for the image of the translation
in λΠ≡. In the case of PTS� translation, Section 5.2, this was solved by considering a
proven equivalent “à la Tarski” system, PTS↑, where subtyping is explicitly annotated in
terms and conversion extended accordingly. This necessary extension of conversion comes
from the fact that a term “à la Russell” can have multiple “à la Tarski” representations
depending on its considered type and typing derivation.

Using minimal typing and the η rule

Assaf suggests in [Ass15b] to use the exact same encoding and to extend the translation
function to represent product subtyping by η-expanding the translated term. He relies on
two translation functions, a translation [t]Γ of a term t as an inhabitant of its (unique)
minimal type and a translation [t]Γ`A of t as an inhabitant of the type A.

[t u]Γ := [t]Γ [u]Γ`A if Γ �C t⇒ Πx :A.B

[t]Γ`A :=


[t]Γ
↑ss′ [t]Γ
λx : JBKΓ. [t x]Γ,x:B`C

if Γ �C t⇒ A
if Γ �C t⇒ s′ �C s
if A ≡β Πx :B.C

Only types can be cast from a sort to a sort above. Terms with a product type
need to be η-expanded. Assume C(s1, s2) and `C f : A → s1 then we cannot directly
translate it as [f] since [f] : [A] → [s1] 6= [A] → [s2]. Instead we need to rely on:
`D λx : [A].↑s2s1 [f x] : [A] → s2 which correspond to the translation of the η-expansion
of f . This η-expansion must be done at translation time which is both expensive, since it
requires to evaluate inferred types, and unsound if the translated system does not admit
the η rule. Note that is also requires all terms to have a minimal type for the translation
to be well-defined and this minimal type needs to be inferred at translation time.

CHAPTER 5. EMBEDDING CUMULATIVITY 108

With a general cast operator

An other possibility would be to rely on an encoding signature providing generalized cast
operators explicitly lifting terms of type A to terms of type B every time A �C B. This
operator extends the lifting function on sorts ↑s′s on any arbitrary well-formed types A and
B, potentially containing computations, locally bounded variables that can be substituted
or even other cast operations themselves. When the cumulativity relation is finite, it is
possible to rely on a lifting symbol ↑s′s for each (s, s′) ∈ C as done in [Ass15b] and [CD07].
In the case of subtyping, however, we cannot simply provide a casting symbol for each
legal subtyping since the pairs (A,B) such that A �C B are in infinite number. Instead
the operator needs to be parameterized. Besides the max function on sorts needs to be
extended to arbitrary types in a sort s: ∨s.

∨s : Us → Us → Us
casts : ΠA : Us. ΠA′ : Us. Ts A → Ts (A ∨s A′)

A ∨s B ←→←→
βR

B (if and only if A �C B)

The last condition can be achieved using rewrite rules which would allow subtyping to be
automatically checked using computation in λΠ≡.

A ∨s A −→ A

us ∨r us′ −→ umax(s,s′)

(π A B) ∨s (π A B′) −→ π A (B ∨s B′)

Two of the required rewrite rules are however non-linear which usually breaks conflu-
ence. Instead of a definitional subtyping relation, we could use a judgmental relation:

casts : ΠA : Us. ΠB : Us. A�sB → Ts A→ Ts B
�s : Us → Us → B (for some new type B : ∗)

∃p, p : A �s B (if and only if A �C B)

The last condition can be achieved computationally with a single constructor I : >
and rewrite rules on the �s symbol such that (A �s B) ≡ > if A �C B. This would allow
to rely on computation to check that the two provided levels correspond to a legal cast,
similarly to the ∨s operator but with the same drawbacks. Instead of using rewriting,
proving the legality of subtyping can also be done by means of extra proof constructors
such as reflexivity refl� : Πs :S.ΠA : Us. A�sA and a product codomain extension prod��
typed so that `D prods′s A B B′ : (Πx : Ts A.B x �s′ B′ x) → (πs′s A B �s πs

′
s A B′).

Relying on provable predicates rather than computation to ensure subtyping raises the
issue of non unicity of proof. There may be several inhabitants of a subtyping predicate
A �s B and since the cast operator relies on this proof, two occurrences casts A B p t
and casts A B p′ t may define nonconvertible terms even though they correspond to the
same subtyping rule. For this reason, it is important that cast is defined so that its third
argument is irrelevant. There must still exist a proof for the application to be well-typed
but different choices of witness should yield convertible terms.

CHAPTER 5. EMBEDDING CUMULATIVITY 109

Translating derivations

Note that the “à la Tarski” system enjoys not only the uniqueness of type property but
also the uniqueness of typing derivation property. In a sense well-typed “à la Tarski” terms
are a representation of a particular typing derivation of the corresponding “à la Russell”
term.

In presence of CTS’s more general subtyping, however, the typing derivations rules
are no longer syntax oriented because of the subtyping rules. It is therefore necessary to
introduce reflection identities corresponding to conversion properties between the multiple
possible typing derivations trees of a single well-typed term. When extending the PTS�
encoding, Assaf’s translation [Ass15b] is defined on well-typed terms, yet heavily relies on
their typing derivation. In order to be uniquely defined on terms, this translation needs to
rely on a variation of CTS, called minimal typing or bi-directional CTS. Type checking in
this systems requires two procedures, a type inference and a type checking. It was proven
complete for several extensions of the Calculus of Constructions by Harper and Pollack
[HP91] and for CTS with the local minimum property by Luo [Luo90]. Minimal typing
allows to retrieve typing derivation uniqueness since the subtyping rule is exclusively and
systematically used to check that the minimal type of the argument of an application is a
subtype of the expected type.

Minimal typing makes one of the typing derivations canonical in some sense. How-
ever cut elimination, which corresponds to β-reduction in a shallow embedding, does not
preserve the property to be a minimal typing derivation. Consider the two following judg-
ments, both derivable in the two-sorts hierarchy {∗ �C �}. The minimal derivation of the
first one requires to subtype f and is therefore cut-eliminated to a non-minimal derivation
in which subtyping is applied to the applicand rather than to the argument and overall
application.

g : ∗ → � t : ∗
g t : �

λg. g t : (∗ → �)→ �
∗ → ∗ �C ∗ → �

f : ∗ → �
f : ∗ → ∗, t : ∗ `C (λg : ∗ → �. g t) f : � −−−−→

β

∗ → ∗ �C ∗ → �
f : ∗ → � t : ∗

f : ∗ → ∗, t : ∗ `C f t : �

Because we still need to consider all typing derivation when translating terms, we chose
in Chapter 8 to define our translation directly of typing derivation trees rather than on
terms or judgments. Even though most well-behaved CTS systems do satisfy the local
minimum property, this encoding paradigm allows to consider type systems where typing
is not as straightforward. Besides, reasoning about the translation function is more direct
and natural and does not require to know typing properties of the translated system which
are no longer critical. Finally such a translation can be directly implemented as a side
effect to an already existing typing algorithm, reusing more of the kernel’s codebase instead
of essentially re-implementing it.

As seen in Section 5.2 some terms, such as product types, can be typed multiple ways
and therefore their translation is not uniquely defined. In order to reflect the conversion
of the original system, the embedding must guarantee that all possible translations of a

CHAPTER 5. EMBEDDING CUMULATIVITY 110

type, at least in their “type” version, are convertible. In CTS this issue is exacerbated
as subtyping no longer concerns exclusively types. Consider, for instance, a three-sorts
hierarchy of universes, {∗ �C � �C 4} the derivation (λx :�. x) ∗ : � can be derived
several ways depending on the position of the subtyping rule:

· · ·
(λx. x) ∗ : � � �C 4

(λx. x) ∗ : 4

· · ·
x : � `C x : 4
λx. x : �→4 ∗ : �

(λx. x) ∗ : 4

· · ·
λx. x : �→ � �C �→4

λx. x : �→ 4 ∗ : �
(λx. x) ∗ : 4

These derivations correspond to three different well-typed translations of the same term
(λx :�. x) ∗ seen as a term of type 4 :

cast�4 ((λx :�. x) ∗) (λx :�. cast � 4 x) ∗ (cast (�→�) (�→4) λx :�.x) ∗

While the first two are already β-convertible translations, the last one requires a new
higher-order reflection rewrite rule:

cast (A→ B) (A→ C) λx. F [x]−→λx :A. cast B C (F [x])

Similarly, both derivations of f : ∗ → ∗ , t : ∗ `C f t : � require the following rewrite
rule for their translations to be convertible:

cast (A→ B) (A→ C) F U −→ cast B C (F U)

5.5 Getting some privacy
The embedding techniques of CTS introduced in the previous section are already quite
expressive and were used in practice to translate a large part of the GeoCoq library in
Dedukti. Even though this library was written in Coq, it relies exclusively on its PTS�
structure and therefore the generated proofs are likely to be compatible with other devel-
opments in the same PTS� fragment of CTS, independently from the system they were
developed in.

These proofs are also fit to be incorporated in Logipedia and plugged into other tools
allowing interoperability which is the main objective of this project

We provide, in this section, new encoding techniques to further extend the previous
encodings. Our goal is to provide support for advanced features such as non-functional
CTS systems or universe polymorphism, in a way that preserves the correctness and
conservativity properties of the encoding. Overcoming these difficulties is necessary in
order to encode Coq’s most advanced features.

These techniques rely on private symbols in the signature which purpose is to extend
the conversion between terms by providing “hidden” intermediate representations. The
image of the translation will exclusively rely on the “public” signature which forbid these
symbols. However convertibility between two public terms no longer requires them to

CHAPTER 5. EMBEDDING CUMULATIVITY 111

reduce to the same “public” canonical term. Instead they can both be computed a “pri-
vate” common reduct which may not correspond to anything “public”. We believe this
technique is particularly useful to encode terms which conversion cannot be characterized
by the existence of a canonical objects.

5.5.1 Private encodings for proof irrelevance

Using a judgmental subtyping relation allows to avoid non-linear rewrite rules. One of
the main issue with this encoding is that the subtrees corresponding to subtyping judg-
ments, A �C B, in a typing derivation are not handled computationally with rewrite
rules but translated as tree-encoding “proof” terms which can produce a sizable output.
The other issue is that in order to fully reflect the conversion of the original system, the
multiple ways to subtype a given term must all be translated to convertible cast expres-
sions. For instance, if p and q are two inhabitants of the A�sB type, then we must have
casts A B p t ≡βR casts A B q t. Put in different words, the fourth argument of cast
must be proof irrelevant.

When translating floating universe levels with constraints, see Chapter 6, a convert-
ibility issue arises when considering a diamond shaped local universe context (i ≺C j �C l
and i ≺C k �C l). In this case there are two different ways to inhabit the judgmental
subtyping type i � l: using transitivity of � either through j or through k. This can be
a problem when the translation relies on both of these derivations in the translation of a
subtyping derivation step, yielding two non-convertible translations of derivation trees of
a same judgment compromising correctness.

Ui

UjUk

Ul

≺≺

≺≺
−−−−→

cast i l (i ≺ j ≺ l) [t : Ui] : Ul

cast i l (i ≺ k ≺ l) [t : Ui] : Ul

cast′ i l [t : Ul] : UlβR

As described in a joint work with Thiré [FcT19], one way to achieve proof-irrelevance
of these universe constraints is to use a “private” version cast′ of the cast operator. This
new unsafe operator directly casts terms without requiring any witness of judgmental
subtyping and therefore does not rely on the irrelevant argument. It is however necessary
to control the usage of cast′ to ensure that an expression cast′ i l t is only used when
i � l is inhabited. To this end, we split our encoding signature, ΣCiC = Σpub]Σpri into a
public and a private signature:

• the public signature, Σpub, defines symbols freely available to the translation.
• the private signature, Σpri, defines symbols used only in the hidden representations

of internal intermediate steps. They are generated by the rewrite engine to properly
check convertibility while ensuring irrelevance when needed.

Restricting the image of the translation is critical to guarantee the conservativity of the
encoding in the public signature. Terms built from private symbols may very well inhabit
unexpected types but they are not considered.

CHAPTER 5. EMBEDDING CUMULATIVITY 112

As mentionned in [FcT19], an other way to achieve proof irrelevance is to ensure that
all possible proofs of a judgmental relation are convertible. In confluent and terminating
systems this means that they all reduce to the same normal form which is a canonical proof
of the judgment. In the easiest cases, there is already only a single way to prove subtyping.
For instance, if the only two proof constructors are refli : i�i and nexti,j : i�j → i�S j
then the only closed inhabitant of the closed i�Sn i is the term nextn (refl i) . An
other example is obtained if � is computationally defined and only provided a single
constructor I. In both cases, proof irrelevance may not be needed as long as only closed
terms are considered. In the general case and if we allow proof terms to contain variables,
then we need a collapsing mechanism similar to our first proposition for proof irrelevance.
We could decide that all constructor rewrite to an unsafe constructor, for instance using
refls A −→ proofs A A and prods′s A B B′ p −→ proofs′ (πs′s A B) (πs′s A B′) which
would guarantee that refls (πss A B) (πss A B) ←→←→ prodss A B B (refls B). This
solution is however not sufficient since a single variable x can be a proof of i�j, in particular
if universes with local constraints are considered, see Chapter 6. In that case, it is still
possible to achieve proof irrelevance by considering an extra version ≤ of the judgmental
relation type which has two constructor: a public constructor relying on the previously
defined type: conss : ΠA : Us.ΠB : Us. A�sB → A≤sB and a private collapsing symbol
proofs : ΠA : Us.ΠB : Us. A≤sB together with the expected conss AB p −→ proofs AB.
Operators relying on subtype must now require an inhabitant of A≤sB which can only
be publicly constructed with cons and the usual constructors of �s therefore keeping the
associated guarantees. However this argument is now irrelevant since all occurrences of
cons collapse to the same symbol.

This mechanism is quite general and could surely be adapted to properly encode other
situations where proof irrelevance is required, such as PVS’s predicate subtyping or Coq
irrelevance of some sorts. Note that the private symbols are still part of the signature and
must be defined with a type such that rewrite rules are well-typed.

5.5.2 Towards “codes”

We now describe and justify several incremental encoding adaptions leading up to the
decision of having a private internal representation of terms.

0) The translation of subtyping ↑s′s a : U(max s s′) highly relies on the hierarchical
structure of sorts: not all cumulativity relations C define a join-semilattice. We have
shown that it can be convenient and more general to consider instead an unsafe version
of it, ↑s′s a : Us′ , together with a public version available to the translation but requiring
an irrelevant guarantee that s �C s′.

1) Similarly, it could be the case that the axiom, A, and product, R, relations do
not satisfy the local minimum property, Definition 5.3.5. In that case, the us and πs′s
operators cannot be given a type. Instead we need to replicate our handling of the lifting

CHAPTER 5. EMBEDDING CUMULATIVITY 113

operator and define

A : S → S → ∗ R : S → S → S → ∗
us′s : A s s′ → Us′ πs3s1,s2 : R s1 s2 s3 → ΠA : Us1 . (Ts1 A→ Us2)→ Us3
us′s : Us′ πs3s1,s2 : ΠA : Us1 . (Ts1 A→ Us2)→ Us3
us′s p −→ us′s πs3s1,s2 p A B −→ πs3s1,s2 A B

The terms us′s and πs′s1,s2 A B are the private canonical representations of the sort s ∈ S
and the product Πx :A.B, respectively, considered as –or rather assumed– inhabitants of
the sort s′. Their underlined versions are public and require an extra irrelevant proof of
the corresponding judgmental condition which must be implemented with constructors of,
and rewrite rules on, the dependent types A and R.

2) Subtyping may interact with the type constructors and create several versions of
the same type and forcing the following rules into the private signature to collapse them.

↑s′′s′ us′s −→ us′′s
↑s′s3 (πs3s1,s2 A B) −→ πs

′
s1,s2 A B

πs3s1,s2 (↑s1s′ A) λx.B[x] −→ πs3s′,s2 A λx.B[x]
πs3s1,s2 A λx.↑s2s′ B[x] −→ πs3s1,s′ A λx.B[x]

3) The lift operator is eliminated in its argument in the first two rules and in the
above π in the last two, therefore yielding four non-joinable critical pairs, such as:

πs3s′,s2 us′s B ←− πs3s1,s2 (↑s1s′ us′s) B −→ πs3s1,s2 us1s B

The left-hand side of any of these critical pairs correspond to a representation of the
same term as the right-hand side but typed differently. In order to ensure reflection of
the original system’s conversion, we need these representations to be convertible. One
way to achieve this is to make the sort argument of π and the second sort argument of u
irrelevant. To do that we define a special private sort s⊥ such that products and sorts have
a canonical representation in sort s⊥: |Πx :A.B| := πs⊥s⊥,s⊥ |A| (λx. |B|), |Us| := us⊥

s .
The canonical representation of a type t in an actual sort s is then simply ↑ss⊥ |t|.

4) It is convenient to introduce more meaningful notations for term constructions
relying on the s⊥ symbol. For instance Univ s⊥ is the type of canonical but unsafe term
representations, we call it the type of codes and write it C. The other short names are:

Univ s⊥ 7−→ C : ∗ ↑s⊥s 7−→ c : Πs :S. Us → C

Term s⊥ 7−→ D : C→ ∗ ↑ss⊥ 7−→ u : Πs :S.C→ Us
us⊥s 7−→ u� : S → C πs⊥s⊥,s⊥ 7−→ π : ΠA :C. (D A→ C)→ C

and we ensure canonical representations by defining the public symbols using them, for
instance us′s p−→ u(s′,us) and πs3s1,s2 p A λx.B[x]−→ u(s3,π c(s1, A) λx. c(s2, B[x])).
Finally we need a collapsing rule c(s, u(s,A))−→A to ensure the canonical form is reached.

5) Extending sort lifting to cast is simply done by adapting types c : Πc :C. D c→ C

and u : Πc :C.C→ D c.

CHAPTER 5. EMBEDDING CUMULATIVITY 114

6) The two necessary reflection rules introduced in 5.4.2, expressed in this setting,
generate two unjoinable critical pairs with the collapsing rule:

c(π A B′, u(π A B′, c(π A B, λx : D A. T [x])))
c(π A B, λx : D A. T [x]) Λ←− 2−→ c(π A B′, λx : D A. u(B′[x], c(B[x], T [x])))

and
u(π A B′, c(π A B, u(π A B, T))) U

u(B′[a], c(B[a], u(π A B, T) U)) Λ←− 12−→ u(π A B′, T) U

A way to understand them is that while types are guaranteed a single canonical repre-
sentation, λ-abstractions and applications are not. In PTS�, only sort inhabitants could
have multiple types (which are all sorts). In CTS however more objects may be subtyped,
including abstractions and applications.

Both pairs can be collapsed by providing two extra private “code representations”,
cL : (C→ C)→ C and cA : C→ C→ C. For the complete set of rules the Figure 8.3
from Chapter 8.

5.6 A new paradigm

5.6.1 Terms, types and trees

Previous work on type system embedding focus on translating terms and types well-typed
in the original system to λΠ≡. These translations and their study however often heavily
rely on the corresponding typing derivations to provide the guarantees required to prove
that they are correctly defined and well-behaved. In Cousineau and Dowek’s paradigm,
see Figure 5.1, and Assaf’s paradigm, see Figure 5.3, a term T , respectively a judgment
`P T : A, may have two representations:

• a “type” version, JT KΣ;Γ : ∗ available whenever the term T is a type;
• a “well-typed” version, [T] : JUKΣ;Γ available whenever the term T is of type U .

The decoding operator T is defined with term rewriting to link both representations:
T [T] ≡βR JT KΣ;Γ.

This paradigm needs to be adapted in order to handle CTS. Indeed, the main difficulty
is that CTS’s typing rules are not syntax oriented. A solution to retrieve this property is
to explicitely annotate subtyping in terms. There are then as many representations of a
term t "as typed" A as there are derivations of the judgement t : A, including, for instance,
the subtrees giving a sort to A.

To define a unique representation for terms one may constrain the typing system and
restrict the considered universe structure. We argue however that, in order to represent
more complex features such as an infinite set of sorts, CTS subtyping without η, non-
functionality and even inductive types (see Chapter 9), it is more natural and convenient
to translate derivations trees rather than terms. The several issues described in Section 5.4
and Section 5.5 and their proposed solutions led to define a new paradigm, see Figure 5.4,
around the following key concepts:

CHAPTER 5. EMBEDDING CUMULATIVITY 115

• Typing derivations valid in the original system are translated into well-typed λΠ≡
terms using a public signature of symbols. Therefore terms do not have a unique
representation and in particular use of the subtyping rule are explicitly annotated.

• The public encoding extends Cousineau and Dowek’s and provides “well-typed” and
“type” representations of terms. In particular the translation of terms well-typed
without subtyping is the same as their translation as terms of PTS.

• The conversion of well-typed terms in the original systems is reflected, at least at
the type level, in the λΠ≡ representation regardless of the chosen typing derivations.
This reflection is obtained by means of well-typed rewrite rules, some of which may
refer to a set of private symbols unavailable to the translator.

• The embedding is shallow and the conversion of well-typed terms in the original
systems should be reflected at the type level in the encoding regardless of the chosen
typing derivations. In particular the type representation of a product type is a
product type and the P@ and Pλ rules are translated as an application and an
abstraction respectively.

5.6.2 Private codes

In practice we define three translation functions: the translation of a term t as a “code”,
|t|Σ;Γ : C, the translation of a type A as a type, JAKΣ;Γ : ∗ and the translation of a

judgment derivation
[
...—
t:A

]
: JAKΣ;Γ which relies exclusively on the safe public signature.

The “decoding” operator, D : C→ ∗, from codes to types is such that D |A|Σ;Γ ≡βR JAKΣ;Γ.
The code of a term t may also be “uncoded” to the canonical representation of t as an
inhabitant of its type B: u(|B|Σ;Γ , |t|Σ;Γ) : JBKΣ;Γ. Typing derivations of a term t can be
“coded” into their unique code representation

c(|A|Σ;Γ ,

[
π—
t:A

]
) −→−→

βR
|t|Σ;Γ ←−←−

βR
c(|B|Σ;Γ ,

[
π′—
t:B

]
)

The code constructors u, π, cA and cL as well as the code operators D, c and u are
too permissive to be left available directly to the translation and must therefore all be
private. In fact, adding the C symbol to the set of private symbols completely hides codes
away as they are never mentioned in the public interface.

Note that the role of the internal code representation of terms and derivations is double.
• Since codes are a private intermediate representation, they are created from the

public signature using the coding operator c(A, πt) with requires a type code `D A :
C and a derivation πt that a certain term t has type A. The underlying guarantee
is that the only codes considered correspond to well-typed terms since they had to
be “annotated” with them.

• At the same time, the code representation of t is meant to reduce to a canonical
form representing only the syntax of the term t, erasing all typing details. Although
we did not investigate in detail the connection between the two, this process is quite
similar to normalisation by evaluation [Abe13], the untyped terms of the λ-calculus
being the denotational semantics of typing derivations.

CHAPTER 5. EMBEDDING CUMULATIVITY 116

CTS

λΠ≡

U1 U0 Πx : A.B λx : A.t

u1
0

↑2
1 u1

0

u2
0

π0
0,0 [A] [B]

translation

...

U0 : U1

...

U0 : U2

u0

π |A| (λx. |B|)

U1

U0

Πx : JAK. JBK

public
privateDc u

Figure 5.4: The new paradigm

Chapter 6

Calculi of Constructions with
Universe Variables

In this chapter we describe how the several encoding techniques introduced in the previ-
ous chapter can be applied to the particular case of the Calculus of Constructions. We
introduce successive extensions of the original Calculus of Constructions, CoC, from the
literature and provide an encoding of their universe structure:

• the generalized, CCω, and extended, ECC, Calculus of Constructions both introduc-
ing an infinite hierarchy of universes;

• the ACC∼L introducing level variables and algebraic level expressions;
• and the CCC∼L introducing level constraints.

These systems all have principal types which can be inferred with bi-directional typing,
therefore Assaf’s encoding can be adapted to handle them. We do not need code represen-
tations of terms or typing derivation translation yet. In order to correctly embed them, it
is however necessary that the set of their sorts and its structure are correctly represented
which is the main focus of this chapter. We investigate in particular how algebraic sort
expressions containing free universe variables can be encoded in a way compatible with
level equality, inequality and instantiation. This will allow their embedding in λΠ≡ in a
way compatible with universe polymorphism which is our endgame objective and studied
in Chapters 7 and 8. For each system we provide a partial signature encoding the set
of its sorts using typed symbols and rewrite rules as well as a translation function. The
sort structure is embedded with either functional operators when the sort representation
allows it or with irrelevant inhabitable predicate arguments.

6.1 The infinite universe hierarchy
The original two-universes Calculus of Constructions, CoC, was introduced by Coquand in
his thesis [Coq85] and studied with Huet [CH85, CH86]. It extends Church’s simply typed
lambda-calculus with all dimensions of Barendregt λ-cube: dependent types, polymorphic
types and type constructors. Its expressivity means it is particularly suited to be both a

117

CHAPTER 6. COC WITH UNIVERSE VARIABLES 118

typed programming language and a constructive foundation of mathematics following the
Curry-Howard isomorphism.

6.1.1 Definition

It can be seen as as particular Pure Type System with a sort of small types or propositions
Prop and a sort of large types Type:

CoC := PTS
[
S := { Prop, Type }
A := { (Prop, Type) } R :=

{
(Prop, Prop, Prop), (Type, Prop, Prop),
(Prop, Type, Type), (Type, Type, Type)

}]

The sort Prop of propositions is said to be impredicative as there are well-typed proposi-
tions quantifying over the type of propositions themselves: `P ΠP : Prop. P : Prop.

It was already known since Martin Löf’s intuitionistic type theory [ML75, ML84], that
this setting can easily be extended to allow an infinite set of Type sorts, each allowing to
reason about the one below: Type0 ∈ Type1 ∈

PTS


S := {Prop} ∪ {Typen | n ∈ N}
A := {(Prop, Type0)} ∪ {(Typen, Typen+1) | n ∈ N}

R :=


(Prop, Typen, Typen) | n ∈ N}
(Typen, Typem, Typemax(n,m)) | n,m ∈ N}
(s, Prop, Prop) | s ∈ S}




Prop

Type0

Type1

∈
∈

Coquand later extended CoC with an infinite hierarchy of universes [Coq86], defining
the Generalized Calculus of Constructions: CCω. This system still features the impred-
icative sort of propositions Prop at the bottom of an infinite stratified hierarchy of types
Typen indexed with a level in N. Lower sorts are typed with and are subsets of upper
sorts introducing therefore a safe form of subtyping through sort cumulativity.

CCω := PTS�



S := {Prop} ∪ {Typen | n ∈ N}
A := {(Prop, Type0)} ∪ {(Typen, Typen+1) | n ∈ N}

R :=


(Prop, Typen, Typen) | n ∈ N}
(Typen, Typem, Typemax(n,m)) | n,m ∈ N}
(s, Prop, Prop) | s ∈ S}


C := A


Prop

Type0

Type1

⊂
⊂

This system was again extended by Luo [Luo90, Luo89] to allow covariant subtyping
on codomain of products defining the Extended Calculus of Constructions, ECC. He also
put the lowest level of large types, Type0 also called Set, at the same level as Prop, a
predicative counterpart to represent constructions that do not correspond to propositions
such as natural numbers, Boolean and so on. This system was thoroughly studied by Luo
with and without Σ-types which we chose to remove from our presentation. It can be

CHAPTER 6. COC WITH UNIVERSE VARIABLES 119

expressed as the CTS with the following specification

ECC := CTS


S and R same as in CCω

A := {(Prop, Type1)}
∪ {(Typen, Typen+1) | n ∈ N}

C :=
{

(Prop, Typen) | n ∈ N,
(Typen, Typem) | n ≤ m

}


Prop Type0 = Set

Type1

Type2

⊂ ⊃

⊂

⊂

CoC, CCω and ECC all satisfy the properties of subject reduction, strongly normaliza-
tion and decidability of type-checking. Besides CCω and ECC are full in the sense that all
sorts are well-typed (with a sort) and all products Πx :A.B are well-typed (with a sort)
if both A and B are well-typed (with a sort). It also satisfies the property of principal
typing: any well-typed term t can be inferred a unique (up to conversion) principal type
T such that T is a subtype of all types of t. This property allows to have a sound and
complete syntax oriented set of typing rules for CCω where the subtyping rule is used
exclusively on subterms in argument positions.

6.1.2 Embedding in the lambda-Pi-calculus modulo

As explained in Section 5.4.1, in order to embed this CTS in λΠ≡, we need to provide a
representation for sorts as terms of a specific type S. This can simply be done here by
defining [n] := Sn 0, [Prop] := Prop and [Typen] := Type[n] in the following signature

N : ∗
0 : N

S : N→ N

S : ∗
Prop : S

Type� : N→ S

max : N→ N→ N (max ∈ FAC)
max O N −→ N

max (S M) (S N) −→ S (max M N)

This system is confluent and strongly normalizing. The normal form of any closed term
of type N is of the shape Sk0 which can directly be back-interpreted as the integer k.

Assaf designed in [Ass15b], an encoding where the usual T, U, u, π and ↑ operators of
the finitely sorted CTS embeddings were parameterized with arguments of type S rather
than (finitely) duplicated for all their possible instances. This finite signature, without
the reflection rules, can be found in Figure 9.7. The universe structure is represented with
functional symbols A, R for the A and R relations assumed functional, and C such that
for all (s, s′) ∈ C we have C(s, s′) ≡βR s′.

Several problems arise when trying to represent the reflection equivalence relation (as
defined in Section 5.2) with rewrite rules.

• In order for the reflection rules on products to be well-typed, we need rewrite
rules to ensure some properties of the functional symbols A, R and C encod-
ing the universe structure. For instance, we need to have R(C(s1, s2), s3) ≡βR
C(R(s1, s3),R(s2, s3)) and at the same timeR(s1,C(s2, s3)) ≡βR C(R(s1, s2),R(s1, s3))
creating a non-closing critical pair if oriented in the natural way, as pointed out in
[Ass15b]. In [ADJL16], a system is provided that fixes this confluence issue by using
two associative commutative symbols, max,+ ∈ FAC.

CHAPTER 6. COC WITH UNIVERSE VARIABLES 120

• The elimination of identity lifts ↑NN T ≡ T requires a non-linear rewrite rule. The
non-linearity of this rule is a problem when proving confluence of the system. It can
however be dealt with by syntactically confining integer representations in a confined
level containing closed sort expressions exclusively below the representation of terms,
allowing to use Theorem 4.4.9.

• The non-linear rule creates other non-closing critical pairs such as

Ts A ←− Ts
(
↑s′s′ A

)
−→ Ts′ A

↑C(s2,s3)
s3 A ←− ↑s2s1

(
↑s3s3 A

)
−→ ↑s2s1 A

Since in both cases, each side contains a variable missing from the other, they cannot
be closed by rewriting one side to the other, à la Knuth-Bendix. Changing the
conflicting linear rule into a non-linear version, TC(S,S′)

(
↑S′S A

)
−→ TS A, makes

the rule impossible to use on closed terms. For instance TType0

(
↑Type0A

Prop

)
would be

a normal form since Type0 does not match C(S, S′).

To overcome these issues, a solution is to consider a predicate C(s1, s2) that is defined
so as to be inhabited if only if (s1, s2) ∈ C:

> : ∗ C(Prop , N) −→ >
I : > C(Type0 , TypeN) −→ >

C(�,�) : S → S → ∗ C(Type(SM), Type(SN)) −→ C(TypeM , TypeN)

This allows to define a public ↑ operator together with an unsafe private counter part ↑:

↑�
�
� � : Πs1 s2 :S.C(s1, s2)→ Us1 → Us1
↑�� � : Πs1 s2 :S. Us1 → Us1
↑S′
S
P A −→ ↑S′S A

All reflection rules can now be stated on the private version ↑ which is much better
behaved with the rest of the encoding. The full encoding, D[CCω], of CCωin λΠ≡, in-
cluding the reflection rules, can be found in Figure 9.6. Note that the non-linearity from
identity lift elimination must be propagated to many other rules to avoid critical pairs.
However this non-linearity is kept on meta-variables of type S in object rewriting rules.
This means that sorts can still be syntactically put at a confined level to prove confluence
together with β.

Using a non-linear rewrite system together with private symbols therefore allows to
represent the infinite hierarchies of universes of Coq. Although it is usable in practice,
the system previously introduced by Assaf [Ass15b] relied on a rewrite system for universe
expressions which had non-joinable critical pairs and therefore was not confluent. While
D[CCω] ∪ β is not confluent either because of its non-linearities, results from Chapter 4
allow to prove the following key properties.

CHAPTER 6. COC WITH UNIVERSE VARIABLES 121

Lemma 6.1.1. −→
D[CCω]

is confluent and strongly normalizing.

−→
D[CCω]

∪ −→
β

is locally confluent.

D[CCω] is confluent with β on terms such that sorts and natural number representa-
tions are syntactically enforced to be at a confined level.

Proof. Termination of −→
D[CCω]

is done by building a non-erasing polynomial interpretation

over N+. All rules but the last two are size decreasing therefore they decrease the interpre-
tation w that maps all symbols but π to the constant 1 (to be precise we need w(A) := 2)
and such that w(u v) := w(u)+w(v) and w(λx :A. t) = w(λx :A. t) := w(A)+w(t). It only
remains to define a polynomial P such that w(πNM A B) := P (w(M),w(N),w(A),w(B)).
In order for the last two rules to be decreasing, that polynomial should satisfy both
P (K,N,K +M +A+ 1, X +B) > M + 2N +K + 3 + P (M,N,A,X +B) and
P (M,K,A,X +N +K +B+ 1) > 2M +N +K + 3 +P (M,N,A,X +B). It is then easy
to see that P (M,N,A,B) := (M +N +A+B)n works for some n big enough.

Local confluence is done by checking that all critical pairs are joinable.
The confinement is such that ∗,�,N,S, I,> ∈ L1 and 0, S, max, Prop, Type,A,R ∈ L0

while U, T,u, resp. C,π, ↑, ↑, build a term of L1 from one confined argument in L0, resp.
from two confined arguments, and are therefore of arity 1, resp. 2. These symbols are
therefore allowed to be non-linearly rewritten provided the non-linearity of their rules
is at confined positions which we check is the case. Finally the strong normalization of
rewriting at level L1 is compatible with the interpretation erasing subterms at level L0
and therefore Theorem 4.4.9 applies.

This syntactical constraint restricts the set of terms considered while still guaranteeing
that the image of the translation is syntactically allowed. The representation of sorts is
defined to be confined terms while the representation of other terms is in L1. To be more
precise, the constructors for the S and N types can only be applied to terms built from
these same constructors. They form a closed algebra of terms allowing λ abstractions but
constraining them to be only applied to terms in the algebra of confined terms. It is easy
to check that all the rewrite rules are compatible with this stratification.

Lemma 6.1.2. D[CCω] is well-typed.
CCω with explicit subtyping can be directly translated in this encoding.

Assaf showed that explicit subtyping is complete for CCω. However embedding ECC
requires to go further and extend subtyping to products. This will be done in Chapter 8
using the more general casting techniques describe in Chapter 5. In the rest of this chapter
we rather focus on ways to embed infinite structured sets of universes.

6.1.3 Towards universe polymorphism

In an infinite hierarchy of universe, some constructions may have to be placed at a certain
level even though they do not necessarily need to be. For instance polymorphic lists can
be defined identically at level Type0 or at level Type1. If both versions are mentioned

CHAPTER 6. COC WITH UNIVERSE VARIABLES 122

in a development, it is therefore necessary to define both list0 : Type0 → Type0 and
list1 : Type1 → Type1. Cumulativity is already helpful as it allows to use list1 even on
types in Type0 but the resulting type would have to be a type in Type1, therefore putting
all subsequent development one level higher than strictly necessary.

Russell and Whitehead introduced in Principia Mathematica an elegant way to deal in
practice with this situation called typical ambiguity. Following this convention, universe
levels could be omitted in proofs and terms and they are inferred while checking their well-
typedness. It is checked that there exists concrete levels from the hierarchy that allow the
terms to be well-typed. For instance the judgment `S Πf : Type → Type. f Type : Type is
derivable even though it seems that it would require the unsafe Type : Type. In fact it can
be elaborated at type-checking into a well-typed judgment, for instance with the following
universe levels assignment: `S Πf : Type1 → Type1. f Type0 : Type2. As a matter of
fact, the actual levels assigned to sort occurrences is not as important as the relationship
between them. In our example, we actually have `S Πf : Typei → Typej . f Typek : Typel
for all i, j, k and l such that k < i and max(i, j) < l. This paves the way to the definition
of a Calculus of Constructions where universes can be algebraic expressions that may
contain universe variables implicitly quantifying over all of their valid instances.

6.2 Algebraic universes
We define in this section the universe algebraic Calculus of Constructions, ACC∼L . We show
that even if its set of sorts features level variables and arbitrary algebraic expressions, it
remains well-behaved as a CTS and could therefore be embedded in λΠ≡.

6.2.1 Definition

Definition 6.2.1 (Level Expressions). Assume a set of universe variables L. The set EL
of (algebraic) level expressions is inductively built from

• closed levels, n ∈ N; • u+ n for level expressions u and n ∈ N;
• level variables, i ∈ L; • max(u, v) for level expressions u and v.

We define the set of algebraic sorts as SL := {Prop} ∪ {Typeu | u ∈ EL} and the set of
algebraic terms TL as the CTS terms built from this set of sorts. The set of level variables
in a level expression u is written LVar(u) and is naturally extended to sorts and terms.

We sometimes use the n-ary version of max, max(u, v, w) := max(u,max(v, w)).
As defined in Harper and Pollack [HP91, HP89], we consider assignments of level

variables to natural numbers.
Definition 6.2.2 (Level Assignments). A level assignment, or valuation, σ is a function
from L to N (or sometimes to Z in which case it will be made explicit). Level assign-
ments naturally extend to non-decreasing functions on algebraic level expressions of EL by
interpreting + and max respectively as the addition and maximum functions on N. They
extend to terms and contexts as well by substituting all of their level expressions, producing
therefore terms and contexts of the usual Generalized Calculi of Constructions, CCω and
ECC.

CHAPTER 6. COC WITH UNIVERSE VARIABLES 123

We write � u = v (resp. � u ≤ v) if for all assignment (over N) σ, σ(u) = σ(v)
(resp. σ(u) ≤ σ(v)). We define level conversion as the equivalence relation ≡L on levels
(naturally extended to sorts and terms) such that u ≡L v ⇐⇒ � u = v.

We write σ0 the constant assignment mapping all variables to 0.

For instance we have � i + 0 = i , � 1 + 1 = 2 , � (i + 1) + 2 = i + 3 and
� max(max(j + 2, i),max(i+ 3, j)) = max(j + 2, i+ 3).

All CTS judgments containing universe variables should be derivable if and only if all
of their instances are derivable in ECC. Free universe variable can therefore be seen as
universally quantified, implicitly. They could be substituted any concrete level in N or
other level expression. An assignment would then define a morphism from the system
with universe variables to ECC, thus preserving its properties. We first prove a couple of
utility lemmas which will be useful to characterize level expressions.

Definition 6.2.3. A level expression u is guarded, written G(u) if ∀σ ∈ ZL, σ(u) ≥ σ0(u).

For instance max(0, i), max(1 + 2, (u+ 1) + 1) and max(2, i, j + 1) are guarded, their
nullary valuations are the lower bound of their integer valuations, while max(i, j), i + 2
and max(1, i+ 2) are not.

Lemma 6.2.4. For all u, there exists v such that G(v) and � u = v.

Proof. Replacing all occurrences of variables i in u with max(0, i) yields v.

Lemma 6.2.5. If LVar(u) = {i1, . . . , in}, then � u = max(k0, i1 + k1, . . . , in + kn) for
some (ki)i. This representation is unique if we force the guard condition: ∀i, k0 ≥ ki.

Proof. By induction on u, since � max(u1, . . . , un) + k = max(u1 + k, . . . , un + k) using
the simple following identities on natural numbers:

• � (u+ n) + k = u+ (n+ k) • � (n) + k = (n+ k)
• � max(i+ k, i+ n, u) = max(i+ max(k, n), u) • � i = i+ 0

and the associativity and commutativity property of max.
Assuming � max(k0, i1 +k1, . . . , in+kn) = max(k′0, i1 +k′1, . . . , in+k′n) then if kj 6= k′j

for some j ≥ 1, then we can choose a large enough valuation for ij in σ, and we get
σ(max(k0, i1 + k1, . . . , in + kn)) = σ(ij) + kj 6= σ(ij) + k′j = max(k′0, i1 + k′1, . . . , in + k′n).
If k0 6= k′0, we chose σ : i 7→ 0 and since k0 ≥ maxj(kj) and k0 ≥ maxj(k′j), we have
σ(max(k0, i1 + k1, . . . , in + kn)) = k0 6= k′0 = max(k′0, i1 + k′1, . . . , in + k′n).

The condition provided corresponds to the guard condition since if k0 < ki then the
max expression can be Z-evaluated to k0 while its σ0 valuation is greater than ki. To be
more precise, G(max(k0, i1 + k1, . . . , in + kn))⇔ k0 = σ0(u) ≥ max((kj)j).

Corollary 6.2.5.1. For all level u and assignment σ, σ(u) ≥ maxi∈LVar(u)(σ(i)).

Corollary 6.2.5.2. If � u ≤ v then LVar(u) ⊆ LVar(v).

Proof. Assume i ∈ LVar(u) \ LVar(v), the assignment family σk := {j 7→ kδij} is such
that (σk(v))k∈N is constant while σk(u) ≥ k by Corollary 6.2.5.1. Therefore there exists
an index n such that σn(u) > σn(v) contradicting � u ≤ v.

CHAPTER 6. COC WITH UNIVERSE VARIABLES 124

Definition 6.2.6. Assume a set of universe variables L. The Calculus of Constructions
with algebraic universes can be defined as the CTS with the following specification

ACCL :=


S := SL
A := { (Prop, Typeu), (Typeu, Typeu+1) }

R :=
{

(Prop, Prop, Prop), (Typeu, Prop, Prop),
(Prop, Typeu, Typeu), (Typeu, Typev, Typemax(u,v))

}
C := {(Prop, Typeu)} ∪ {(Typeu, Typev) | � u ≤ v}


where the conversion rule is extended with ≡L .

Lemma 6.2.7. ≡L and −→
β

sub-commute: if u ≡L t−→
β
v, then u−→

β
t′ ≡L v.

Proof. Note that ≡L is not a rewrite rule. We consider the parallel sets P of sort positions
in t. We have, t = tP t

P , tP ≡L σ and u = tPσ. Since sorts are neither abstractions nor
applications, necessarily, if t p−→

β
v then p · Fβ 6>P P . By Corollary 3.1.11.1, tP−→

β
u′ such

that u−→
β
u′σ = t′ ≡L u′tP = v.

Lemma 6.2.8. −→
βL

:= (−→
β
∪ ≡L) is Church-Rosser and ←→←→

βL
= (−→−→

β
≡L ←−←−

β
).

Proof. By induction and sub-commutation, −→−→
βL

= (−→−→
β
≡L). By confluence of β and

sub-commutation again, we prove←−←−
βL
−→−→
βL

⊆ ≡L −→−→
β
←−←−
β
≡L ⊆ −→−→

β
≡L ←−←−

β
. The

last part is done by induction on the number of peaks in←→←→
βL

using sub-commutation.

Because of this commutation property, this system may instead be seen as a particular
CTS where algebraic sorts are considered modulo ≡L :

Definition 6.2.9 (Algebraic Level CoC). Assume a set of universe variables L. We define
the universe algebraic Calculus of Constructions as the following CTS

ACC∼L :=



S := SL/ ≡L
A := { (Prop, Typew) | � w = 1 }

∪ { (Typeu, Typew) | � w = u+ 1 }
R := { (Prop, Prop, Prop) }

∪ { (Typeu, Prop, Prop) }
∪ { (Prop, Typeu, Typew) | � w = u }
∪ { (Typeu, Typev, Typew) | � w = max(u, v) }

C := { (Prop, Typew) } ∪ { (Typeu, Typew) | � u ≤ w }


Proof. The A, R and C relation are well defined on classes of equivalence of S. For
instance, if (s1, s2) ∈ A, s1 ≡L s′1 and s2 ≡L s′2, then (s′1, s′2) ∈ A.

Lemma 6.2.10. The A and R relations of ACC∼L are total functions.

CHAPTER 6. COC WITH UNIVERSE VARIABLES 125

Proof. Functionality and totality are both easily verified by definition for both A and R:
if (s, s1) ∈ A and (s, s2) ∈ A then � s1 = s2 by case disjunction on s.

Lemma 6.2.11. An assignment σ defines a morphism from ACC∼L to CCω.

Proof. σ defines a function from sorts of ACC∼L to sorts of CCω. All representatives of
an equivalence class in SL are mapped to the same concrete universe in CCω. It is easily
verified that this function satisfies all properties defining a morphism.

For example, if (Typeu, Typew) ∈ AACC∼L , then by definition � w = u + 1, therefore
σ(w) = σ(u) + 1 and (Typeσ(u), Typeσ(w)) = (Typeσ(u), Typeσ(u)+1) ∈ ACCω .

Corollary 6.2.11.1. ACC∼L is strongly normalizing.

Lemma 6.2.12. The strict part of the C relation of ACC∼L is well-founded.

Proof. Assume (si)i∈N such that for all i, (si+1, si) ∈ C and 6� si = si+1. By definition of C,
since there is no sort s such that (s, Prop) ∈ C, we know that for all i, si = Typeui for levels
ui such that � ui+1 ≤ ui (1) and 6� ui+1 = ui (2). By Corollary 6.2.5.2 and induction,
LVar(ui) ⊆ LVar(u0) = {j1, . . . , jn}. By Lemma 6.2.5, � ui = max(k0, j1+ki1, . . . , jn+kin)
where some of the jm + kim may be omitted. For all m ∈ N, (kim)i must be decreasing
to satisfy (1) and for all i, it must be the case that ki+1

m < kim for some m to satisfy
(2). This means that

(∑
m k

i
m

)
m is a strictly decreasing sequence of natural number, we

conclude.

Lemma 6.2.13. ACC∼L has the local minimum property.

Proof. By total functionality, there is always a unique r2 such that (r1, r2) ∈ A (resp. r3
such that (r1, r2, r3) ∈ R). Assuming (s1, s2) ∈ A, (s′1, s′2) ∈ A, (r1, s1) ∈ C, (r1, s

′
1) ∈ C

and (r1, r2) ∈ A, then (r2, s2) ∈ C, (r2, s
′
2) ∈ C. If r1 = Prop, then r2 = Type1 and s2,

s′2 are both Typeu for some u such that � 1 ≤ u, we conclude. Otherwise r1 = Typeu,
r2 = Typeu+1 and necessarily s1 = Typev, for some v such that � u ≤ v. We conclude
since s2 = Typev+1 and � u+ 1 ≤ v + 1 therefore (r2, s2) ∈ A. The same goes for s′1 and
s′2. The condition on R is checked similarly.

Note that this property would still hold when considering for example the completion
of the CTS ACC∼L where A and R would no longer be functional. We will see later that
when considering a constrained universe structure it is easier to consider this completion.

Theorem 6.2.14. Bidirectional typing is complete for ACC∼L .

Proof. Luo showed [Luo90] that it is complete for any CTS satisfying the local minimum
property (Lemma 6.2.13) and such that the strict part of C is well-founded (Lemma 6.2.12).

CHAPTER 6. COC WITH UNIVERSE VARIABLES 126

6.2.2 Embedding in the lambda-Pi-calculus modulo

The minimal typing property allows to use Assaf’s encoding to simply encode this partic-
ular CTS, provided we are able to correctly encode and translate sorts. A quotient set is
simply encoded in Dedukti with an encoding of its elements’ representatives together with
a rewrite system reflecting the equivalence relation between them as the term convertibility
of their representations.

Definition 6.2.15. We define the following encoding and translation of level expressions
to terms of λΠ≡:

N : ∗
0 : N

S : N→ N

+ : N→ N→ N

max : N→ N→ N

[i] := max 0 i
[n] := Sn 0

[u+ n] := + [u] [n]
[max(u, v)] := max [u] [v]

In the context of translation the Agda system to Dedukti, Genestier designed a
terminating rewrite system to decide level conversion [Gen20a]. This system requires an
associative and commutative symbol max and assumes that the second argument of the +
symbol is always a closed term.

Lemma 6.2.16. Assume two level expressions u and v of ACCL, then � u = v iff
[u]←→←→

Rl
[v] with Rl the following rewrite system:

max ∈ FAC max 0 0 −→ 0
+ u 0 −→ u max (S n) 0 −→ S n
+ 0 u −→ u max (S n) (S k) −→ S (max n k)

+ (S n) k −→ + n (S k) max u u −→ u
+ (+ u n) k −→ + u (+ n k) max (+ u n) (+ u k) −→ + u (max n k)

+ (max u v) k −→ max (+ u k) (+ v k) max u (+ u k) −→ + u k

This system is not confluent however it is terminating (modulo AC) and has the unique-
ness (modulo AC) of normal forms property on the images of the translation.

This system simply reflects all the identities used in the proof of Lemma 6.2.5. For
instance � (u+ n) + k = u+ (n+ k) is reflected with the fourth rewrite rule:

[(u+ n) + k] := + (+ [u] [n]) [k] −→ + [u] (+ [n] [k]) =: [u+ (n+ k)]

Proof. This system is non-linear which forbids its confluence together with β on all terms.
Besides this system is not even locally confluent since it has several non joinable critical
pairs such as, for instance:

S n ←− + (S n) 0 −→ + n (S 0)
+ (S u) (+ n k) ←− + (+ (S u) n) k −→ + (+ u (S n)) k

CHAPTER 6. COC WITH UNIVERSE VARIABLES 127

It is terminating since in can be checked that the following interpretation function w
from terms to the well founded (N∗,≤) is compatible with AC, t ≡AC u ⇒ w(t) = w(u),
and strictly decreasing along reduction:

w(0) := 1 w(max u v) := w(u) + w(v) + 1
w(S t) := 2w(t) + 2 w(+ u v) := w(u)w(v) + 3w(u) + w(v) + 1

However the following properties on terms, written C(t), hold on the image of the
translation and are preserved by rewriting with Rl:

• t is well-typed in a context where all variables have type N;
• max, + and S occur fully applied in t and variables and 0 occur unapplied in t;
• if + u nC t or S nC t then n is closed;

Terms with these properties can (implicitly) be interpreted as natural number if they are
0 or S-headed (since they are closed) and as level expressions in any case. Because of the
definition of variable translation, [u] is always (interpreted as) a guarded expression.

By induction on it, a closed term in Rl-normal form is of the shape Sn 0 for some
n ∈ N. Similarly, normal terms satisfying the C(t) condition are either

• Sn 0 for some n ∈ N;
• i for some variable i;
• + i (Sn 0) for some variable i and n > 0;
• max u1 . . . un (modulo AC) for some ui of the above shape and with pairwise disjoint

(singleton) sets of free variables and such that no two ui are closed.
All other terms satisfying the C condition reduce with one of the rules in Rl.

It is easily checked that if C(u) and u−→v, then C(v). Besides, for all Z-valuation σ,
σ(u) = σ(v), so that we have both � u = v and if G(u), then G(v).

Assume [u]−→−→ t with t in Rl-normal form, then both C(t) and G(t) hold and, neces-
sarily, t =AC max (Sk0 0) (+ i1 (Sk1 0)) . . . (+ in (Skn 0)) (or ij if kj = 0) and since G(t)
holds, we have k0 ≥ kj for all j and this representation is unique modulo AC.

Corollary 6.2.16.1. � u ≤ v if and only if max [u] [v]←→←→
Rl

[v].

This result means that a lift operator lift : Πu v :N. UTypeu → UTypemax(u,v) would allow
to explicitly cast terms of type Typeu to their representation as type Typev whenever
� u ≤ v. Previously studied encoding techniques could therefore be used to faithfully
represent this particular CTS with algebraic universe levels. The lack of confluence could
be problematic to prove this encoding is well-behaved but this is probably manageable
with extra restrictions on λΠ≡, for instance by syntactically enforcing level expressions to
be “confined” and to satisfy the C and G predicates.

6.3 Universe constraints

6.3.1 The constrained Calculus of Constructions

In ACC∼L , we have `C (Πt : Typei.Πf : Typei → Prop. f t) : Prop. However, due to cumu-
lativity, the two instances of the universe level i do not necessarily have to be instanti-

CHAPTER 6. COC WITH UNIVERSE VARIABLES 128

ated with the same concrete level to yield a judgment well-typed in ECC. For instance
`C (Πt : Type1.Πf : Type2 → Prop. f t) : Prop. The more general (ill-typed) judgment
6`C

(
Πt : Typei.Πf : Typej → Prop. f t

)
: Prop could be instantiated into this judgment

but it could also yield the ill-typed 6`C (Πt : Type2.Πf : Type1 → Prop. f t) : Prop. In
order to enforce only legal instances of the general judgment, we need to introduce a con-
straint mechanism allowing to derive i ≤ j `C

(
Πt : Typei.Πf : Typej → Prop. f t

)
: Prop

where the constraint i ≤ j means that only some valuations should be considered to
preserve well-typedness.

Definition 6.3.1. The interpretation of a set of constraints along an assignment σ is
defined by interpreting the inequalities on the natural numbers. We say that σ validates
the constraint set φ, and we write σ � φ, if the inequalities of φ, interpreted in N, are true.

A set of constraints φ is stratifiable, written φ �, if there exists and assignment that
validates φ. A set of constraints φ entails a (set of) constraint(s) ψ written φ � ψ, if for
all interpretation σ, σ � φ⇒ σ � ψ.

As before, a term t with level variables should be considered well-typed in a set of
constraints φ if for all interpretation σ validating φ, tσ is well-typed in ECC. This state-
ment becoming empty in the case where φ is not stratifiable, well-formed signatures should
only allow definition and declaration which body and type annotation are well-typed in a
stratifiable set of constraints.

Definition 6.3.2 (Constrained Calculus of Constructions). Assume a set of universe
variables L and a stratifiable set of constraints φ such that LVar(φ) ⊆ L.

We define the level conversion modulo φ, as the relation ≡Lφ on levels (and extended
to sorts and terms) such that u ≡Lφ v ⇐⇒ φ � u = v.

We define the CTS with following specification

CCC∼L := CTS
[
S := SL/ ≡Lφ
A,R and C same as in ACC∼L

]
As for previous extensions, we still have the following properties.

Lemma 6.3.3. The A, R and C relation are well defined on classes of equivalence of S.
The A and R relations of CCC∼L are total functions.
Any assignment σ defines a morphism from CCC∼L to CCω.
CCC∼L is strongly normalizing.

Lemma 6.3.4. The strict part of the C relation of CCC∼L is well-founded.

Proof. The proof is similar to that of Lemma 6.2.12.
The differences are that now ∀i,LVar(ui) ⊆ LVar(u0) ∪ LVar(φ) which is still finite

and the (kim)i∈N must all be bounded (for instance by σ(u0) for any assignment σ such
that σ � φ). This means that the possible (n+ 1)-tuples (kim)0≤m≤n are in finite number
and therefore � ui = uj for some i < j. Since φ 6� uj = uj−1 there is some assignment σ
validating φ and such that σ(uj−1) < σ(uj). Besides, since σ � φ, we also have σ(ui) ≤
σ(ui+1) ≤ · · · ≤ σ(uj−1) so we get σ(ui) < σ(uj) = σ(ui) allowing to conclude.

CHAPTER 6. COC WITH UNIVERSE VARIABLES 129

All properties required for the correctness of the usual encoding are again satisfied for
CCC∼L . However, correctly encoding this CTS now requires a level representation allowing
to decide sort equality and subtyping in a set of constraints.

6.3.2 Constraint atomicity

As discussed later, Herbelin showed that in the particular case where the signature is
elaborated from a signature where universe levels are left anonymous (satisfying the typ-
ical ambiguity property), only atomic constraints are inferred. Therefore, enforcing the
property that constraints are atomic is enough to derive the well-typedness of all signa-
tures elaborated from typical ambiguous ones. Restricting to atomic constraints provides
a simple stratifiability check and makes the problems of deciding inequality and equality
of levels much easier which is helpful in the context of constraint and universe encoding
in λΠ≡.

Definition 6.3.5. A level expression u is atomic if it is either a concrete level or a level
variable, u ∈ N ∪ L. A constraint u ≤ l is atomically upper-bounded if l is atomic.
Constraints l ≤ l′ and l + k ≤ l′ are atomic if l and l′ are. We write u = v for the pair,
or conjunction, of constraints u ≤ v and v ≤ u. u = v is atomic if both u and v are.

Lemma 6.3.6. For all set of atomically upper-bounded constraints there is an equivalent
set of atomic constraints with the exact same validating interpretations.

Proof. By induction on the multiset of constraint sizes in the right-hand side, using the
following easy equivalences

φ ∧ max(u, v) ≤ l ⇐⇒ φ ∧ u ≤ l ∧ v ≤ l
φ ∧ max(u, v) + k ≤ l ⇐⇒ φ ∧ u+ k ≤ l ∧ v + k ≤ l
φ ∧ (u+ k) + n ≤ l ⇐⇒ φ ∧ u+ (k + n) ≤ l

These equivalences cover all cases of atomically upper-bounded sets of constraints that
are not all already atomic.

Definition 6.3.7. If φ is a set of atomic constraints, we define the relation ≤kφ on atomic
levels (L ∪ N) such that i ≤kφ j ⇔ i + k ≤ j ∈ φ, i ≤0

φ n ⇔ i ≤ n ∈ φ and n ≤kφ i ⇔
((n+k) ≤ i ∈ φ∨n = k = 0). We write ≤φ := ⋃

k ≤kφ and ≤(K)
φ := ⋃∑

ki=K ≤
k1
φ · · · ≤

kn
φ .

A set of atomic constraints can be seen as a graph with nodes in L∪N and edge labels
in N. l ≤(K)

φ l′ corresponds to the existence of a path or chain of constraints from l to l′.
Sets of atomic constraints are convenient because their stratifiability can be checked

by simply looking for either non-trivial cycles i ≤(K)
φ i or chains of constraints between

concrete levels m ≤(K)
φ n such that K > n−m. We also assume implicit edges n ≤1

φ n+ 1
which allow to characterize this second condition using only chains starting at 0.

Theorem 6.3.8. A set φ of atomic constraints is stratifiable if and only if there exists no
cycle i ≤(K)

φ i for K > 0 and no chain 0 ≤(K)
φ n for K > n ∈ N.

CHAPTER 6. COC WITH UNIVERSE VARIABLES 130

Proof. It is easy to see that if σ � φ, then l ≤kφ l′ ⇒ σ(l) + k ≤ σ(l′) and l ≤(K)
φ l′ ⇒

σ(l) +K ≤ σ(l′). Assuming there exists i ≤(K)
φ i (resp. 0 ≤(K)

φ n) then any assignment σ
validating φ must satisfy σ(i) +K ≤ σ(i) (resp. K ≤ n) which is impossible.

Assuming there is no such cycle, since φ is finite, M := 2|LVar(φ)| ·max({k | i+ k ≤
j ∈ φ}) is well-defined and l ≤(N)

φ l′ ⇒ N ≤M . Indeed, assuming the smallest n such that
l ≤k1

φ · · · ≤
kn
φ l′ and Σpkp > M , then either n ≤ 2|LVar(φ)| and the bound is respected

or n > 2|LVar(φ)| and since p 6≤kφ q for p, q ∈ N, there must be a level variable i and
a non-empty cycle l ≤k0

φ · · · ≤
kp
φ i ≤kp+1

φ · · · ≤kp+qφ i ≤kp+q+1
φ · · · ≤knφ l′ which can be

eliminated to form a strictly smaller sequence since, by assumption, ∑1≤j≤q, kp+j = 0.
This allows to define the assignment σm(i) := max

({
K | 0 ≤(K)

φ i
})

. It is easy to
check that σm validate φ since for all i+ k ≤ j ∈ φ we have

σm(j) = max({Σpkp | 0 ≤k1
φ · · · ≤

kn
φ j}) ≥ max({Σpkp + k | 0 ≤k1

φ · · · ≤
kn
φ i ≤kφ j})

≥ max({Σpkp | 0 ≤k1
φ · · · ≤

kn
φ i}) + k = σm(i) + k

Similarly σm validates the n ≤ i constraints in φ. Assume i ≤ n ∈ φ, then 0 ≤σm(i)
φ i ≤0

φ n
and by assumption, σm(i) ≤ n.

Since the σm(i) is always obtained from some 0 ≤(N)
φ j Is is easy to see that σm is

minimal: for all assignment σ validating φ, σm(i) ≤ σ(i).

For instance the sets φ1 = {i ≤ j, j + 1 ≤ i} and φ2 = {j + 2 ≤ i, i ≤ 1} are not
stratifiable since there exists j ≤1

φ1
i ≤0

φ1
j and 0 ≤0

φ2
j ≤2

φ2
i ≤0

φ2
1.

Checking the absence of cycle in a set of atomic constraints can be done in polynomial
time by checking this property is preserved when successively adding constraints to a set,
as it is done in the Coq system. One way to do this is to keep a map from pairs of level
variables (i, j) to the smallest K, if any, such that i ≤(K)

φ j. This map can be updated
in polynomial time to take a new constraint into account. Since Coq exclusively features
i ≤ j and i+1 ≤ j constraints stratifiability is even more easily checked by simply looking
for cycles with a strict inequality.

6.4 Deciding cumulativity under constraints

6.4.1 Decision procedure for level constraints

Courant defined [Cou02] an algorithm to decide constraints validity in a stratifiable set
of variable upper-bounded constraints. In his presentation level variables are introduced
successively with a single constraint u ≤ i where i is a fresh variable and u is a level
expression relying exclusively on already defined level variables. This condition restricts
the allowed sets of constraints considered, forbidding for instance the stratifiable i ≤
j ≤ i + 2. However, stratifiable set of variable upper-bounded constraints can always be
defined this way. Constraints with the same right-hand side variable can be by reordered
and grouped together: u ≤ i∧v ≤ i⇒ max(u, v) ≤ i. Variables in cycles can be identified

CHAPTER 6. COC WITH UNIVERSE VARIABLES 131

i ≤ j ≤ k ≤ i ⇒ i = j = k and collapsed. Level variable declaration can be intertwined
with variable declarations in the context, unlike in CCC∼L where all levels and constraints
are fully defined before type checking. We show that Courant’s algorithm can be adapted
to handle any stratifiable set of atomic constraints, including i ≤ n constraints and cyclic
sets, j ≤ i ∧ j ≤ i. This allows to define an encoding of constraint as predicate in λΠ≡:
`D [u ≤ v] : ∗ such that [u ≤ v] is inhabitable if and only if φ � u ≤ v.

This algorithm relies on a special constraint u ≤n v which is interpreted as u ≤ v + n
for n ∈ Z.

0 ≤ n
φ `S 0 ≤n u

L0
0 ≤ n

φ `S u ≤n u
La

u ≤ i ∈ φ
φ `S u ≤0 i

Lax

φ `S u ≤m−n v
φ `S u+ n ≤m v

Ll
φ `S u ≤m+n v

φ `S u ≤m v + n
Lr

φ `S (u ≤n w) ∧ (v ≤n w)
φ `S max(u, v) ≤n w

Lmax

φ `S u ≤n v φ `S v ≤0 w

φ `S u ≤n w
Ltr

φ `S c1 φ `S c2

φ `S c1 ∧ c2
L∧

φ `S u ≤n v
φ `S u ≤n max(v, w)

LmaxL
φ `S u ≤n w

φ `S u ≤n max(v, w)
LmaxR

Figure 6.1: Constraint derivation rules

Lemma 6.4.1 (Correctness of `S). Assume a stratifiable set φ of atomic constraints. If
φ `S u ≤0 v can be derived using the inference rules of Figure 6.1, then φ � u ≤ v.

Proof. This is done by a simple induction on the derivation φ `S u ≤ v. All inference rules
are correct: if a level assignment σ validates the premises, it validates the conclusion.

While correctness is easy, completeness is going to require two technical lemmas.

Lemma 6.4.2. Assume a stratifiable set φ of atomic constraints. We have φ � i+p ≤ j+q
if and only if either i ≤(K)

φ j for some K such that p ≤ K + q or i ≤(K)
φ N , M ≤(K′)

φ j
and N −K + p ≤M +K ′ + q.

Proof. If i ≤(K)
φ j then in all model σ validating φ, we have σ(i)+p ≤ σ(i)+K+q ≤ σ(j)+q.

The same goes for the other criteria.
To prove the other direction we consider the following assignment for M ∈ N:

σ(M)(i) := max


k

∣∣∣∣∣∣∣∣
i ≤(K)

φ j ⇒ k +K ≤ σm(j)
i ≤(K)

φ n ⇒ k +K ≤ n
i ≤(K)

φ i′ ∈ L ⇒ k +K ≤M




CHAPTER 6. COC WITH UNIVERSE VARIABLES 132

For M large enough, σ(M)(j) = σm(j) and σ(M) validates φ. This is easy to see for i ≤ n
and i+ k ≤ j constraints. For n ≤ i constraints, there are two cases:

• σ(M)(i) = σm(j) −K for some i ≤(K)
φ j or σ(M)(i) = n′ −K for some i ≤(K)

φ n′. In
both cases, necessarily n ≤ σ(M)(i) by stratifiability of φ.

• σ(M)(i) = M − max({K|i ≤(K)
φ i′}) which is greater than n if M is chosen large

enough.
When M is chosen large enough we are in one of three cases:

• σ(M)(i) = σm(j)−K for someK such that i ≤(K)
φ j and we get the result immediately.

• σ(M)(i) = n−K for some K such that i ≤(K)
φ n. and we have n−K+p ≤ σm(j)+q.

By definition of σm, 0 ≤(σm(j))
φ σm(j) which gives the result.

• σ(M)(i) = M −max({K|i ≤(K)
φ i′}) and if M is chosen large enough, σ(M) 6� i+ p ≤

j + q, contradicting the assumption.

Example 1: For instance, the set of constraints represented below (black) is vali-
dated with both σm (in red) and σ(8) (in blue). The σm assignment maps variables to the
lowest level compatible with the constraints while σ(M) maps j to σm(j) and all other to
the highest possible level below M .

j

i u k

v3

0

+1 +3+2 +1

+3

5=

0= 3= 0=

1==5

=3 =3 =2

=8

We have φ � k + 2 ≤ j since k ≤(3)
φ j and φ � i+ 2 ≤ j since i ≤(0)

φ 3 and 0 ≤(5)
φ j.

Lemma 6.4.3. Assume a stratifiable set φ of atomic constraints. We have φ � i + p ≤
max(u, v) if and only if φ � i+ p ≤ u or φ � i+ p ≤ v.

Proof. By Lemma 6.2.5, φ � u=max(iu1 +ku1 , ...iun+kun) and φ � v=max(iv1+kv1 , ...ivm+kvm).
We introduce a new variable ι and add the new constraints iuj + kuj ≤ ι and ivj + kvj ≤ ι to
the set φ for all j. The defined set ψ is still stratifiable as any assignment σ validating φ
can be extended in an assignment σ′ validating ψ by defining σ′(ι) := σ(max(u, v)). We
also have ψ � i+ p ≤ ι so, by Lemma 6.4.2, we have either

• i ≤(K)
ψ ι for some K such that p ≤ K. The chain must start with one of the

introduced constraint since only they refer to ι and these constraint occur nowhere
else since none of them has ι as a lower bound. Therefore i ≤k1

φ · · · ≤
kn
φ iuj ≤

kuj
ψ ι.

We conclude that φ � i+ p+K−kwj ≤ iwj + p and φ � i+ p ≤ iwj +kwj for w ∈ {u, v}
and some j.

• i ≤(K)
ψ N , M ≤(K′)

ψ ι and N −K + p ≤M +K ′ which is handled the same way with
the same conclusion.

We conclude that φ � i+ p ≤ w for w ∈ {u, v}. The other direction is immediate.

CHAPTER 6. COC WITH UNIVERSE VARIABLES 133

Lemma 6.4.4 (Completeness of `S). Assume a stratifiable set φ of atomic constraints.
If φ � u ≤ v, then φ `S u ≤0 v can be derived using the inference rules of Figure 6.1.

Proof. The proof is done in [Cou02] for a slightly simpler but just as powerful system.
We adapted the system here to later simplify the definition of the translation function on
these derivations.

The Lax, Ltr, LmaxL and LmaxR rules are not invertible, their premises are not equiv-
alent to their conclusions so they should be used with more care.

We prove a more general result, if φ � u ≤ v + n then φ `S u ≤n v, by induction
on the size of (u, v). The invertible rules L0, Lax, La, Ll, Lmax and L∧ are terminating
on any judgment u ≤n v as their premises have smaller sizes than their conclusion. Any
judgment that matches the conclusion of one of these rules can be derived, by induction
hypothesis, using it.

A judgment that matches the conclusion of no invertible rule is either of the shape
i ≤n max(u, v) or i ≤n j. If it is of the first shape then, by Lemma 6.4.3, either φ � i ≤n u
or φ � i ≤n v and we conclude using the LmaxL or LmaxR rule and by induction hypothesis.

Otherwise we have φ � i ≤ j+n, or rather φ � i−n ≤ j if n < 0. By Lemma 6.4.2 we
are in one these two cases:

• i ≤(K)
φ j for some K such that 0 ≤ K + n.

By induction on the chain length, φ `S i ≤n j can be derived using the Lax, Ltr
rules and the invertible rules for all 0 ≤ K + n. For empty chains, φ `S i ≤n i is
derived with La if 0 ≤ n. If i ≤(K)

φ l ≤kφ j and 0 ≤ n + (K + k), then Lax derives
φ `S l + k ≤0 j and by Lr,φ `S i ≤n l + k can be derived from φ `S i ≤n+k l which
is itself derivable by induction hypothesis since 0 ≤ (n+ k) +K and i ≤(K)

φ l. Note
that this work if j ∈ N as well but that case is a bit more tedious and requires to use
either Lr backward or rely on a more general Ltr with the derivable φ `S n ≤n 0.

• i ≤(K)
ψ N , M ≤(K′)

ψ j and N −K + p ≤M +K ′ + q which is handled the same way
with the same conclusion.

All cases are covered and φ `S u ≤n v is derivable if φ � u ≤ v + n.

The inference rules define therefore a non-deterministic algorithm which can actually
be done in polynomial time in practice since, in the max case, it is possible to decide in
linear time which branch is derivable.

Using a level representation similar to that of Definition 6.2.15, this allows to encode
provable subtyping in λΠ≡.

Definition 6.4.5. We consider the λΠ≡ signature Σc encoding levels and constraints
defined in Figure 6.2. Algebraic level expressions are translated as terms of type N and
constraints are translated as terms of type B as follows:

[i] := i [u+ n] := Sn [u]
[n] := Sn 0 [max(u, v)] := max [u] [v]

[u ≤ v] := [u] ≤ [v] [u = v] := [u ≤ v] ∧ [v ≤ u]

CHAPTER 6. COC WITH UNIVERSE VARIABLES 134

N : ∗ B : ∗
0 : N � ≤ � : N→ N→ B

S : N→ N � ∧� : B→ B→ B (∧ ∈ FAC)
max : N→ N→ N max (S X) (S Y)−→ S (max X Y) (max-S)

> : B > ∧ C −→ C (∧->)

Figure 6.2: Public encoding signature (levels and constraints): Σc ⊆ Σpub

Finite sets L of level variables are supposed ordered and are translated to a context of
variable declarations: [{i1, . . . , in}] := i1 : N, . . . , in : N. Finite sets of atomic constraints
with level variables in L are supposed ordered and are translated to a context of variable
declarations [{φ1, . . . , φn}] := c1 : ε [φ1] , . . . , cn : ε [φn].

We also consider the λΠ≡ signature Σp of constraint proofs defined in Figure 6.3.

Having defined a representation of levels and constraints in λΠ≡ we can now state
and prove its correctness. In our case, correctness must link constraint entailment in the
original system, φ � c, to the inhabitance of the type representing c in λΠ≡.

Theorem 6.4.6 (Correctness). Assume a finite set L of level variables.
• For all level expression u, such that LVar(u) ⊆ L, we have Σc,Σp; [L] `D [u] : N.
• For all constraint c such that LVar(c) ⊆ L, we have Σc,Σp; [L] `D [c] : B.
• For all set of atomic constraints φ such that LVar(φ) ⊆ L, Σc,Σp `D [L] , [φ] WFD.
• If φ � c then there exists a term t such that Σc,Σp; [L] , [φ] `WF

D t : ε [c].
• The inhabitance of ε ([c]) in the signature Σc,Σp and context [L] , [φ] is decidable.

Proof. Well-typedness of level expressions and constraints is straightforward by definition.
For n ∈ Z, we write n+ := max(0, n) ∈ N and n− := max(0,−n) ∈ N. We extend the
translation to u ≤n v constraints: [u ≤n v] := [u] [n−]≤[n+] [v]. We prove by induction on
the derivation that if φ `S u ≤n v is derivable, then ε ([u ≤n v]) is inhabited in signature
Σc,Σp and context [L] , [φ]:

• L0: ε (0 0≤(Sn0) [v])−→
R
ε > which is inhabited with I.

• La: ε ([u] 0≤(Sn0) [u]) is inhabited with refl [u] (Sn0).
• Ll, Lr, Lmax: in all cases, the translation of the unique premise is convertible with

the translation of the conclusion, we conclude by induction hypothesis.
• Lax: the inhabitant is the variable cj from the context [φ] such that φj = (u ≤ i).
• Ltr, L∧, LmaxL and LmaxR: the inhabitant is built with those (π1, π2) obtained by

induction hypothesis on the premises and using the constructors. Respectively:
– tr (Sn− [u]) (Sn+ [v]) (Sn+ [w]) π1 π2
– pair [c1] [c2] π1 π2
– maxl (Sn− [u]) (Sn+ [v]) (Sn+ [w]) π1

CHAPTER 6. COC WITH UNIVERSE VARIABLES 135

� �≤�� : N→ N→ N→ N→ B

ε : B→ ∗
I : ε >

refl : Πi n :N. ε (i 0≤ni)
tr : Πi j k :N. ε (i ≤ j)→ ε (j ≤ k)→ ε (i ≤ k)

maxl : Πi j k :N. ε (i ≤ j)→ ε (i ≤ max j k)
maxr : Πi j k :N. ε (i ≤ k)→ ε (i ≤ max j k)
pair : Πc d :B. ε c→ ε d→ ε (c∧d)

U ≤ V−→ U 0≤0V (≤)

0 0≤NX−→ > (0-≤)

(S X) N≤MY−→ X (S N)≤MY (S-≤)

X N≤M (S Y)−→ X N≤(S M)Y (≤-S)

X (S N)≤(S M)Y−→ X N≤MY (S-≤-S)

(max X Y) N≤MZ−→ (X N≤MZ)∧(Y N≤MZ) (max-≤)

Figure 6.3: Public encoding signature (constraints proofs): Σp ⊆ Σpub

– maxr (Sn− [u]) (Sn+ [v]) (Sn+ [w]) π1
Assuming c = u ≤ v for level expressions u and v. By Lemma 6.4.4, φ `S u ≤0 v

is derivable. Therefore ε [u ≤0 v] is inhabited since [u ≤ v] ≡βR [u ≤0 v] by the ≤ rule.
Besides the above proof is a terminating algorithm to compute one of its inhabitants or
conclude that none exist in the case of a constraint for which none of the rules from
Figure 6.1 apply. The c = (u = v) case is similar.

Note that the use of the non-invertible rules Lax, Ltr, LmaxL or LmaxR needs to be
represented with explicit constructors while other rules may be reflected with rewrite
rules.

Example 2: We consider the same set φ of constraints as in Example 1. We have

Σc,Σp `D i, j, k, u, v : N , ci3 : ε (i≤S3 0) , · · · , ckv : ε (S k≤v) WFD

• ε [max(i, 1) + 2 ≤ i+ 3]−→−→ ε(i 0≤(S 0)i) is inhabited with refl i (S 0),
• ε [k + 2 ≤ j] inhabited with ckj ∈ [φ].
• ε [5 ≤ j] inhabited with π := tr (S50) (S2u) j c0u cuj with c0u, cuj ∈ [φ].
• ε [i+ 2 ≤ j] inhabited with tr (S2i) (S50) j ci3 π

CHAPTER 6. COC WITH UNIVERSE VARIABLES 136

6.4.2 Encoding constrained universe levels

While allowing to correctly reflect the satisfiability of constraints, the representation of
universes from Definition 6.2.15 or Definition 6.4.5 does not computationally reflect the
universe equality under constraints. For instance, the equality i ≤ j � max(i, j) = j is only
provably reflected in the encoding ∃t,Σc,Σp; i, j : N, c : ε (i ≤ j) `WF

D t : ε [max(i, j) = j]
which does not ensure [max(i, j)] ≡βR [j]. The guard condition which ensured a canonical
representation now depends on the constraint set. For instance, in the constraint i+1 ≤ j,
the level expression max(0, j) is not properly guarded since it may be mapped to 0 with
a Z-assignment and at least to 1 with N-assignments. We investigate here several ways to
encode these levels as λΠ≡ terms. Our main concerns when designing these embeddings
are that if φ � u = v then u and v should be convertible. We explore several ways to
ensure this property or go around it.

Embed constraints with sums: Assaf, Dowek, Jouannaud and Liu investigated
[ADJL16] a representation of universe levels relying on the max/+ algebra with both
symbols in FAC together with rewrite rules. The idea is that a constraint i ≤ j can be
represented by introducing a new level k such that j := i+k. Therefore universe instances
of j should directly be translated as (+ i k) and in our previous example we could have
[max(i, j)] = max [i] [j] = max i (plus i k)−→

R
i. This encoding requires both max and + to

be AC and and is proven confluent modulo AC. It suffers however from a critical drawback.
Assume you need to reflect two inequalities i ≤ k and j ≤ k, it is not possible to have at
the same time k := i+ki and k := j+kj otherwise the translation of the universe variable
k would be ambiguous. Instead we use two other levels such that i = min(i, j) + n and
j = min(i, j) + p. This allows to have i + p = max(i, j) = j + n and we can introduce a
last level l such that k = max(i, j) + l.

k

ij

=⇒

m+ n+ p+ l

m+ nm+ p

m

m+ n+ p

[j] = = [i]

= [k]

When translating i, j and k as their sum representation, the rewrite rules are now able to
reflect both constraints since the translation satisfies [i] +u = [k] = [j] + v, for some levels
u = n+l and v = p+l. This representation however quickly blows up. For instance a single
extra constraint h ≤ j require to build a representation [h] such that [j] = m+p = [h]+q.
This can be done by re-assigning m := m′ + qm, p := p′ + qp and having [h] := m′ + p′

and q := qm + qp. This doubles the size of [j] and also extends the sizes of [i] and [k]
even though they are not directly concerned with this extra constraint. Besides, with each
step the newly introduced level variables are less directly linked to the original levels: n
represents i−min(i, j) but qp is harder to link to i and h.

Embed constraints in level definition: An other solution would be to define

CHAPTER 6. COC WITH UNIVERSE VARIABLES 137

level translation such that [j] := plus n (max {plus [i] [k] | i + k ≤ j ∈ φ}) which
is linear in the size of φ, however unfolding definitions, yields the exponentially sized:
plus n

(
max {plus [i] [k0] . . . [km] | i ≤(k0···km)

φ j}
)
where all the longest paths with root

i in the constraint graph are considered. The weak head normal form of this definition
is however polynomial but requires an exponential number of steps to compute. Since
AC-matching is typically slower than regular rewriting this drawback is bound to quickly
become a roadblock.

Translating directly to the normal form: Instead of computing the normal
form, we could also translate universe level directly as the max-expression representing
this canonical form.

Lemma 6.4.7. For all level variable i, {j + k | φ � j + k ≤ i} is finite and we define
Iφi := max({j + k | φ � j + k ≤ i}) We have:

• φ � i = Iφi .
• φ � u = u{i 7→ Iφi }
• φ � i = j iff � Iφi = Iφj

This allows to reuse the encoding from Definition 6.2.15 (without constraints) where
variable translation is fully expanded: [i] := max {Sk j | φ � j + k ≤ i}.

For instance, if φ = {i ≤ j, 2 ≤ i, l+1 ≤ j, i+1 ≤ l then we would define the translation
[j] ≡βR max (S4 0) (plus i (S (S 0))) (plus l (S 0)).

This representation is a bit cumbersome but works fine and is stable by substitution
assuming we use the encoding defined in [ADJL16].

With explicit level conversion: Rather than designing systems that reflects
universe conversion (in presence of constraints) as conversion of images of the translation,
we could instead rely on “provable conversion” exclusively. Inequality constraints are
already represented as predicates that can be proved in the encoding and which proofs
can be used to build other proof of other constraints. Equality constraints are therefore
also represented as provable predicates which we can use to define an explicit universe
level substitution in a type T : if φ � u = v then u can be substituted with v in T to
yield a convertible term T ′. This property is sufficient to express universe level conversion
and can be enforced by the following typing rule which allows to identify inhabitants of
T = A{j 7→ u} and T ′ = A{j 7→ v} if φ � u = v:

Γ `S t : A{j 7→ u} φ � u = v

Γ `S t : A{j 7→ v}
P≡

From a proof π of [u = v] it would then be possible to “lift” a term t from on type to the
other using the following constructor (its type is in two lines):

⇑ : Πu v :N. Πc : ε(u = v). Πs :N→ S. Πa :
(
Πj :N. ε(u = j)→ U(s j)

)
.

T(s u) (a u I)→ T(s v) (a v c)

CHAPTER 6. COC WITH UNIVERSE VARIABLES 138

Provided φ � u = v holds and ε (u = v) is inhabited with c, this constructor can be used
to explicitly cast a term of type a u I ≡βR [T] to the type a v c ≡βR [T ′].

It requires however to define a well-sorted type A where the occurrence of u to substi-
tute is replaced with a fresh level variable j. Since A{j 7→ u} is well-sorted, A is well-sorted
in a context extended with the j = u constraint, explaining the type of the a parameter
in the definition of ⇑.

Since handling proofs of equality has to be done explicitly during the translation and
is not longer computed during type checking, this encoding is much “deeper” than the
previous ones. The translation must explicit all universe-related conversion steps making
it highly impractical.

6.4.3 Issues

A first issue with the first three propositions is that they do not support constraints of
the shape i ≤ n. This is however not a problem in the context of the translation of Coq
since these constraints are not supported by the Coq tool either. Besides the limitations in
complexity and size, these embeddings define a translation of level variables which depends
on the set on constraints on these variable which cannot therefore be extended without
changing the translation of already defined variables. This makes them non-modular
and forbids the successive and incremental addition of global constraints as allowed in
Coq. Note that these three embeddings also require non-left-linear rewrite rules, like
the one introduced in Lemma 6.2.16, which makes it harder to prove that it preserves
the confluence of β. This can however be dealt with by forcing levels to be syntactically
“confined” expressions as defined in 4, forbidding interactions with β.

For all of these reasons we didn’t further consider these encodings for the translation
of Coq’s universe polymorphism. However they would be fit for the translation of a
Calculus of Constructions with algebraic levels and fixed constraints such as the CCC∼L
or the Explicit Polymorphic Extended Calculus of Constructions (EPECC) as defined by
Courant [Cou02].

6.4.4 Eluding level conversion

In order to ease the presentation of universe polymorphism encoding in Chapter 7, we chose
to actually ignore the issue of equality between algebraic level expressions. Instead we rely
exclusively on derivations where only syntactically equal expressions are considered equal.
This means for instance that Typemax(u,u) and Typeu are two distinct non-convertible sorts
but they are subtypes of one another and behave identically .

Herbelin showed that under certain conditions of the type system (see 7.3.1) the con-
version of universe levels need only be reflected on level variables. In particular, terms elab-
orated from typical ambiguity can always be considered conclusion-algebraic which means
that sorts of non-atomic level expression need only to occur in the ultimate codomain of
product types. When translating conclusion-algebraic terms, one only need to identify
level variables. In order to reflect that the translations of equal level variables are con-
vertible we will simply forbid sets that allow equal variables. Indeed, whenever φ � i = j,

CHAPTER 6. COC WITH UNIVERSE VARIABLES 139

we can simply substitute i by j (or the other way around) everywhere in the considered
definition and remove one of these variables from the set. This is sound by the following
lemma on constraints.

Lemma 6.4.8. Assume φ � i = j. Then φ{i 7→ j} is a stratifiable set of atomic con-
straints, φ � u ≤ v ⇐⇒ φ{i 7→ j} � u{i 7→ j} ≤ v{i 7→ j} and if Γ `S t : A, then
Γ{i 7→ j} `S t{i 7→ j} : A{i 7→ j}.

Proof. The set φ{i 7→ j} is still atomic and if σ �S φ, then σ(i) = σ(j) and therefore
σ(u{i 7→ j}) = σ(u) for all universe expression u, proving the first two points. Besides the
function u 7→ u{i 7→ j} is a morphism of CTS, see Definition 5.3.7 and therefore preserves
typing by Lemma 5.3.8.

Definition 6.4.9. A stratifiable set of atomic constraints φ is acyclic iff for all level
variables i and j, if φ � i = j, then i = j.

Lemma 6.4.10. Assume a stratifiable set of atomic constraints φ. Then there exists a
mapping σ : L → L of level variables to level variables compatible with φ, ∀i, φ � i = σ(i),
such that ψ = σ(φ) is acyclic.

Besides, if φ � u ≤ v, then ψ � σ(u) = σ(v) and if Γ `S t : A, then Γσ `S tσ : Aσ.

Proof. For all set of equivalent level variables, φ � i1 = · · · = in we pick a representative
i1 and have σ map all other ik to i1. We conclude using Lemma 6.4.8.

Chapter 7

A Universe Polymorphic Calculus
of Constructions

We introduce in this chapter our main target system, the Extended Calculus of Con-
structions further extended with universe polymorphic declarations and definitions. This
system is the core logic of the Coq proof assistant which features many more functionali-
ties. We will define and prove correct an embedding of this system into λΠ≡ in Chapter 8
and mention practical encoding technique to represent its more advanced functionalities
in Chapter 9.

The main idea behind universe polymorphism is to consider symbols which type may
refer to some local universe variables. Once the well-sortedness of T has been checked in a
context of local universe variables, Γ; i `S T (i) : s(i), it should be possible to add a universe
polymorphic symbol to the context, Γ, x[i] : Ti WFS and use any instance of it later on,
Γ, x[i] : Ti `S x∗ : T∗ and Γ, x[i] : Ti `S x4 : T4. Universe polymorphism is a convenient
way to handle polymorphic symbols in a more general way than already allowed by cumu-
lativity. For instance the polymorphic identity id : ΠA : Type0. A→ A is of type Type1
which prevents it to be used as the first argument of id itself: id (ΠA : Type0. A→ A) id
is not well-typed. Using universe polymorphism, it is however possible to have

id[i] : ΠA : Typei. A→ A `S id1 (ΠA : Type0. A→ A) id0 : ΠA : Type0. A→ A

Universe variables may not be freely quantified over and moved in the context like the
usual variables. Instead we enforce a prenex polymorphism: local universe variables and
their constraints are declared before the type of the polymorphic symbol. This requires to
separate our context into a signature defining potentially universe polymorphic symbols
and a context containing monomorphic variables. Universe variables i and the associated
set of constraints φ are both declared in between: Σ; i/φ; Γ.

Naturally there are many other things to consider in order to properly define a us-
able universe polymorphic system that remains consistent. In particular, we would like
to be able to instantiate universe polymorphic symbols with algebraic levels containing
other local universe variables. Conversion of universe expression is highly dependent on

140

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 141

constraints and therefore now depends on the context. Terms other than sorts may now
contain level expressions.

It is also quite convenient to allow to extend the signature Σ with the universe poly-
morphic definition of a symbol c. Defined symbols are provided a well-sorted type T
as well as a body, or definition, which is a term t of type T . Instances of the symbol c
are considered as convertible with the corresponding instance of its provided definition
which may refer to the local universe variables. Assuming Σ; (c[i] := t(i) : T (i)) WFS
then the definition may later be instantiated with other algebraic universe expressions:
Σ; Γ `S c[u] : T{i 7→ u}.

Even though the system we describe below is meant to represent the Calculus of
Constructions with (invariant) universe polymorphic definitions and declarations as im-
plemented in the Coq tool, we work a bit differently from the standard presentation of
this system. Instead of inferring ever-growing sets of constraints while building derivation
trees and then checking their stratifiability, we work backward and assume an already
inferred set of stratifiable constraints sufficiently large to entail the well-typedness of the
definition.

Even though it is often implicit, its specificities voluntarily being hidden away from
the user, we make universe polymorphism explicit in our presentation. Besides we chose to
present it in a more declarative way which is closer to the Explicit Polymorphic Extended
Calculus of Constructions (EPECC) as defined by Courant [Cou02]. Polymorphic universe
levels and constraints are not inferred, elaborated and minimized as in Coq but rather
fully declared beforehand and it is then checked that the declared constraints are sufficient
to entail all the required properties on universe levels to check the well-typedness of
the following declaration or definition. Our version is declarative while Coq’s inference
algorithm is a search of constraints and variables. It can be seen as a “re-checking” system
for the constraint inference system of Coq.

7.1 Definition

7.1.1 Syntax

We extends the CTS as defined in previous chapter with definitions and declarations in a
signature and locally bounded universe variables that can be abstracted and constrained
before definitions and declarations.

Definition 7.1.1 (CC∀ω Syntax). The syntax of CC∀ω is the following:

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 142

(Variable) x, y ∈ X
(Symbol) c ∈ F
(Level) n ∈ N

(Level Variable) i, j ∈ L
(Level Expression) u, v := n | i | u+ n | max(u, v)

(Constraint) φ, ψ := u ≤ v | φ ∧ ψ
(Sort) s ∈ Prop | Typeu

(Term) t, τ, A,B := x | s | A B | λx : A.t | Πx : A.B | cu
(Signature) Σ := ∅ | Σ, c[i/φ] : τ | Σ, c[i/φ] := t : τ (c /∈ Σ)
(Context) Γ,∆ := ∅ | Γ, x : t (x /∈ Γ)

(Signature WF Judgment) := Σ WFS
(Context WF Judgment) := Σ `S i/φ; Γ WFS

(Typing Judgment) := Σ; i/φ; Γ `S t : A
(Subtyping Judgment) := φ `S A �Σφ B

(CTS Judgment) := φ `S E(s) E ∈ {A,R, C}
(Constraint Judgment) := φ `S ψ

The Coq system also supports constraints of the shape u < v and u = v which we
respectively represent as u + 1 ≤ v and ignore since identical universe level variables can
be identified.

7.1.2 Level expressions

When considering a typing judgment, Σ; i/φ; Γ `S t : A, the level variables i are said to
be bound levels. Of course not all level variables in φ, t or A have to be bound.

Definition 7.1.2. We define LVar(t) := Var(t)∩L the set of level variables occurring in
t and LVar(Σ) the set of level variables global in the signature Σ:

LVar(∅) := ∅
LVar(Σ, c[i/φ] : τ) := LVar(Σ) ∪ (LVar(φ) ∪ LVar(τ)) \ i
LVar(Σ, c[i/φ] := t : τ) := LVar(Σ) ∪ (LVar(φ) ∪ LVar(t) ∪ LVar(τ)) \ i

Global level variables are not quantified over in declarations and definitions of symbols
and are not substituted in their occurrences. The sets of local constraints may however
freely refer to these levels. In the Coq system they would correspond to floating universes
to which global constraints can be associated.

In order to ease the presentation of this system floating universes and global constraints
are essentially ignored. From here on, all universe variables in definitions and declarations
are assumed to be locally bounded. This assumption does not change the expressiveness
of our system. Symbols can simply be made universe polymorphic in all of their avail-
able global universes by adding them to the set of prenex-quantified universes in their
declaration (or definition). Global constraints can be duplicated in all the constraint sets
of definitions and declarations in the signature. This would obviously be cumbersome in

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 143

practice as any reference to these symbols must now provide the global-now-local universe
variables as extra arguments.

Constraints on local universe variables are handled in a different way here than in
the work of Harper and Pollack where they are inferred from typical ambiguous terms.
Since our objective is to translate well-typed term into a logical framework, we are not
concerned here with the techniques allowing to generate a set of stratifiable constraints
φ sufficient to ensure the well-typedness of the polymorphic definitions or declarations
in the signature. Instead we assume the set of constraints is explicitly declared, as in
Courant’s EPECC, and is sufficiently large to entail all constraints required to check the
definitions and declarations of the signature. Instead we rely on a presentation of universe
polymorphism closer to Sozeau and Tabareau [ST14] where the type checking inference
rules are defined assuming a set of constraints and then a separate elaboration algorithm
is provided to build this set in practice.

7.1.3 Conversion

δ reduction

Conversion in CC∀ω is the usual β conversion extended with the δ rewrite rule performing
the unfolding of previously defined symbols Since conversion now depends on the signature
Σ we write t ≡βΣ u to express that t←→←→

βδ
u holds in the signature Σ.

Definition 7.1.3. Assume Σ a signature, δ-reduction, written −→
δ
, is the smallest mono-

tonic relation such that ∀(c[j/ψ] := t : τ) ∈ Σ , cu −→
δ

t{j 7→ u}.

Lemma 7.1.4. −→
β
∪ −→

δ
is confluent.

Proof. Since symbols cannot be defined more than once in the signature, −→
δ

is the rewrite
relation generated from a set of left-linear rewrite rules headed with the (pairwise distinct)
rewritten symbols. They are therefore non-overlapping.

In practice, as symbols are defined successively, any definition may only refer to previ-
ously defined symbols and the δ relation is therefore also terminating. Recursive definitions
are not introduced using this mechanism but rather using fixpoints on inductives types
which guarantee their well-foundedness. Fixpoints are ignored in this formal embedding
but supported in practice using the representation introduced in Chapter 9.

Universe level conversion

As in most presentations of the Calculus of Constructions with abstract universes the
conversion is also extended with a conversion on level expressions:

φ � u = v

Typeu ≡φ Typev

φ � u = v

cu ≡φ cv

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 144

However, as motivated in 6.4.4 and justified in 7.3.1, we chose to ignore this conversion
extension in our translation and stick with a β-δ conversion only. We chose however to
keep level conversion in our presentation. We write ≡βΣφ := (≡φ ∪ ≡βΣ)∗.

Subtyping

The rules �r, �C , �π and �≡ from Figure 7.1 define a subtyping relation in a set of
level constraints: φ `S A �Σφ B. This relation extends the usual conversion with similar
properties to the corresponding relation of CTS:

Lemma 7.1.5. If φ `S A �Σφ B then either A ≡βΣφ B or there exists (s, s′) ∈ C such
that A ≡βΣφ Πx1 :C1. . . .Πxn :Cn. s and B ≡βΣφ Πx1 :C1. . . .Πxn :Cn. s′.

Proof. By induction on φ `S A �Σφ B.

7.1.4 Inference rules

Definition 7.1.6 (Typing in CC∀ω). A term t has type A in the environment Σ; i/φ; Γ
if the judgment Σ; i/φ; Γ `S t : A is derivable using the inference rules of Figure 7.1 and
Figure 7.2. A context Γ is well-formed in the signature Σ if Σ `S i/φ; Γ WFS is derivable
with the same inference rules. A signature Σ is well-formed if the judgment Σ WFS is
derivable with the same inference rules.

Just like our presentation of λΠ≡, this presentation differs from the usual definition
of Calculi of Constructions. Signature and context well-formedness is not enforced here
by the axiom derivation rules so that it is possible to derive Σ; i/φ; Γ `S t : A in an ill-
formed context or signature. This choice allows a better correspondence between typing
derivations and their translation to λΠ≡ as defined later. Most theorems about CC∀ω
consider exclusively well-formed signatures and contexts. We write Σ `WF

S i/φ; Γ WFS
iff Σ `S i/φ; Γ WFS and Σ WFS . We write Σ; i/φ; Γ `WF

S t : A iff Σ; i/φ; Γ `S t : A and
Σ `WF

S i/φ; Γ WFS .
Essentially universe level variables can be prenex-quantified over in definition and

declarations and sets of constraints are used to guard them. An instance of a polymorphic
definition or declaration is only valid if the substituted guard is consistent. Context may
be further enriched with so called “floating universes” represented by a set I of global
universes and a set Φ of stratifiable global constraints. The set I can even be dropped as
the rules already allow to rely on “free” level variables that are not locally bounded.

Our stripped down version, CC∀ω, of Coq is very close to the PCUIC system from the
MetaCoq project [SBF+20, SAB+20] except it doesn’t feature inductive types, letin, or
fixpoint constructions. Indeed, our endeavor shares similarities with that of the MetaCoq
project which aims at formally specifying, within Coq, the semantics of Coq and its type
checking algorithm. It is therefore not surprising that we ended with a similar definition
for an easily studied subset of Coq’s logic.

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 145

7.2 Conservative extensions
Of all the successive extensions studied in Chapter 6, only the extensions from PTS to
CTS were not conservative and extended typing, even of terms in the original CoC. An
infinite hierarchy of universes, extended with abstract universe variables and constraints
all preserve the well-typedness and inhabitability of terms that do not rely on these mech-
anisms.

Extending the Calculus of Constructions with a signature of universe polymorphic
declarations and definitions of symbols is easily shown conservative as well if that signature
is empty. However, it is possible to get a stronger result and link judgments derivable in
CC∀ω in any well-formed signature to slightly adapted judgments derivable in ECC.

We also point out the extra premise in two of our rewrite rules. This adaptation is
merely an artifact to better fit the needs of our derivation tree translation function. We
show nonetheless that it is inconspicuous.

7.2.1 Extra premises

Besides the introduction of universe polymorphic declaration and definition of symbols
in the signature, our presentation contains altered inference rules for the core logic. The
application and subtyping rules both have an extra premise. It is easy to see that this
adaptation is sound and does not compromise the consistency of the system. We show
that it is also complete and does not make the system any less expressive than the ECC
it’s based on.

The purpose of this extra premise is to conveniently explicit typing sorts in derivations.
It is similar in principle to making subtyping explicit in terms, as done in the “Tarski-
style” PTS↑ (see Section 5.2). In our case, however, derivations trees, rather than terms,
are annotated since we will be translating them.

Definition 7.2.1 (Explicitly Sorted CTS). We define CTSe as the CTS where the appli-
cation, P@ and subtyping P�C typing rules both have an extra premise:

Γ `C u : Πx :A.B Γ `C A : s Γ `C t : A
Γ `C u t : B{x 7→ t}

P@

Γ `C A : sA Γ `C B : sB Γ `C t : A A �C B
Γ `C t : B

P�C

Lemma 7.2.2 (Soundness). If Γ `C t : A in CTSe, then Γ `C t : A in CTS.

Proof. Pruning out the subtrees corresponding to the new premises in the derivation of
Γ `C t : A in CTSe yields a derivation of the same judgment in CTS.

While soundness is straightforward, completeness is a bit trickier.

Lemma 7.2.3 (Substitution). If Γ, x : A,Γ′ WFC, Γ `C t : A and Γ, x : A,Γ′ `C u : B in
CTSe, then Γ,Γ′{x 7→ t} WFC and Γ,Γ′{x 7→ t} `C u{x 7→ t} : B{x 7→ t}.

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 146

Proof. The latter is proven by induction on the derivation of Γ, x : A,Γ′ `C u : B. In
all cases, a derivation of Γ,Γ′{x 7→ t} `C u{x 7→ t} : B{x 7→ t} can be built from the
induction hypothesis on the premises.

• In the [PΠ] and [PS] cases, we need the stability of sorts by substitution: s{x 7→
t} = s.

• In the P�C case, we need the stability of subtyping by substitution, which is easily
deduced from stability of conversion and sorts: A �C B ⇒ A{x 7→ t} �C B{x 7→ t}.

• The [P@] and [Pλ] cases are straightforward.
• In the case of variable introduction, [PX]:

– If u = x then B = A and x /∈ FVar(A), therefore we have u{x 7→ t} = t and
B{x 7→ t} = A, we conclude since Γ,Γ′{x 7→ t} `C t : A by weakening.

– If u = y 6= x then either (y : Y) ∈ Γ or (y : Y) ∈ Γ′. In both cases, we can
conclude by [PX].

Γ,Γ′{x 7→ t} WFC is then proven by induction on Γ′ using the previous result.

Lemma 7.2.4 (Product Inversion). In CTSe, assuming Γ `WF
C Πx :A.B : s then there

exists sorts sA, sB ∈ S such that Γ `WF
C A : sA and Γ, x : A `WF

C B : sB.

Proof. By induction on the derivation. The P�C case is done by induction hypothesis and
the [PΠ] case yields the result.

Lemma 7.2.5. In CTSe, if Γ `WF
C t : A, then Γ `C A : s for some sort s.

Proof. By case analysis of the typing derivation. Case [PX] is deduced from Γ WFC . Case
[P@] requires Lemma 7.2.4 to have Γ, x : A `C B : s′ and then Lemma 7.2.3 to conclude
Γ `C B{x 7→ N} : s′. The other cases follow either from the premises or the completeness
of the specification: A is total, all sorts are well-typed.

This property is already known to hold in CTS but because the derivation of Γ `C A : s
is not necessarily structurally smaller than that of Γ `C t : A, we needed it to also hold
directly on CTSe for the induction to go through.

Theorem 7.2.6 (Completeness). If Γ `WF
C t : A holds in CTS, then it holds in CTSe.

Proof. By induction on the length of Γ and on the derivation of Γ `C t : A. The only
problematic cases are the rules with extra premises, P�C and [P@]. In both cases the type
A is inhabited, by induction hypothesis on the corresponding premise, and by Lemma 7.2.5
it is also well-typed with a sort in CTSe.

Corollary 7.2.6.1. If Γ `WF
C t : A holds in ECC, then it holds in ECCe.

7.2.2 Universe polymorphic declarations

Declarations are a conservative extension to the ECC in the sense that
• a universe polymorphic declaration in a well-formed signature, c[j/ψ] : T) ∈ Σ can

be seen as a finite representation of the infinite set of all possible instances of that
declaration;

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 147

• a well-formed signature, can be seen as a finite representation of the infinite context
of all possible instances of all of its declarations;

• an instance of a term well-typed in a well-formed signature is well-typed in this
infinite context, provided symbol occurrences are replaced with the corresponding
instantiated symbol.

Lemma 7.2.7 (Signature Weakening). Assume Σ; i/φ; Γ `WF
S t : A and Σ; Σ′ WFS , then

Σ,Σ′; i/φ; Γ `WF
S t : A.

Proof. By induction on the typing and context well-formedness derivations.

Lemma 7.2.8. We assume i ∩ LVar(Σ) = ∅. If s−→
βδ
t, then s{i 7→ u}−→

βδ
t{i 7→ u} and

if s ≡βΣφ t, then s{i 7→ u} ≡βΣφ t{i 7→ u}.

Proof. Follows simply by definition, stability of β and confluence of β-δ (Lemma 7.1.4).

Lemma 7.2.9 (Level Substitution). Assume two stratifiable sets of atomic constraints φ
and ψ such that φ � ψ{i 7→ u} and Σ `S j/φ; Θ WFS . Then

1. If ψ � v ≤ w, then φ � v{i 7→ u} ≤ w{i 7→ u};
2. If ψ `S E(s) for E ∈ {A,R, C}, then φ `S E(s{i 7→ u});
3. If ψ `S A �Σψ B, then φ `S A �Σφ B;
4. If Σ; i/ψ; Γ `S t : A, then Σ; j/φ; Θ,Γ{i 7→ u} `S t{i 7→ u} : A{i 7→ u}.
5. If Σ `S i/ψ; Γ WFS , then Σ `S j/φ; Θ,Γ{i 7→ u} WFS .

Proof. 1. follows directly from Lemma 6.4.8, ψ{i 7→ u} � v{i 7→ u} ≤ w{i 7→ u}. All other
proofs are done by induction on the premise, using the previous points and Lemma 7.2.8
for 3.

Definition 7.2.10. Assume a term t of the CC∀ω syntax and a valuation σ : LVar(t)→ N.
We define Φσ as the function mapping a term t to the term σ(t) in which all symbol
occurrences c[n] have been replaced with the fresh variable cn. For all term t, Φσ(t) is a
term in the ECC syntax where the set of variables, X , is extended with {cn | n ∈

⋃
k N

k, c ∈
F}. Φσ naturally extends to contexts. For Σ a signature, we define the following infinite
context.

Φσ(Σ) := { cn : Φσ(T{j 7→ n}) | (c[j/ψ] : T) ∈ Σ ∧ σ � ψ{j 7→ n}}

Theorem 7.2.11. Assume Σ containing no definitions such that Σ; i/φ; Γ `WF
S t : A in

CC∀ω. Then for all valuations σ such that σ � φ there exists a finite context ∆ ⊆ Φσ(Σ)
such that ∆,Φσ(Γ) `WF

C Φσ(t) : Φσ(A) in ECC.

Proof. We prove the result by induction on the length of Σ, Γ and on the derivation of
Σ; i/φ; Γ `S t : A. Since Σ WFS , for all symbol cn ∈ Φσ(Γ), we have (c[j/ψ] : T) ∈ Σ and
Σ′; j/ψ `WF

S T : s for some Σ′ ⊆ Σ. By Lemma 6.4.8, we have Σ′ `WF
S T{j 7→ n} : s{j 7→

n}. By induction hypothesis, there is a finite subset ∆ ⊆ Φσ(Σ′) ⊆ Φσ(Σ) such that
∆ WFC and Φσ(T{j 7→ n}) is well-sorted in ∆. Therefore, ∆, cn : Φσ(T{j 7→ n}) WFC .

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 148

This result easily extends to any number of symbol instances cn, using weakening in CTS.
In all generality, for any finite subset ∆ ⊆ Φσ(Σ), there is a finite superset of it ∆′ ⊇ ∆
such that ∆′ WFC . We chose a well-formed finite context ∆ ⊆ Φσ(Σ) such that for all
instances cn in Γ, t and A, cn ∈ ∆.

We can now use the induction hypothesis on Γ to prove that ∆,Φσ(Γ) WFC since all
variables declarations are annotated with a type well-sorted in a strictly shorter context.

Finally, we proceed by induction on the typing derivation of t and prove that we have
∆,Φσ(Γ) `C Φσ(t) : Φσ(A) in ECCe and therefore in ECC. All cases where inference
rules are generalizations of those of CTS follow directly by induction hypothesis. Since
Σ contains no definition, we can ignore the Pdef rule. In the Pdecl case, since σ � φ and
φ � ψ{j 7→ u}, then σ � ψ{j 7→ σ(u)}. Therefore (cσ(u) : Φσ(T{j 7→ σ(u)})) ∈ ∆ and we
can use an instance of [PX] to conclude.

7.2.3 Universe polymorphic definitions

Lemma 7.2.12 (δ-SR). If Σ; i/φ; Γ `WF
S t : A and t−→

δ
u, then Σ; i/φ; Γ `WF

S u : A.

Proof. By induction on Σ and on the typing derivation. All cases follow directly by
induction hypothesis except from the Pdef case if the reduction occurs at the head. In
that case, since Σ WFS , we have Σ′; j/ψ;∅ `S t : τ and using substitution lemma
(6.4.8) and signature weakening (7.2.7), we get Σ; i/φ; Γ `S t{j 7→ u} : τ{j 7→ u} and
conclude.

Lemma 7.2.13. If Σ; i/φ; Γ `WF
S t : τ and cC t. Then c is defined or declared in Σ.

Proof. By a simple induction.

Lemma 7.2.14. If Σ WFS , then δ-reduction is terminating.

Proof. A δ-reduction step replaces an occurrence of a symbol c defined in the signature
with arbitrary occurrences of other symbols all defined or declared before c in the signature.
The vector of all symbol occurrence counts indexed with their position in Σ is therefore a
measure decreasing by the reverse-lexicographic ordering.

Definition 7.2.15. We write t↓δ the unique normal form of t and extend it to contexts.
The signature Σ ↓δ is the signature of its declarations with normalized type annotations:
Σ↓δ:= {c[i/φ] : T ↓δ | (c[i/φ] : T) ∈ Σ}.

Lemma 7.2.16. If Σ; i/φ; Γ `WF
S t : A then Σ; i/φ; Γ `WF

S t↓δ: A.

Proof. We first prove by induction and using Lemma 7.2.9 that δ-reduction has the subject
reduction property. We conclude since it is terminating.

Lemma 7.2.17. If Σ; i/φ; Γ `WF
S t : A then Σ↓δ; i/φ; Γ↓δ`WF

S t↓δ: A↓δ.

Proof. By induction on Σ; i/φ; Γ `WF
S t : A. Pdecl requires a δ-normal context. Pdef is

impossible since t is δ-normal. All other cases are straightforward.

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 149

7.3 System restrictions
We define in this section three properties of derivations in the CC∀ω. Restricting to judg-
ments and derivations satisfying these properties will be particularly helpful to ensure that
the term conversion, t ≡βΣφ u, can be reflected in the translation of the typing derivations
of t and u, see Chapter 8. We argue in this section that these properties are safe to consider
and not too restrictive. They should in fact be seen as a mere convenience for practical
type checking rather than absolutely necessary for the system to be well behaved.

The first property, (H1), restricts the algebraic universe expressions considered in
typing judgments. It requires the body of definitions to be atomic and type annotations
to be depth-1 atomically-upper-bounded. It is not exactly conservative in the sense that not
all derivable judgments of CC∀ω directly correspond to an instance of judgment with this
property. However, Herbelin showed that any judgment satisfying the typical ambiguity
convention can be elaborated as a “most general” judgment satisfying this assumption
[Her05]. Restricting to conclusion-algebraic type annotations is therefore acceptable when
considering term elaborated from typical ambiguity. In particular the typing relation
checked by the Coq system satisfies this property.

The second, (H2), restricts the sets of constraints considered to be acyclic. Restricting
to acyclic sets of constraints is not restrictive, as shown in 6.4.4, since level variables may
simply be identified to remove cycles in a constraint set.

As discussed in Section 6.3, the conversion under constraint, i ≤ j � max(i, j) = j,
is complicated to embed in λΠ≡ in a satisfying way. The (H1) restrictions allow to
consider a simpler conversion between universe variables only while (H2) ensures only
equal universe variables are convertible, completely erasing the difficulty. Together they
allow not to reflect, in our translation, the conversion of universe level expressions.

The last restriction, (H3), consists in considering only the subset of derivation trees
in which subtyping steps immediately follow the application rule on the argument side.
This restriction is similar to Assaf’s bidirectional typing assumption but a bit less restric-
tive since subtyping steps are also allowed to occur anywhere else. We require that the
argument subtree of any P@ inference rule occurrence has a subtyping P� rule at the root.
This restriction does not change the expressiveness of the system in the sense that any
derivable judgment is derivable using a derivation tree satisfying this assumption.

7.3.1 Typical ambiguity and atomic constraints

Herbelin studied [Her05] the particular case of terms that satisfy the typical ambiguity
property, meaning that they were elaborated from terms where universe polymorphic sorts
are systematically anonymous (Type) and interpreted as Typei for some fresh level meta-
variable i. He showed that in that setting, it is only necessary to infer constraints of the
shape l′ ≤ l or i+1 ≤ l for atomic universe levels l and l′ (either a variable or concrete level)
and only necessary to check the validity of so-called depth-1 atomically-upper-bounded
constraints where the upper-bounding level is atomic and the lower-bounding one is of the
shape max(n, i1, . . . , in, j1 + 1, . . . , jk + 1).

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 150

Definition 7.3.1 (Typical Ambiguity). A meta-term t has the typical ambiguity property,
written TA(t), if all level expressions in t are fresh distinct meta-variables of arity 0. For
instance if Typeu C t or cv C t, u = X ∈ Z and for all i, vi = Yi ∈ Z .

If TA(t), TA(T) and MVar(t) ∩MVar(T) = ∅ then (c : T) (resp. (c := t : T)) is
called an ambiguous declaration (resp. ambiguous definition).

A signature is ambiguous if all its definitions and declarations are and the sets of their
meta-variables are pairwise disjoints.

Assume a valuation Θ mapping meta-variables to level expressions and a function
Φ from symbols to level variables and sets of constraints. The ambiguous signature is
elaborated with Θ and Φ into a signature by replacing all ambiguous declaration (c : T)
(resp. ambiguous definition (c := t : T)) with the declaration (c[Φ(c)] : TΘ) (resp. the
definition (c[Φ(c)] := tΘ : TΘ)).

An ambiguous signature Σ is well-formed if there exists a well-formed elaboration of
Σ.

In practice, designing proofs with universe polymorphism is often done ambiguously
by omitting the level in occurrences of Type. It is left to the type checker to infer an
affectation of the universe level meta-variables and a sufficiently large set of constraints
such that the corresponding elaboration is well-formed. In the case of Coq, this set of
constraints is then minimized to eliminate redundancies in the constraints graph.

Definition 7.3.2. Assume level expressions u, v and a term t.
• u is of depth n iff it is either atomic, of depth n− 1, max(v, w) for v, w of depth n

or v + k for some v of depth n− k.
• u ≤ v is depth-n atomically-upper-bounded iff u is of depth n and v is atomic.
• The term t is non-algebraic, written NA(t), iff all levels in t are atomic:

– for all occurrences of Typeu C t in the term t, the level u is atomic;
– for all occurrences of cu C t in the term t, the levels u are all atomic.

• The term t is depth-n conclusion-algebraic, written CAn(t), iff its weak head normal
form is either
– Typeu with u of depth n.
– Πx :T. T ′ with NA(T) and CAn(T ′).
– Prop or an applied symbol or variable (this covers all other cases).

• The term t is conclusion-algebraic, written CA(t), iff CAn(t) for some n.
• A declaration (c[i/φ] : T) (resp. definition (c[i/φ] := t : T)) is conclusion-algebraic

iff φ is atomic and CA1(T) (resp. and NA(t)).
• A signature is conclusion-algebraic, CA(Σ), iff its declarations and definitions are.

Lemma 7.3.3 (Herbelin). Assume a conclusion-algebraic well-formed signature Σ. If an
ambiguous declaration (c : T) (resp. ambiguous definition (c := t : T)) can be elaborated
into a declaration (resp. definition) well-typed in Σ, then there exists a conclusion-algebraic
elaboration well-typed in Σ.

Proof. The proof can be found in [Her05]. It relies on the fact that in a conclusion-algebraic
signature and context, non-algebraic terms can always be inferred a conclusion algebraic

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 151

type. It is therefore only required to consider atomically-upper-bounded constraints u ≤ l
which are equivalent to a set of atomic constraints.

Corollary 7.3.3.1. A well-formed ambiguous signature can be elaborated into a conclusion-
algebraic well-formed signature.

Example 1: Consider the following signature Σ:

f[i/∅] := λg : Typei+1→ Typei+2. (ΠA : Typei. g A) : (Typei+1→ Typei+2)→ Typei+2
t[j, k/k≤j] := f[max(j, k)] (λA : Typej+1. A→ Typek+1) : Typemax(j,k+1)+2

We check that Σ is well-formed. Since `S (Typei+1 → Typei+2) → Typei+2 : Typei+3,
f is a well-formed definition. We check that the application in the definition of t is
well-typed. The argument, λA : Typej+1. A→ Typek+1 can be inferred the product type
Typej+1 → Typemax(j+1,k+2). Its domain, Typej+1, is convertible with the domain of the
expected product type, Typemax(j,k)+1, since k ≤ j � j + 1 = max(j, k) + 1. Its codomain
is a subtype of the expected product type since k ≤ j � max(j+ 1, k+ 2) ≤ max(j, k) + 2.
Finally the inferred type for the definition’s body is a subtype of the declared type of t,
since k ≤ j � max(j, k) + 2 ≤ max(j, k + 1) + 2. We conclude that Σ is well-formed.

However the corresponding typical ambiguous signature

f := λg : TypeX1→ TypeX2 . (ΠA : TypeX3 . g A) : (TypeX4→ TypeX5)→ TypeX6
t := f[Y1] (λA : TypeY2 . A→ TypeY3) : TypeY4

can be elaborated into the more general and better behaved

f[i, j, k/k≤ i] := λg : Typei→ Typej . (ΠA : Typek. g A) : (Typei→ Typej)→ Typemax(k,j)
t[i, j, k, l/i ≤ j, l < j] := f[i, j, k] (λA : Typei. A→ Typel) : Typemax(k,j)

All constraints are atomic, all definitions are non-algebraic and all type annotations are
conclusion-algebraic. In practice Coq would actually go one step further and consider
only atomic type annotations using an extra polymorphic level for the ultimate codomain
together with extra atomic constraints:

f[i, j, k, l/k ≤ i, k ≤ l, j ≤ l] := . . . : (Typei→ Typej)→ Typel

Note however that symbol declarations can be seen as axioms of a development and there-
fore forcing a more general version of these axioms weakens the development.

Definition 7.3.4. A typing judgment Σ; i/φ; Γ `S t : A such that φ atomic, NA(t) and
CA(A) is said to satisfy the hypothesis (H1). We extend it to derivation trees such that
the conclusion of all subtrees satisfy (H1).

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 152

7.3.2 Acyclic constraints

As justified with Lemma 6.4.10, if only sets of atomic constraints are considered, it is
possible to identify universe variables so that these constraints are also acyclic: if φ � i = j,
then i = j.

Definition 7.3.5. Judgments and derivations satisfy (H2) iff all their sets of constraints
are acyclic.

Lemma 7.3.6. If φ stratifiable and A ≡βΣφ B, then A−→−→
βδ

A′ ≡φ B′←−←−
βδ

B.

Proof. By confluence of −→
βδ

and sub-commutation of sort conversion. The proof is similar
to that of Lemma 6.2.7.

Lemma 7.3.7. If NA(t) and t−→
βδ
u, then NA(u). If CA(t) and t−→

βδ
u, then CA(u).

Proof. By definition of NA, CA and weak-head normal forms.

Lemma 7.3.8. Assume φ stratifiable, atomic and acyclic.
• If NA(A), NA(B) and A ≡φ B, then A = B.
• If NA(A), NA(B) and A ≡βΣφ B, then A−→−→

βδ
←−←−
βδ

B.

• If CA(A), CA(B) and A �Σφ B, then either A−→−→
βδ
←−←−
βδ

B or there exists s, s′ such

that φ `S C(s, s′), A−→−→
βδ

Πx1 :C1. . . .Πxn :Cn. s and B−→−→
βδ

Πx1 :C1. . . .Πxn :Cn. s′.

Proof. The first point is by induction on A and B. The second follows using Lemma 7.3.6
and Lemma 7.3.7. The last point relies on Lemma 7.1.5 and the definition of CA: all
domains must be NA and convertible and the ultimate co-domains must be sorts in the
cumulative relation.

7.3.3 Systematic subtyping above argument

In the context of derivation tree translation where subtyping must be explicitly annotated
and yet term conversion must be reflected, we need to have some control over the positions
where subtyping may occur in a derivation. Reflecting the conversion can be done using
rewrite rules, however the elimination of so-called “identity casts”, use of subtyping from a
type A to A itself, requires a non-linear rewrite rule. It is possible to spare this non-linear
rewrite rule in the encoding by relying instead on constraints of the considered derivation
trees.

Definition 7.3.9. A derivation satisfies (H3) iff all occurrences of the P@ rule is imme-
diately preceded by an occurrence of the P� in the typing derivation of the argument.

Bidirectional typing describes typing derivations where subtyping is not only required
at the root of arguments but also forbidden anywhere else in the term. In Assaf’s transla-
tion, although it was not explicitly stated as a derivation of tree, bidirectional typing was

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 153

required to be complete. As shown by Lasson [Las12], bidirectional typing is complete
for any CTS full (R is a total relation) and satisfying the local minimum property and
well-foundedness of cumulativity, the last two ensuring the existence of principal types.
In particular it is complete for all systems introduced in Chapter 6.

Our relaxed variant of bidirectional typing allows subtyping to be used, for instance,
in chain or anywhere else in the term. It also has the property to be cut-eliminated into
a derivation satisfying the same property which is not the case for bidirectional typing.

Example 2: Assume Γ = g : Type0 → Type0, x : Type0 and consider the three
following derivations.

. . .

. . . Type0 �Σφ Type0
`S x : Type0

`S f x : Type1
`S λf. f x : (Type0 → Type1)→ Type1

. . . Type0 → Type0 �Σφ Type0 → Type1
`S g : Type0 → Type1

Γ `S (λf : Type0 → Type1. f x) g : Type1

Type0 → Type0 �Σφ Type0 → Type1
`S g : Type0 → Type1

Type0 �Σφ Type0
`S x : Type0

Γ `S g x : Type1

`S g : Type0 → Type0 `S x : Type0
`S g x : Type0

Γ `S g x : Type1

The first one is cut-eliminated into the second. Both satisfy (H3) since terms in argument
positions are subtyped at the root: for the first one, g and x, and only x for the second.
Only the first one is a valid bidirectional derivation: subtyping is used exclusively to type
arguments. The last one does not satisfy (H3) since subtyping is not used to type x.

Lemma 7.3.10. The subset of derivations satisfying (H3) is complete: it allows to derive
all derivable judgments.

Proof. We show by induction that any derivation π can be transformed to a derivation with
the same conclusion but satisfying (H3). All cases are directly by induction hypothesis
except for P@ in which case we simply need to insert an identity P� instance with A = B.
Note that this proof is made easy by the choice of the extra premise in the P@ rule, see
7.2.1, which can be directly used to build the P� instance.

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 154

Signature Well-Formedness

∅ WFS
SWF
∅

Σ WFS Σ `S i/φ;∅ WFS Σ; i/φ;∅ `S τ : s
Σ, (c[i/φ] : τ) WFS

SWF
decl

Σ WFS Σ; i/φ;∅ `S t : τ Σ `S i/φ;∅ WFS Σ; i/φ;∅ `S τ : s
Σ, (c[i/φ] := t : τ) WFS

SWF
def

Context Well-Formedness

φ atomic � φ

Σ `S i/φ;∅ WFS
PWF
∅

Σ `S i/φ; Γ WFS Σ; i/φ; Γ `S A : s
Σ `S i/φ; Γ, x : A WFS

PWF
X

Typing

φ `S A(s1, s2)
Σ; i/φ; Γ `S s1 : s2

PS
(x : A) ∈ Γ

Σ; i/φ; Γ `S x : A
PX

Σ; i/φ; Γ `S A : s Σ; i/φ; Γ, x : A `S t : B
Σ; i/φ; Γ `S λx :A. t : Πx :A.B

Pλ

Σ; i/φ; Γ `S M : Πx :A.B Σ; i/φ; Γ `S A : s Σ; i/φ; Γ `S N : A
Σ; i/φ; Γ `S M N : B{x 7→ N}

P@

Σ; i/φ; Γ `S A : s1 Σ; i/φ; Γ, x : A `S B : s2 φ `S R(s1, s2, s3)
Σ; i/φ; Γ `S Πx :A.B : s3

PΠ

Σ; i/φ; Γ `S A : sA
Σ; i/φ; Γ `S B : sB Σ; i/φ; Γ `S M : A φ `S A �Σφ B

Σ; i/φ; Γ `S M : B
P�

φ `S A �Σφ A
�r

φ `S C(s, s′)
φ `S s �Σφ s

′ �C
φ `S B �Σφ B

′

φ `S Πx :A.B �Σφ Πx :A.B′
�π

A ≡βΣφ A
′ φ `S A′ �Σφ B

′ B′ ≡βΣφ B

φ `S A �Σφ B
�≡

(c[j/ψ] : τ) ∈ Σ |u| = |j| φ � ψ{j 7→ u}
Σ; i/φ; Γ `S cu : τ{j 7→ u}

Pdecl

(c[j/ψ] := t : τ) ∈ Σ |u| = |j| φ � ψ{j 7→ u}
Σ; i/φ; Γ `S cu : τ{j 7→ u}

Pdef

Figure 7.1: Typing rules for CC∀ω

CHAPTER 7. A UNIVERSE POLYMORPHIC COC 155

φ � 1 ≤ u
φ `S A(Prop, Typeu)

AProp
φ � u+ 1 ≤ v

φ `S A(Typeu, Typev)
AType

e

φ `S R(Typeu, Prop, Prop)
RCod

Prop
φ � u ≤ v

φ `S R(Prop, Typeu, Typev)
RDom

Prop

φ � (u ≤ w) ∧ (v ≤ w)
φ `S R(Typeu, Typev, Typew)

RType

e

φ `S C(Prop, s)
CProp

φ � u ≤ v
φ `S C(Typeu, Typev)

CType

Figure 7.2: CTS derivation rules for CC∀ω

Chapter 8

Embedding Universe
Polymorphism in the
lambda-Pi-calculus modulo

Defining a translation from one system into λΠ≡ is naturally done by means of a well-
defined computable function mapping the terms and proofs of our target system to terms
of the λΠ≡.

The two main properties of a translation function are correctness and conservativity,
also called completeness. Correctness simply states that the translation of terms well-typed
in the original system remains well-typed in λΠ≡ in an encoding signature. Conservativity
is a bit more subtle since not all terms well-typed in λΠ≡ correspond to a well-typed term of
the original system. It rather states that if the translation of a well-sorted type is inhabited
in λΠ≡, then the type is also inhabited in the original system. Since both properties
exclusively mention terms well-typed in the original system, the translation function needs
only be defined on these well-typed terms. It is worth noting that conservativity does not
require inhabitants of λΠ≡ translations to be the translation of inhabitants in the original
system.

Because the notion of well-typedness is often relative to a context, it is not unusual
to actually define the translation as a function parameterized with a context, as done
in Chapter 5. When considering type systems without the uniqueness of type property,
translations mechanisms can go a step further and define translations that also depend
on the expected type for the translated term (written [t]Γ`A in [Ass15b] or [Γ ` t : A] in
[Thi20]). Properties of the translation function have to be proven by induction on the term
using inversion lemmas and particular properties to link the shape of terms with its possible
typing derivations. For instance, to prove the correctness of its CTS translation function,
Assaf relies on principal types to force a syntax-oriented set of typing rules called minimal
(or bi-directional) typing. Not all specifications allow this, although Lasson showed [Las12]
that it does hold for specifications with the so-called local minimum property together
with well-foundedness of the cumulativity relation. Most useful systems satisfy these
properties, including the Calculus of Constructions, even with abstract universes as studied

156

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 157

in Chapter 6.
Relying on these properties of the system hides the fact that the translation of a well-

typed term is deeply connected with the way this term can be typed. In this chapter we
chose to make this relation explicit by defining the translation of well-typed terms of CC∀ω
as a function on typing derivations. This means that a term may be translated several
ways, even in the same context and with the same expected type, each corresponding to
a different way to check this term’s type. Admittedly this choice makes the definition
of the translation a bit more technical but we argue that it better illustrates the rather
straightforward relation between the encoding and the targeted type system (as opposed
to its syntax). Each typing rule corresponds to a simple λΠ≡ construction relying on
subterms for the derivations of its premises. Finally this representation better reflects the
way systems are translated in practice, usually implemented as an mere side effect of the
typechecking algorithm.

8.1 The encoding signature
We finally define the main object of study of this dissertation: a signature encoding
the Calculus of Constructions with universe polymorphism, CC∀ω, defined in Chapter 7.
The first two parts of this encoding, relative to the universe expressions, have already
been introduced and studied in Chapter 6. The encoding of terms and sorts relies on
provable predicates for the sort predicates of CTS as done in Section 5.4 as well as for
the general subtyping rule. Finally the last part of the encoding is private, as introduced
in Section 5.5 and allows to rely on codes to guarantee a correct conversion despite the
subtyping annotations.

Definition 8.1.1. We define the encoding of CC∀ω as the signature D[CC∀ω] made of:

• Σc is the public signature of level representation defined in Figure 6.2. It defines 8
symbols and 2 rewrite rules allowing to represent levels in N and constraints.

• Σp is the public signature of constraint representation defined in Figure 6.3. It
defines 8 symbols and 6 rewrite rules sufficient to inhabit, in the context [φ], the type
representation of any constraint entailed by φ.

• ΣS is the public signature of sorts and constraints representation defined in Fig-
ure 8.2. It defines 2 symbols defining sorts and 7 others defining its CTS structure.
Note that this sub-signature could easily be adapted to represent universe polymor-
phism in a different CTS structure.

• ΣT is the public signature of typing derivation representation defined in Figure 8.1.
It defines 11 constructors allowing to represent typing derivations.

• Σpri is the private signature defined in Figure 8.3. It defines 10 private symbols and
16 rewrite rules.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 158

The public signature, Σpub := Σc,Σp,ΣS ,ΣT , contains the definitions of the public
symbols. We write Tpub the set of public terms, i.e. built with symbols from the public
signature only: Tpub := {t | ∀c ∈ F , cC t⇒ c ∈ Σpub}.

From now on, all typing and well-formedness judgments in the λΠ≡ are implicitly
considered in the D[CC∀ω] signature which may be omitted.

S : ∗
U� : S → ∗

T� � : Πs :S. Us → ∗

A(�,�) : S → S → B

R(�,�,�) : S → S → S → B

C(�,�) : S → S → B

� ⊆�� � : Πs s′ :S. Us → Us′ → B

strefl : Πs :S.ΠA : Us. ε(A ⊆ss A)

u��,� : Πs s′ :S. ε A(s, s′)→ Us′

π��,�,� � � : Πs1 s2 s3 :S. ε R(s1, s2, s3)→ Πa : Us1 . (Ts1 a→ Us2)→ Us3
�
�↑�� � � : Πs1 s2 :S.Πa : Us1 .Πb : Us2 . ε

(
a ⊆s2s1 b

)
→ Ts1 a→ Ts2 b

Figure 8.1: Public encoding signature (terms): ΣT ⊆ Σpub

Lemma 8.1.2. D[CC∀ω] is syntactically well-formed.

Proof. Easily checked.

Lemma 8.1.3. We have −→
D[CC∀ω]

∪ −→
β

locally confluent.

Proof. All critical pairs and their closing diagrams are recapitulated below:

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 159

Prop : S
Type� : N→ S

A(Prop, TypeU)−→ S 0 ≤ U (A-P)

A(TypeU , TypeV)−→ S U ≤ V (A-T)

R(S, Prop, Prop)−→ > (R-T-P)

R(Prop, TypeU , TypeV)−→ U ≤ V (R-P-T)

R(TypeU , TypeV , TypeW)−→ (U ≤W) ∧ (V ≤W) (R-T-T)

C(Prop, S)−→ > (C-P)

C(TypeU , TypeV)−→ U ≤ V (C-T)

Figure 8.2: Public encoding signature (sorts): ΣS ⊆ Σpub

Critical pair Closing diagram Critical pair Closing diagram
←−−
0-≤

;−−→
≤-S

←−−
0-≤

←−−
≤-S

;−−−−→
max-≤

−−−−→
max-≤

;←−−
≤-S

;←−−
≤-S

←−−
S-≤

;−−→
≤-S

−−→
≤-S

;←−−
S-≤

←−−−
S-≤-S

;−−−−→
max-≤

−−−−→
max-≤

;←−−−
S-≤-S

;←−−−
S-≤-S

←−−
S-≤

;−−−→
S-≤-S

−−−→
S-≤-S

;←−−
S-≤

←−−
c-u

; 2−−→
u-λ

←−−
c-u

;←−−
c-u

;←−−
c-u

;←−
β

;←−−
c-λ

←−−
≤-S

;−−−→
S-≤-S

−−−→
S-≤-S

;←−−
≤-S

←−−
c-a

; 1−−→
c-u

−−→
u-a

;−−→
c-u

;−−→
c-u

;−−→
c-u

←−−−−
max-≤

;−−−→
max-S

−−→
S-≤

;−−→
S-≤

;←−−−−
max-≤

;←−−
S-≤

←−−
c-a

; 1−−→
c-λ

−→
β

;←−
β

;←−
cβ

←−−
u-a

;−−→
u-λ

−→
cβ

;−→
β

;←−
β

All orthogonal critical pairs are simple. The diagrams are even decreasing if we chose
the following order on labels: β, cβ < c-λ, u-a < c-a, u-λ and for rules operating on level
constraints: S-≤,≤-S, S-≤-S < max-≤ < max-S.

All type annotations in D[CC∀ω] are well-typed without using any of the rewrite rules. It
is therefore possible to declare the whole signature of symbols first and only then introduce
the rewrite rules. The three type-level rewrite rules enc-T, D-u and D-π are necessary to
define some of the other rules.

Type preservation of the system ensures that all instances of the rewrite rules in any
context and any signature extension preserves the well-typedness of a term as well as its
type. Checking this property can usually be done by means of a type checking algorithm,
as is the case here.

Lemma 8.1.4 (Type Preservation). This system satisfies the type preservation property.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 160

C : ∗ D � : C→ ∗
u� : S → C c(�,�) : Πc :C. D c→ C

π � � : C→ (C→ C)→ C u(�,�) : Πc :C.C→ D c
cL � : (C→ C)→ C ∀ : (C→ B)→ B

cA � � : C→ C→ C � � � : C→ C→ B

Ts t−→ D (c(us, t)) (enc-T)

uPs,s′ −→ u(us′ ,us) (enc-u)

πPs1,s2,s3 A λx.B[x]−→ u(us3 ,π c(us1 , A) λx :C. c(us2 , B[u(c(us1 , A), x)]))
(enc-π)

s2
s1↑

b
a
P t−→ u(c(us2 , b), c(c(us1 , a), t)) (enc-↑)

A ⊆s2s1 B−→ c(us1 , A) � c(us2 , B) (ST-d)

D us−→ Us (D-u)

D (π A λx.B[x])−→ Πx : D A. D B[c(A, x)] (D-π)

us1 � us2 −→ C(s1, s2) (ST-u)

π A λx.B[x] � π A λx.B′[x]−→ ∀ λc :C. B[c] � B′[c] (ST-π)

∀ λx. P−→ P (ST-∀)

c(C, u(C, T))−→ T (c-u)

c(π A λx.B[x], λx. F [x])−→ cL (λx :C. c(B[x], F [u(A, x)])) (c-λ)

u(π A λx.B[x], cL λx. F [x])−→ λx : D A. u(B[c(A, x)], F [c(A, x)]) (u-λ)

u(π A λx.B[x], T) U−→ u(B[c(A,U)], cA T c(A,U)) (u-a)

cA c(π A λx.B[x], T) U−→ c(B[U], T u(A,U)) (c-a)

cA (cL λx. T [x]) U−→ T [U] (cβ)

Figure 8.3: Private encoding signature: Σpri

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 161

Proof. This property is checked by the Dedukti system.

No theorem from Part I allows to prove the confluence of rewriting with D[CC∀ω]
together with β. Indeed, the two non-linear rewrite rules, ST-π and c-u, forbid to use the
results from Chapter 3. The non-linearity of product subtyping provability, ST-π, could
be handled by relying on a product subtyping constructor rather than on computation.
This would require to build a more complicated witness (see Lemma 8.3.17) and would
make the translation more verbose. It would also be possible to use Theorem 4.4.9 by
placing the ε symbol at a layer above all others. The associated syntactical restriction
would forbid some terms, such as λ-abstractions of ε-headed types, which are not in the
image of the translation.

The non-linearity of c-u is trickier. This rule would actually be safe to use in its
linearized version, c(C, u(C ′, T)) −→ T , since typing ensures that all well-typed instances
of the left-hand side satisfy C ≡βR C ′. However, using the linearized version creates non-
joinable critical pairs. These critical pairs are necessarily ill-typed but this does not mean
they can be ignored them since term rewriting is defined in an untyped setting. While
results from Part I are not sufficient yet, they were developed as a first step and in hope to
be extended so as to eventually prove the confluence of rewriting with this last encoding
rule. We can only conjecture for now that our system is, or can be slightly adapted to be,
well-behaved.

Conjecture 8.1.5. The signature D[CC∀ω] satisfies the product compatibility property,
is strongly well-formed and has the uniqueness of type and subject reduction properties:
PC(D[CC∀ω]), WF(D[CC∀ω]), UT(D[CC∀ω]) and SR(D[CC∀ω]).

These key properties are critical for the encoding system to be trusted. In theory
they are necessary to prove conservativity (completeness) of our encoding and in practice
they ensure decidability of type checking. However we can prove the correctness of the
encoding, which essentially states that the translation of well-typed terms produces well
typed-terms.

This conjecture that the system is well-behaved, at least on the image of the translation
defined in Section 8.2, is supported by several practical evidences. This system was used
to translate hundreds of lemmas from several libraries of Coq proofs and to successfully
check them using the usual typing algorithm.

8.2 Translation functions
We successively define in this section the several syntactical translation functions of natural
numbers, sort expressions, predicates, terms as codes, typing derivations and signatures.
A translation of contexts is also provided although it is not implemented in practice but
rather used in the proofs of most properties of the translation.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 162

8.2.1 Translation domains

Definition 8.2.1. We define the following six pairwise disjoint sets of types:

F1 := {S} F4 := {ε t | t ∈ T } | Πx :F6.F4

F2 := {B} F5 := {C}
F3 := {N} F6 := Ts t | Us | D t | Πx :F6.F6

We write Fi(Γ) ⊆ Fi the set of terms of Fi well-typed in Γ and in β� normal form.

Lemma 8.2.2. For all i and Γ, Fi(Γ) and Fi are stable by −→
βR

.

Proof. As none of the S, B, N, ε and C symbols have rewrite rules, it is easy to see that
Fi is stable for i ≤ 5. Assume t ∈ F6 such that t−→

βR
u. We prove by induction on t that

we have u ∈ F6. If t = Ts c or t = Us or t = D c, then either the reduction occurs in s or
c, in which case the reduct is immediately in F6, or t reduces at the head with either the
enc-T, D-u or D-π rules and in all three case, the reduct remains in F6. Otherwise, t is a
product and reduction occurs in either the domain or the codomain subterm. Since both
are in F6, we conclude by induction hypothesis.

The stability of the Fi(Γ) follows from subject reduction.

Lemma 8.2.3. For all terms t ∈ Fi(Γ), we have D[CC∀ω]; Γ `D t : ∗.

Proof. Immediate since t is either a product or a fully applied type constructor.

Lemma 8.2.4. For all i, context Γ and term t in β� normal form and well-typed in Γ
such that t−→

βR
u for some u ∈ Fi, we have t ∈ Fi.

Proof. By structural induction on u.
If reduction in t occurs below the head, then, by Lemma 2.2.20, t and u have the same

head symbol and arity. If the head symbol of u and t is in the signature, then it must be
the case that t ∈ Fi, otherwise t = Πx :A.B −→ Πx :A′. B′ = u and we conclude using
the induction hypothesis on A or B.

If i ≤ 5, no instance of the right-hand side of a rule can be a term of Fi and β steps
at the head would be β� steps, therefore all cases are covered.

Assuming i = 6 and that reduction occurs at the head, we need to consider only the
rules which right-hand side can be in F6. The rules ST-∀, c-u and cβ operate at object
level, their well-typed instances cannot be of type ∗. The rules D-u, D-π operate at type
level and instances of their right-hand sides are of type ∗ and all in F6.

Lemma 8.2.5. Assuming confluence of the system, for all i and well-typed term t in β�
normal form such that t ≡βR u ∈ Fi, we have t ∈ Fi.

Proof. By confluence, t−→−→
βR

v←−←−
βR

u. By Lemma 8.2.2, v ∈ Fi. By subject reduction,

all reducts in t−→−→
βR

v are well-typed and in β� normal form. We therefore conclude by
induction on the length of this well-typed rewrite sequence using Lemma 8.2.4.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 163

We define in 8.2.2 a translation from objects of CC∀ω to objects of λΠ≡ in the D[CC∀ω]
signature. The translation of an object X is written [X] and the β� normal form of its
type depends on the nature of X as summed up in the following table:

CC∀ω λΠ≡ Type
Variables Variables
Symbols Symbols
Levels Closed terms. Peano repr. with 0 and S F3

Level variables Variables F3
Level expressions Terms F3

Constraints Terms F2
Sorts Terms F1

Signature WF Derivation Signature
Context WF Derivation Context

Typing Derivation Term F6
Subtyping Judgment Term of type ε (A ⊆s2s1 B) F4

CTS Judgment φ `S E(s) Term of type ε E([s]) F4
Constraint Judgment φ `S ψ Term of type ε [ψ] F4

(Terms) Non-unique code representations F5

Lemma 8.2.5 ensures that two objects of different nature (term, derivation, sort, . . .)
are translated to terms which types are not convertible.

Terms, signatures and contexts do not directly have representation in this encod-
ing. However whenever they are well-typed (resp. well-formed), then they are, in a way,
represented by all terms encoding the derivations of their well-typedness (resp. well-
formedness). This representation is not necessarily unique.

8.2.2 Translation functions

Definition 8.2.6. The translation of level expressions and constraints is the same as in
Definition 6.4.5. It is extended to sorts with [Prop] := Prop and [Typeu] := Type[u].

We extend constraint translation to CTS judgments: [A(s1, s2)] := ε A([s1] , [s2]),
[R(s1, s2, s3)] := ε R([s1], [s2], [s3]), and [C(s1, s2)] := ε C([s1], [s2]).

Lemma 8.2.7 (Constraint translation). Assume universe variables i, a stratifiable set of
constraints φ and sorts s such that LVar(φ)∪LVar(s) ⊆ i. If φ � E(s) for E ∈ {A,R, C},
then [E(s)] is inhabited in the signature D[CC∀ω] and context i : N, [φ]

Proof. By definition of the translation and using Theorem 6.4.6 since Σc,Σp ⊆ D[CC∀ω].

Definition 8.2.8. The translation of the derivation of a CTS judgment, φ `S E(s), is
defined as any inhabitant of the type [E(s)].

Definition 8.2.9. The translation of a derivable subtyping judgment, φ `S A �Σφ B is
defined inductively on the derivation using the rules of Figure 9.11.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 164

We will see later that it actually needs only be defined as some inhabitant, it is irrel-
evant which exactly, of the type ε ([πA] ⊆[sB]

[sA] [πB]) where πA (resp. πB) is a derivation
typing A (resp. B) with the sort sA (resp. sB).

The translation of typing judgment derivations is a bit trickier to explicit in a concise
way. As opposed to previous presentations, we chose to define a translation function on
the well-typedness derivations of a term rather than on the term itself. Because λΠ≡ has
the uniqueness of type property while CC∀ω does not, then a unique term t well-typed in
CC∀ω must necessarily have several representations depending on its expected type. In
order to prove that a translation function defined on well typed terms is correct or even
well defined, it is usually necessary to rely on particular properties of the target system
such as inversion lemmas. In our presentation, the translation is directly defined on the
typing derivations themselves and therefore no such property is required for the definition
to be well-defined. Besides, the proof of correctness is done directly by induction on the
typing derivation which is more straightforward. However in order to be correct we need
to justify that all translations of a well-sorted type A, Σ; i/φ; Γ `S A : s, have the same
inhabitants.

Definition 8.2.10 (Typing judgment translation). The translation of typing derivations
is inductively defined and depends on the last rule. The complete translation function
is described at Figure 9.8. In the recap below, premises subtrees are represented with π∗
symbols.

[PS] := u[πA]
[s1],[s2]

[PX] := x

[PΠ] := π
[πR]
[s1],[s2],[s3] [πA] λx : T[s1] [πA]. [πB]

[Pλ] := λx : T[s] [πA] . [πt]
[P@] := [πM] [πN]

[Pdecl] := c [u1] . . . [un] [πφ1] . . . [πφk]
[Pdef] := c [u1] . . . [un] [πφ1] . . . [πφk]

[P�] := [s2]
[s1]↑

[πB]
[πA] [π] [πM]

Note that this translation if shallow in the sense that the translation of (a derivation
typing) an abstraction (resp. an application, resp. a variable, resp. a symbol instance) is
an abstraction (resp. an application, resp. a variable, resp. an applied symbol). Similarly,
derivation of context and signature well-formedness are translated to the corresponding
object of λΠ≡.

Definition 8.2.11 (Context translation). The translation of a context well-formedness
derivation is defined in Figure 9.10 as a λΠ≡ context.

Definition 8.2.12 (Signature translation). The translation of a signature well-formedness
derivation is defined in Figure 9.9 as a λΠ≡ signature.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 165

Note that all translations rely exclusively on the public signature. Rules and symbols
of the private signature are however required to ensure well-typedness.

The translation of derivable subtyping judgments is voluntarily left ambiguous. How-
ever this ambiguity does not impact the translation of typing derivation, since all con-
structors relying on judgment translation are irrelevant in this argument.

Lemma 8.2.13 (Predicate Irrelevance). Whenever they are well-typed, the following terms
are pairwise convertible and have the same type in D[CC∀ω] (� is any term):

u�s,s′ ≡βR u�s,s′
π��,�,s A B ≡βR π��,�,s A B

�
�↑A� � t ≡βR ��↑A� � t

Proof. Types are easily checked identical. Conversion was checked using Dedukti.

8.2.3 Reflection properties

Lemma 8.2.14. Whenever they are well-typed, the following terms are (pairwise) con-
vertible and have the same type in D[CC∀ω] (� is any term):

s′
�↑cb �

(
�
s ↑ba � t

)
≡βR s′

s ↑ca � t

�
�↑

u�
s′,�
� � u�s,� ≡βR u�s,s′

π��,s2,s3

(
�
�↑�us1,�

� a

)
b ≡βR π�s1,s2,s3 a b

π�s1,�,s3 a

(
λx .��↑�u�

s2,�
� b

)
≡βR π�s1,s2,s3 a (λx. b)

�
�↑

u�
s4,�
� �

(
π�s1,s2,� a b

)
≡βR π�s1,s2,s4 a b

�
�↑

π�
�,s3,�

A C

π�
s1,s2,�

A B
� λx. b ≡βR λx : Ts1 A.

(
s3
s2↑

C x
B x
� b

)
(
�
�↑

π�,s3,� A C

π�
s1,s2,�

A B
� b

)
a ≡βR s3

s2↑
C a
B a
� (b a)

s2
� ↑

B
�
�↑

�
u�
s1,�

� A
� a ≡βR s2

s1↑
B
A
� a

�
s1↑

�
�↑

�
u�
s2,�

� B

A � a ≡βR s2
s1↑

B
A
� a

Proof. Types are easily checked identical. Conversion was checked using Dedukti.

These crucial properties of the encoding do not actually rely on the structure of the
universe hierarchy and would hold for any CTS. Each of them correspond to a pair of

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 166

different derivations for the same judgment. For instance the first one states that if two
subtyping rules are used in chain, they may be merged together into a single subtyping
rule instance. These properties were identified, jointly with Thire, as necessary for the
correctness of the encoding. In particular Thire studied the case of Assaf’s translation, in
an embedding where explicit sort-subtyping (lift) is extended to the explicit CTS-subtyping
(cast) [Thi20]. He showed correctness for an abstract λΠ≡ conversion and assuming that
judgment have a so-called “well-structured” derivation. In the following, we take a slightly
different road:

• we directly provide the rewrite system, D[CC∀ω];
• we translate derivations rather than explicitly subtyped terms, allowing to ignore

the well-structured hypothesis;
• we rely on particular properties of our system, such as the uniqueness of code rep-

resentation to retrieve correctness of conversion.
Note that in sharp contrast with Assaf [Ass15b], the reflection property of identity

lifts, ��↑aa � t ≡βR t, does not always hold in our setting. This reflection property would
require an extra non-left-linear rewrite rule.

Lemma 8.2.15 (Identity Reflection). Whenever they are well-typed in D[CC∀ω], ��↑aa � t

and t have the same type and are convertible in D[CC∀ω] ∪ {u(C, c(C, T))−→ T}.

This rule is, however, non-linear and makes it much harder to prove confluence of
rewriting together with β. We chose to leave this rule out of our embedding and work
without this convenient property which is not required for correctness. Note that the
system D[CC∀ω]∪{u(C, c(C, T)) satisfies all reflection properties and can therefore correctly
encode any CTS assuming typing derivation are “well-structured”. It was used in practice
in the Krajono translator of the Matita system.

8.3 Correctness of the translation
Correctness, or soundness, of the translation function is a crucial property. It guarantees
that λΠ≡ considered together with the encoding signature D[CC∀ω] defines an encoding
system at least as expressive as the encoded system CC∀ω. This means that any term
well-typed in, theorem or proof, has a representation in our embedding which is therefore
rich enough and not too constrained to encompass the original system.

In the particular case of derivation-to-term translation, correctness could simply be
stated as the well-typedness of the translation, [π], of all derivations π of CC∀ω. However
our translation is a shallow embedding of the CC∀ω and provides further guarantees. In
particular, if Σ is a well-formed signature, then not only should its translation

[
πΣ

Σ WFS

]
be

a signature well-formed in the encoding but in that signature, for all type A and derivation
πA

Σ; i/φ; Γ `S A : s
, the translation T[s] [πA] is a type in λΠ≡ that represents A in the sense

that derivations
πt

Σ; i/φ; Γ `S t : A
should be translated into inhabitants of it. Note that

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 167

because we have type uniqueness in λΠ≡, the translated type T[s] [πA] should not depend
on the derivation πA but rather exclusively on the term A this derivation allows to type.
Rather than saying we are translating the type A, we chose to keep the translation of
the derivation πA while guaranteeing the irrelevance of the translation in the derivation:
T[s] [πA] ≡βR T[s] [π′A].

8.3.1 Correctness of sort and constraint proof translation

The correctness of level and constraint translation was already covered in Lemma 6.4.6.
It extends quite straightforwardly to sorts and CTS judgments.

Since we chose not to reflect any conversion at the universe level in our system, cor-
rectness of sort translation is simply its well-typedness:

Lemma 8.3.1. For all sort s such that LVar(s) ⊆ i, D[CC∀ω]; i : N `D [s] : S.

Proof. By Lemma 6.4.6 and definition of sort translation.

Even with algebraic universe expressions, the universe structure of CC∀ω allows any
sort or product type to have a sort. It is full, as defined for PTS systems. In particular,
we always have A(s, s+ 1) and R(s, s′,max(s, s′)) which are reflected in the encoding.

Lemma 8.3.2. For all s, s′ of type S, ε A(s, S s) and ε R(s, s′, max s s′) are inhabited.

Proof. Two inhabitants of these types are for instance D[CC∀ω] `D refl (S s) 0 : εA(s, S s)
and D[CC∀ω] `D refl (max s s′) 0 : ε R(s, s′, max s s′) respectively.

Lemma 8.3.3 (Correctness of constraint translation). Assume level variables i and a
stratifiable set of atomic constraints φ such that LVar(φ) ⊆ i. Then we have the following:

• For any signature Σ, Σ `S i/φ;∅ WFS holds by the PWF
∅ rule.

• D[CC∀ω] `D
[
PWF
∅

]
:= i : N, c1 : ε [φ1] , . . . , ck : ε [φk] WFD.

• If φ � u ≤ v, ∃p∈Tpub ,D[CC∀ω]; i : N, c1 : ε [φ1] , . . . , ck : ε [φk] `WF
D p : ε ([u ≤ v]).

• If φ `S E(s), ∃p∈Tpub ,D[CC∀ω]; i : N, c1 : ε [φ1] , . . . , ck : ε [φk] `WF
D p : ε ([E(s)]).

Proof. The first point is immediate. The following two are covered in Lemma 6.4.6 and
definition. The proof for CTS judgments follows directly by definition of the translation
and conversion of types with the rules A-P, A-T, R-T-P, R-P-T, R-T-T, C-P and C-T.

Lemma 8.3.4. For all level expression v, we have
[
v{i 7→ u}

]
= [v] {i 7→ [u]}.

Proof. By induction on v.

8.3.2 Codes

Codes are the internal representation of translated derivations. They are well-behaved
in terms of conversion but provide absolutely no typing guarantees. For instance, the
infamous Ω := ∆∆ := (λx. x x) (λx. x x) has a well-typed code representation:

`D cA (cL (λx :C. cA x x)) (cL (λx :C. cA x x)) : C

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 168

This term is non-terminating in the encoding too: it reduces to itself with the cβ rewrite
rule. Note that we chose to ignore the type annotation of λ-abstractions in the code
representation. Barras and Grégoire showed [BG05] that in CTS, type annotations may
safely be ignored while checking convertibility between two terms which types are either
identical or both sorts.

Definition 8.3.5. We define the three following functions on terms and contexts of CC∀ω.

|x|Σ;Γ := x if x /∈ Γ
|x|Σ;Γ := c(|A|Σ;Γ , x) if x : A ∈ Γ

|λx :A. t|Σ;Γ := cL (λx :C. |t|Σ;Γ)
|t u|Σ;Γ := cA |t|Σ;Γ |u|Σ;Γ

|s|Σ;Γ := u[s] if s ∈ S
|Πx :A.B|Σ;Γ := π |A|Σ;Γ (λx :C. |B|Σ;Γ)

|cu|Σ;Γ := c′ [u1] . . . [un] if c[i/φ] : τ ∈ Σ (with n = |i|)
|cu|Σ;Γ := |t|Σ;Γ {i 7→ [u]} if c[i/φ] := t : τ ∈ Σ

JT KΣ;Γ := D |T |Σ;Γ

|∅|Σ := ∅
|Γ, x : A|Σ := |Γ|Σ , x : JAKΣ;Γ

These translation functions rely on the private signature and are not meant to be
implemented. The first one, |t|Σ;Γ corresponds to the unique private representation of
the well-typed term t, independently from its typing derivation. The second JtKΣ;Γ is the
representation of t as a type.

Note that this function is only well-defined on terms t and signature Σ such that all
symbol occurrences cu in t are defined or declared in Σ with a set of levels variables i
such that |u| = |i|. This is always the case when considering well-formed signature and
subterms tC u of terms u well-typed in Σ; . . . ; Γ.

Lemma 8.3.6. For all context Γ such that x /∈ Γ, we have

|t|Σ;Γ,x:A = |t|Σ;Γ {x 7→ c(|A|Σ;Γ , x)}
JtKΣ;Γ,x:A = JtKΣ;Γ {x 7→ c(|A|Σ;Γ , x)}

JsKΣ;Γ −→
Σ

U[s]

JΠx :A.BKΣ;Γ −→
Σ

Πx : JAKΣ;Γ. JBKΣ;Γ,x:A

Proof. By induction on t. If t = x /∈ Γ, |x|Γ,x:A = c(|A|Σ;Γ , x) = x{x 7→ c(|A|Σ;Γ , x)}. If
t = y 6= x, |y|Γ,x:A = |y|Γ. All other cases directly follow from induction hypothesis. The
second equality follows by definition.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 169

By definition, JsKΣ;Γ := D u[s] −−→D-u
U[s] and JΠx :A.BKΣ;Γ := D (π |A|Σ;Γ (λx :C. |B|Σ;Γ))

which rewrites to Πx : D |A|Σ;Γ. D (|B|Σ;Γ {x 7→ c(|A|Σ;Γ , x)}) = Πx : JAKΣ;Γ. JBKΓ,x:A.

Definition 8.3.7. A context is closed if it is either ∅ or Γ, x : A with Γ closed and
FVar(A) ⊆ Γ.
Lemma 8.3.8. Assume a signature Σ.

• if Γ is closed and x /∈ FVar(t), then |t|Σ;Γ,x:A = |t|Σ;Γ;
• if Γ ⊆ Γ′ closed and FVar(t) ⊆ Γ, then |t|Σ;Γ = |t|Σ;Γ′;
• if Γ and t closed, then |t|Σ;Γ = |t|Σ;∅;
• if Γ is closed and (x : A) ∈ Γ, then x : JAKΣ;Γ ∈ |Γ|Σ;

Proof. First is Corollary of Lemma 8.3.6. Second is done by a simple induction on Γ′.
Third is a particular case of second. Because if Γ = Γ1, x : A,Γ2 is closed, then FVar(A) ⊆
Γ1 and JAKΣ;Γ1

= JAKΣ;Γ which proves fourth.

Lemma 8.3.9. If
πΣ

Σ WFS
and Σ `WF

S Γ WFS then D[CC∀ω], [πΣ] `D |Γ|Σ WFD.

Besides if FVar(t) ⊆ Γ then D[CC∀ω]; |Γ|Σ `D |t|Σ;Γ : C.

Proof. Note that we do not concern ourselves with the well-typedness of D[CC∀ω], [πΣ] yet.
By induction on the length of Γ which is closed since Σ `S Γ WFS . The property

holds for empty contexts. Assuming it holds for Γ, then by induction on t such that
FVar(t) ⊆ Γ we have D[CC∀ω] `D |t|Σ;Γ : C. We use Lemma 8.3.8 for the variable case,
all other cases are done directly by definition and induction hypothesis. We deduce that
|Γ, x : A|Σ := |Γ|Σ , x : D |A|Σ;Γ is well-typed if Γ, x : A is closed.

Note that t does not need to be well-typed. In fact it was not even necessary for Γ to
be well-typed, the only important property is that each type annotation relies exclusively
on free variables that were previously declared.
Lemma 8.3.10. For all level substitution {i 7→ u},

∣∣t{i 7→ u}
∣∣
Σ;Γ = |t|Σ;Γ {i 7→ [u]}.

Proof. By induction on t, the only interesting case is when t = s and t = cu for which the
property holds by Lemma 8.3.4.

Lemma 8.3.11. If x /∈ Γ, then |t{x 7→ u}|Σ;Γ = |t|Σ;Γ {x 7→ |u|Σ;Γ}.

Proof. By induction on t, the only interesting case is when t = x for which the property
holds since x /∈ Γ.

Lemma 8.3.12. If t −→
β

u, hen |t|Σ;Γ−→βR |u|Σ;Γ.

Proof. By induction of t. If the β-reduction occurs at the root, then t = (λx :A. v) w and
u = v{x 7→ w}. In that case we have by definition and Lemma 8.3.11:

|t|Σ;Γ = cA (cL λx :C. |v|Σ;Γ) |w|Σ;Γ−→cβ |v|Σ;Γ {x 7→ |w|Σ;Γ} = |v{x 7→ w}|Σ;Γ = |u|Σ;Γ

Other cases follow by induction hypothesis.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 170

Lemma 8.3.13. If t −→
δ

u, then |t|Σ;Γ = |u|Σ;Γ.

Proof. Immediate since, by Lemma 8.3.10, |t|Σ;Γ is defined so that |t|Σ;Γ = |t↓δ|Σ;Γ.

Lemma 8.3.14. If t ≡βΣ u, then |t|Σ;Γ ≡βR |u|Σ;Γ.

Proof. By definition and confluence of βδ, t−→−→
βδ
←−←−
βδ

u and using Lemma 8.3.12 and
Lemma 8.3.13, we deduce |t|Σ;Γ−→−→βR ←−←−βR |u|Σ;Γ.

Corollary 8.3.14.1. If t ≡βΣφ u, NA(t), NA(u) and φ acyclic, then |t|Σ;Γ ≡βR |u|Σ;Γ.

Proof. By Lemma 8.3.14 and Lemma 7.3.8.

8.3.3 Correctness of conversion

We are now able to prove that the conversion in CC∀ω is properly reflected in the translation
of derivations. We need to assume the three properties justified in Section 7.3: (H1), (H2)
and (H3).

Lemma 8.3.15. Assume
πΣ

Σ WFS
and

π

Σ; i/φ; Γ `S t : A
two derivations satisfying (H1),

(H2) and (H3). Then c(|A|Σ;Γ , [π]) ≡βR |t|Σ;Γ for R := Σpri, [πΣ].

Proof. By induction on the length of Σ, Γ and on the derivation π.

• PS : t = s and A = s+ 1.
c(|A|Σ;Γ , [π]) = c(|A|Σ;Γ ,u

[πA]
[s],[s′])−→enc-u

c(|A|Σ;Γ , u(u[s′],u[s]))−→c-u
u[s] = |s|Σ;Γ.

• PX : t = x and x : A ∈ Γ. c(|A|Σ;Γ , [π]) = c(|A|Σ;Γ , x) = |t|Σ;Γ by definition.

• PΠ: t = Πx :U. V and A = s.

c(|A|Σ;Γ , [π]) = c(|A|Σ;Γ ,π
�
s1,s2,s3 [πU] λx : T[s1] [πU]. [πV])

−→
enc-π

c(|A|Σ;Γ , u(us3 ,π c(us1 , [πU]) λx :C. c(us2 , [πV] {x 7→ u(c(us1 , [πU]), x)})))

−→
c-u
π c(us1 , [πU]) λx :C. c(us2 , [πV] {x 7→ u(c(us1 , [πU]), x)})

By induction hypothesis we have |πU |Σ;Γ = c(us1 , [πU]) and |πV |Σ;Γ;x:A = c(us2 , [πV]).
From the latter and Lemma 8.3.6 we deduce

c(us2 , [πV]){x 7→ u(|πU |Σ;Γ , x)} = |πV |Σ;Γ;x:A {x 7→ u(|πU |Σ;Γ , x)}
= |πV |Σ;Γ {x 7→ c(|A|Σ;Γ , x)}{x 7→ u(|πU |Σ;Γ , x)}
= |πV |Σ;Γ {x 7→ c(|A|Σ;Γ , u(|πU |Σ;Γ , x))}
−→−→

c-u
|πV |Σ;Γ {x 7→ x} = |πV |Σ;Γ

This allows to conclude

c(|A|Σ;Γ , [π]) ≡βR π |U |Σ;Γ λx :C. |V |Σ;Γ = |Πx :U. V |Σ;Γ = |t|Σ;Γ

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 171

• Pλ: t = λx :U. v and A = Πx :U. V .

c(|A|Σ;Γ , [π]) = c(π |U |Σ;Γ λx :C. |V |Σ;Γ, λx : T[s] [πU] . [πv])
−→
c-λ

cL λx :C. c(|V |Σ;Γ , [πv] {x 7→ u(|U |Σ;Γ , x)})

Again, by induction hypothesis, |v|Σ;Γ;x:U = c(|V |Σ;Γ,x:U , [πv]) and

|v|Σ;Γ;x:U {x 7→ u(|U |Σ;Γ , x)} = |v|Σ;Γ {x 7→ c(|U |Σ;Γ , x)}{x 7→ u(|πU |Σ;Γ , x)}
= |v|Σ;Γ {x 7→ c(|U |Σ;Γ , u(|U |Σ;Γ , x))}
−→−→

c-u
|v|Σ;Γ {x 7→ x} = |v|Σ;Γ

|V |Σ;Γ;x:U {x 7→ u(|U |Σ;Γ , x)}−→−→
c-u
|V |Σ;Γ

from which we have |v|Σ;Γ←−←−c-u
−→−→

c-u
c(|V |Σ;Γ , [πv] {x 7→ u(|U |Σ;Γ , x)}) and therefore

c(|A|Σ;Γ , [π]) ≡βR cL λx :C. |v|Σ;Γ = |λx :U. v|Σ;Γ = |t|Σ;Γ.

• P@: t = u v, πu
`Su:Πx :V. T , A = T{x 7→ v} and πv’s last derivation is a P�:

π′v

Σ; i/φ; Γ `S v : W
πW

Σ; i/φ; Γ `S W : s
πV

Σ; i/φ; Γ `S V : s′ φ `S W �Σφ V

Σ; i/φ; Γ `S v : V

We have by induction hypothesis, |u|Σ;Γ = c(π |V |Σ;Γ λx :C. |T |Σ;Γ, [πu]), therefore:

|t|Σ;Γ = cA c(π |V |Σ;Γ λx :C. |T |Σ;Γ, [πu]) |v|Σ;Γ

−→
c-a

c(|T |Σ;Γ {x 7→ |v|Σ;Γ}, [πu] u(|V |Σ;Γ , |v|Σ;Γ))

By Lemma 8.3.11, |T |Σ;Γ {x 7→ |v|Σ;Γ} = |T{x 7→ v}|Σ;Γ = |A|Σ;Γ, and by definition
[πt] = [πu] [πv], it remains only to show that [πv] ≡βR u(|V |Σ;Γ , |v|Σ;Γ). This would
not hold without the (H3) property, but in our case

[πv] = [s′]
[s] ↑

[πV]
[πW] �

[
π′v
]

−→
enc-↑

u(c(u[s′], [πV]), c(c(u[s], [πW]),
[
π′v
]
))

≡βR u(|V |Σ;Γ , c(|W |Σ;Γ ,
[
π′v
]
)) ≡βR u(|V |Σ;Γ , |v|Σ;Γ)

By successive induction hypothesis on the π′v, πW and πV subtrees.

• P�: t : B �Σφ A. The result follows by induction hypothesis on the derivation of
`S t : B and `S B : s.

c(|A|Σ;Γ , [πt]) = c(|A|Σ;Γ ,
[s′]
[s] ↑

[πA]
[πB] �

[
π′t
]
)

−→
enc-↑

c(|A|Σ;Γ , u(c(u[s′], [πA]), c(c(u[s], [πB]),
[
π′t
]
)))

−→
c-u

c(c(u[s], [πB]),
[
π′t
]
) ≡βR c(|B|Σ;Γ ,

[
π′t
]
) ≡βR |t|Σ;Γ

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 172

• Pdecl: t = cu and A = τ{i 7→ u} for τ such that (c[i/φ] : τ) ∈ Σ.

c(|A|Σ;Γ , [π]) = c(|A|Σ;Γ , c [u] [πφ])−→ c(|A|Σ;Γ , u(. . . , c′ [u]))−→
c-u

c′ [u] = |cu|Σ;Γ

• Pdef : t = cu and A = τ{i 7→ u} for τ such that (c[i/φ] := t : τ) ∈ Σ. We have
π′

Σ′; i/φ;∅ `S t : τ
for some Σ′ ⊆ Σ.

By induction hypothesis, c(|τ |Σ′;∅ , [π′]) ≡βR |t|Σ′;∅ and since extra variables and
symbols in Γ and Σ are not in t, by well-formedness of Σ; i/φ; Γ, we have, by
Lemma 8.3.8, c(|τ |Σ;Γ , [π′]) ≡βR |t|Σ;Γ. By Lemma 8.3.10, |A|Σ;Γ = |τ |Σ;Γ {i 7→ [u]}
and finally

c(|A|Σ;Γ , [π]) = c(|τ |Σ;Γ {i 7→ [u]}, c [u] [πφ])
−→ c(|τ |Σ;Γ {i 7→ [u]},

[
π′
]
{i 7→ [u]})

= c(|τ |Σ;Γ ,
[
π′
]
){i 7→ [u]} = |t|Σ;Γ {i 7→ [u]} = |cu|Σ;Γ

This characterization of derivation allows to easily get the correctness of conversion
result we need:

Corollary 8.3.15.1. Assume
πΣ

Σ WFS
,

πt

Σ; i/φ; Γ ` t : A
and

πu

Σ; i/φ; Γ ` u : B
all sat-

isfying (H1), (H2) and (H3), such that t ≡βΣφ u.
Then c(|A|Σ;Γ , [πt]) ≡βR c(|B|Σ;Γ , [πu]) for R = Σpri, [πΣ].

Proof. Follows from Lemma 8.3.15 and Lemma 8.3.14 since we have:
e c(|A|Σ;Γ , [πt]) ≡βR |t|Σ;Γ ≡βR |u|Σ;Γ ≡βR c(|B|Σ;Γ , [πu]).

Note that we could not have hoped to have [πt] ≡βR [πu] since these two terms may
not have the same type and the embedding is type preserving. However if B = A (or even
B ≡βΣ A), then [πt] and [πu] are two representations of convertible terms and it would
be reasonable to expects these representations to be convertible. They might however not
be in our encoding because we do not have the elimination of identity cast property. The
term x can simply be translated into x if it is typed with the axiom rule but it can also be
translated into s

s↑AA p x if it is typed with a non-required identity subtyping rule. This is
where explicit subtyping becomes frustrating to deal with as it breaks the full reflection.

A first solution would be to guarantee these identity casts never occur. It is possible to
define the translation such that identity subtyping rules are collapsed and no identity cast
is generated. However, because of universe polymorphism, identity casts may originate
from the collapsing, by the universe substitution of a δ-reduction, of a cast that was
required on the definition’s body with abstract universes.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 173

Full reflection using lift elimination

Eliminating identity casts can be done by means of the extra non-linear rewrite rule
u(C, c(C, T)) −→ T . Assuming we added this rule to our rewrite system, then the previous
Lemma 8.3.15 would no longer need the (H3) assumption.

Lemma 8.3.16. Assume
πΣ

Σ WFS
and

πt

Σ; i/φ; Γ ` t : A
two derivations satisfying (H1)

and (H2). Then [πt] ≡βR u(|A|Σ;Γ , |t|Σ;Γ) for R = Σpri , { u(C, c(C, T))−→ T } , [πΣ].

Proof. The proof is done by reusing all cases of the proof of Lemma 8.3.15 since we now
have u(|A|Σ;Γ , c(|A|Σ;Γ , πt)) ≡βR [πt]. The only difference is for the application case where
(H3) was required but is no longer assumed. In that case, we have t = u v, πu

`Su:Πx :V. T ,
A = T{x 7→ v} and πv

`Sv:V . By induction hypothesis

[π] = [πu] [πv] = u(π |V |Σ;Γ λx :C. |T |Σ;Γ, |u|Σ;Γ) u(|V |Σ;Γ , |v|Σ;Γ)
−→
u-a

u
(
|T |Σ;Γ {x 7→ c(|V |Σ;Γ , u(|V |Σ;Γ , |u|Σ;Γ))}
, cA |u|Σ;Γ c(|V |Σ;Γ , u(|V |Σ;Γ , |v|Σ;Γ))

)
−→−→

c-u
u(|T |Σ;Γ {x 7→ |u|Σ;Γ}, cA |u|Σ;Γ |v|Σ;Γ)

We conclude by Lemma 8.3.11 since |T |Σ;Γ {x 7→ |v|Σ;Γ} = |T{x 7→ v}|Σ;Γ = |A|Σ;Γ.

Corollary 8.3.15.1 would then provide the corresponding full reflection lemma without
assuming the (H3) property. We chose to remove this rule from our encoding since, unlike
its counterpart c-u, this rule cannot be linearized using typing.

8.3.4 Correctness of subtyping

Lemma 8.3.17. Assume
πA

Σ; i/φ; Γ `S A : sA
and

πB

Σ; i/φ; Γ `S B : sB
both satisfy the

(H1), (H2) and (H3) properties and φ `S A �Σφ B. Then either A ≡βΣφ B or we have
A ≡βΣφ Πx1 :U1. . . .Πxn :Un. s and B ≡βΣφ Πx1 :U1. . . .Πxn :Un. s′ for some sorts s, s′
such that φ `S C(s, s′). In both cases, there exists a public term p ∈ Tpub such that

D[CC∀ω]; i : N, c1 : [φ1] , . . . , ck : [φk] `D p : ε ([πA] ⊆[sB]
[sA] [πB])

Proof. The first part is an usual property of CTS, see Lemma 5.3.2. We prove by a simple
induction on the derivation of φ `S A �Σφ B that it holds for CC∀ω too.

[πA] ⊆[sB]
[sA] [πB] −→

ST-d
c(u[sA], [πA]) � c(u[sB], [πB]) = c(|sA|Σ;Γ , [πA]) � c(|sB|Σ;Γ , [πB])

≡βΣφ |A|Σ;Γ � |B|Σ;Γ by Lemma 8.3.15

If A ≡βΣφ B, then, by Lemma 8.3.14, |A|Σ;Γ ≡βR |B|Σ;Γ and we conclude by choosing, for
instance, p := strefl |s|Σ;Γ |A|Σ;Γ.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 174

Otherwise, we prove by induction on the number n of products in the normal form of
A and B that |A|Σ;Γ � |B|Σ;Γ ≡βR [C(s, s′)]. The base case is immediate using the ST-u
rule. Assuming A ≡βΣφ Πx1 :U1. A

′ and B ≡βΣφ Πx1 :U1. B
′ such that φ `S A′ �Σφ B

′.

|A|Σ;Γ � |B|Σ;Γ −→−→ |Πx1 :U1. A
′|Σ;Γ � |Πx1 :U1. B

′|Σ;Γ
=

(
π |U1|Σ;Γ λx1. |A′|Σ;Γ

)
�
(
π |U1|Σ;Γ λx1. |B′|Σ;Γ

)
−→
ST-π

∀ λc :C.
(
|A′|Σ;Γ � |B′|Σ;Γ

)
{x1 7→ c}

≡βR ∀ λc :C. ([C(s, s′)]) {x1 7→ c} by induction hypothesis
= ∀ λc :C. [C(s, s′)] since sorts only contain level variables
−→
ST-∀

[C(s, s′)]

By Lemma 8.3.3 (correctness of constraints translation), there exists p ∈ Tpub such
that D[CC∀ω]; i : N, c1 : [φ1] , . . . , ck : [φk] `D p : ε ([C(s, s′)]) ≡βR ε ([πA] ⊆[sB]

[sA] [πB]).

8.3.5 Correctness of typing

We are now ready for our main theorem which states the correctness of our derivation
translation function into the encoding signature D[CC∀ω].

Theorem 8.3.18. Assuming all derivations satisfy the (H1), (H2) and (H3) properties.

If
πΣ

Σ WFS
, then D[CC∀ω], [π] WFD.

Besides, if
πΓ

Σ; i/φ; Γ WFS
, then D[CC∀ω], [πΣ] `D [πΓ] WFD.

Besides, if
πt

Σ; i/φ; Γ `S t : A
then D[CC∀ω], [πΣ] ; [πΓ] `D [πt] : D |A|Σ;Γ.

Besides, if
πA

Σ; i/φ; Γ `S A : s
, then we have both D[CC∀ω], [πΣ] ; [πΓ] `D [πA] : U[s] and

D[CC∀ω], [πΣ] ; [πΓ] `D [πt] : T[s] [πA].

Proof. By induction on the length of Σ, Γ and on πt. For the first property:

• Σ = ∅. Then [Σ] = ∅ is well-formed in D[CC∀ω].

• Σ = Σ′, (c[i/φ] : τ). By induction hypothesis, since Σ′; i/φ;∅ WFS we have both
D[CC∀ω],

[
πΣ′

Σ′ WFS

]
WFD and D[CC∀ω], [πΣ′] ; i : N, c1 : ε [φ1] , . . . , ck : ε [φk] `D [πτ] :

U[s]. Besides, by correctness of constraint translation, D[CC∀ω] `D [φj] : B and
therefore the translation of the definition of c is well-typed in D[CC∀ω], [πΣ′]. The
definition of c′ is always well-typed. We need to prove type preservation of the
rewrite rule for c. Lets assume an instance with σ of its left-hand side is well-
typed in a signature extension Θ ⊇ D[CC∀ω], [πΣ′] and a context Γ, necessarily,

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 175

Θ; Γ `D σ(Ii) : N for all i, and Θ; Γ `D σ(Ci) : [φi] {i 7→ σ(I)}. The translation [s]
does not refer to the ci variables, therefore

`D
[
πτ—
τ :s

] {
i 7→ σ(I), c 7→ σ(C)

}
: U[s]

{
i 7→ σ(I), c 7→ σ(C)

}
= U[s]

{
i 7→ σ(I)

}
so that c(u[s]{i 7→I},

[
πτ—
τ :s

] {
i 7→ I, c 7→ C

}
)σ is well-typed of type C and the substituted

right-hand side is well-typed of type
(
D c(u[s], [πτ])

){
i 7→ σ(I), c 7→ σ(C)

}
while

the left-hand side has type
(
T[s] [πτ]

){
i 7→ σ(I), c 7→ σ(C)

}
. Both are convertible,

therefore the rule is well-typed.

• Σ = Σ′, (c[i/φ] := t : τ). Both the symbol declaration and the type preservation of
the rewrite rule are checked the same way as above, using induction hypothesis on
the translations [πt], [πτ] of the typing derivations of t and τ .

For the second property:

• Γ = ∅, we only need to check the well-formedness of the context of local level vari-
ables and constraints, i : N, c1 : ε [φ1] , . . . , ck : ε [φk] which follows from correctness
of constraint translation.

• Γ = Γ′, t : A and induction hypothesis proves thatD[CC∀ω], [πΣ] `D
[

πΓ′
Σ`S i/φ;Γ′

]
WFD

and that D[CC∀ω], [πΣ] ; [πΓ′] `D [πA] : U[s] which implies well-formedness of the ex-
tended context D[CC∀ω], [πΣ] `D [πΓ′] , x : T[s] [πA] WFD

For the third property there are 8 cases to consider.

• t = s, A = s′, [πt] = u[πA]
[s],[s′] and D[CC∀ω] `D [πt] : U[s′] and D |s′|Σ;Γ = D u[s′]−→ U[s′].

• t = x and x : A ∈ Γ. By definition, x : T[s] [πA] ∈ [πΓ] and since [πt] := x we have
D[CC∀ω], [πΣ] ; [πΓ′] `D [πt] : T[s] [πA]. By Lemma 8.3.15, we conclude since we have
T[s] [πA]−→ D c(u[s], [πA]) = D c(|s|Σ;Γ , [πA]) = D |A|Σ;Γ.

• t = Πx :U. V , A = s3 and [πt] := π
[πR]
[s1],[s2],[s3] [πA] λx : T[s1] [πA]. [πB] so that we

have D[CC∀ω] `D [πt] : U[s3] and D |s3|Σ;Γ = D u[s3]−→ U[s3] like in the first case.

• t = λx :U. v, A = Πx :U. V and [πt] := λx : T[s] [πU] . [πv]. By induction hypothe-
sis, `D [πU] : D |s|Σ;Γ ≡βR U[s] and `D [πv] : D |V |Σ;Γ;x:U so that [πt] is well-typed
and has type:

Πx : T[s] [πU]. D |V |Σ;Γ;x:U ≡βR Πx : D c(u[s], [πU]). D |V |Σ;Γ;x:U
≡βR Πx : D c(|s|Σ;Γ , [πU]). D |V |Σ;Γ;x:U
≡βR Πx : D |U |Σ;Γ. D |V |Σ;Γ;x:U by Lemma 8.3.15
= Πx : JUKΣ;Γ. JV KΣ;Γ;x:U by definition
= JΠx :U. V KΣ;Γ = D |Πx :U. V |Σ;Γ by Lemma 8.3.6

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 176

• t = M N , A = B{x 7→ N} and [πt] := [πM] [πN]. By induction hypothesis, [πN] has
type JUKΣ;Γ and [πM] has type JΠx :U.BKΣ;Γ ≡βR Πx : JUKΣ;Γ. JBKΣ;Γ;x:A, therefore
the application is well-typed and has type

D |B|Σ;Γ;x:A {x 7→ [πN]} ≡βR D |B|Σ;Γ {x 7→ c(|A|Σ;Γ , x)}{x 7→ [πN]}
= D |B|Σ;Γ {x 7→ c(|A|Σ;Γ , [πN])}
≡βR D |B|Σ;Γ {x 7→ |N |Σ;Γ}
= D |B{x 7→ N}|Σ;Γ = D |A|Σ;Γ

• t = cu, (c[j/ψ] := t : τ) ∈ Σ, A = τ{u/j} and t := c [u] [πφ]. By correctness of
sort translation 8.3.1, D[CC∀ω] `D [uj] : N for all j and by correctness of constraint
translation 8.3.3, D[CC∀ω]; i : N, c : ε [φ] `D

[
πφj

]
: ε [φj] for all j.

• t = cu, (c[j/ψ] : τ) ∈ Σ, A = τ{u/j} and t := c [u] [πφ]

• Σ; i/φ; Γ `S t : B for some B such that φ `S B � A and [πt] := [s′]
[s] ↑

[πA]
[πB] [π]

[
πM—
M :A

]
.

8.4 Future work

8.4.1 Towards a confluent encoding

The c(�,�) operator is the only way to build a code of type C from a term of the public
signature. In many ways it can be seen as a marking operator which annotates a term t
with its (annotated) type: ann(t) := c(ann(A), t). The, necessary non-linear, elimination
of identity lift was avoided (see Lemma 8.3.15) by expecting all derivations to subtype
arguments, the (H3) property. Similarly, instead of erasing these annotations to collapse
to a representation of the term t independently from its typing derivation, we could keep
the annotation and consider that we are translating Dowek, Huet and Werner’s marked
terms [DW93] in which types are explicitly annotated, tA.

Confluence of the non-linear system could be done using syntactical levels on terms.
This would require to duplicate and annotate all dependent types representing derivations
(U, T , D) with a level (Un, T n, Dn) and adapt all subsequent symbols and rewrite rules
to retrieve a well-typed (infinite) signature. The fact that this restriction still allows to
represent all typing derivations of well-typed terms in CC∀ω is linked to the conjecture
of the existence of leveled typing derivations, as defined in [Thi20]. Confluence could
be obtained, at least on a subset of terms containing the image of the translation, if
the relation were proven terminating. Termination criteria sometimes require only local
confluence which holds for our encoding.

8.4.2 Conservativity

Conservativity is a crucial property when embedding type systems. It essentially means
that the representation of CC∀ω types (in particular theorems) as λΠ≡ types are only

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 177

inhabited in the encoding if it was in the original system. This property guarantees that
the embedding does not allow to prove too many theorems. In practice it means that proofs
can be developed directly in λΠ≡ and checked in the D[CC∀ω] encoding, for instance using
Dedukti. Such proofs can be trusted since it was proven that their existence guarantees
the provability in the original system.

It obviously remains to prove conservativity of this encoding. Conservativity on normal
form, is relatively straightforward in confluent systems. The head f u of the considered
terms must either be a variable from the context or symbols from the public signature.
Using confluence we can retrieve enough guarantees on the type of the arguments u to link
the well-typedness of the term to the well-typedness of its corresponding back translation to
CC∀ω. A first step towards conservativity is therefore to explicit this partial correspondence
between well-typed terms in the encoding public signature to terms well-typed in the
original systems.

Definition 8.4.1 (Backward Translation). For Σ a CC∀ω signature, the backward trans-
lation, |·|Σ, is a partial function from terms of the public signature of λΠ≡ to terms of
CC∀ω inductively defined as follows:

|x|Σ := x |Us|Σ := |s|Σ

|λx :A. t|Σ := λx : |A|Σ. |t|Σ |Ts A|Σ := |A|Σ

|t u|Σ := |t|Σ |u|Σ |0|Σ := 0∣∣∣u�s,�∣∣∣Σ := |s|Σ |S s|Σ := |s|Σ + 1∣∣∣π��,�,� A λx :�. B
∣∣∣Σ := Πx : |A|Σ. |B|Σ |max s s′|Σ := max(|s|Σ , |s′|Σ)∣∣∣��↑�� � t
∣∣∣Σ := |t|Σ |Prop|Σ := Prop

|Typeu|
Σ := Type|u|Σ

|c u1 . . . un π1 . . . πk|Σ := c|u|Σ if c[i/φ] ∈ Σ, |i| = n and |φ| = k

It can be extended to symbols of the private signature:

|us|Σ := |s|Σ |D A|Σ := |A|Σ

|π A λx :�. B|Σ := Πx : |A|Σ. |B|Σ |c(A, t)|Σ := |t|Σ

|cL λx :�. t|Σ := λx. |t|Σ |u(A, t)|Σ := |t|Σ

|cA t u|Σ := |t|Σ |u|Σ

|c′ u1 . . . un|Σ := c|u|Σ if c[i/φ] ∈ Σ, |i| = n

Our separation of categories of type is useful here since it forbids overlap of type
between terms representing different categories of Coq objects.

Lemma 8.4.2. Assuming D[CC∀ω];
[
i
]
, [φ] , [Γ] `D t : A.

• If A ∈ F1 then |t|Σ is a sort.
• If A ∈ F2 then |t|Σ is a constraint.
• If A ∈ F3 then |t|Σ is a level expression.
• If A ∈ F5 or A ∈ F6 then |t|Σ is a term.

CHAPTER 8. EMBEDDING UNIVERSE POLYMORPHISM IN LP 178

Lemma 8.4.3. For all level expression u, |[u]|Σ = u. For all sort s, |[s]|Σ = s. For all
signature Σ, context Γ, typing derivation π

Σ;i/φ;Γ`S t:A
, |[π]|Σ = t and

∣∣∣|t|Σ;Γ

∣∣∣Σ = ε(t).

We state here our conservativity conjectures which seem to only lack confluence of the
encoding system to hold, at least on normal terms.

Conjecture 8.4.4. Assume
π

`S i/φ;∅ WFS
and u, v two universe expressions. Assume

p ∈ Tpub in β-normal form such that [π] `D p : [u ≤ v] and FVar(p) ⊆ i. Then φ `S u ≤ v.

Conjecture 8.4.5 (Conservativity). Let Σ, Γ and A such that
πΣ

Σ WFS
,

πΓ

Σ; i/φ; Γ WFS

and
πA

Σ; i/φ; Γ `S A : s
. If D[CC∀ω], [πΣ] ; [πΓ] `D t : T[s] [πA] for some t ∈ Tpub, then

• if |t|Σ is defined then Σ; i/φ; Γ `S |t|Σ : A;
• if t is in β-normal-form, then |t|Σ is defined.

Chapter 9

Practical embedding of Coq

While its core logic was covered in the previous chapters, Coq implements many other
features which makes the underlying logic quite rich and developments in this language
user-friendly. For instance, it features a very general class of inductive types with various
forms of universe polymorphism, fixpoint definitions, “let-in” constructions as first-class
terms, and further extensions of conversion such as η-expansion. In this chapter we de-
scribe how the previously defined embedding of Coq can be extended and adapted in
practice to translate these features into Dedukti, sometimes partially or approximately.
The rewriting and encoding techniques presented here were used in practice in the latest
version of the CoqInE tool. Any of these extra feature is a challenge on its own to embed
in λΠ≡. Yet that challenge must be met since these features have become quite standard
and are now used without restraint, including in the standard library.

We will adopt, from now on, a less precise presentation and rather illustrate concepts
through examples in the hope to better convey the ideas behind the implemented tech-
niques. Reference to more thorough formal definitions and implementation details will be
provided in the documentation of the CoqInE tool.

Finally we mention experimental results in the translation of the standard library of
Coq as well as the translation of parts of the GeoCoq library.

9.1 The CoqInE translator
CoqInE (Coq In Dedukti) is an open source translator from Coq to Dedukti, freely
available at github.com/Deducteam/CoqInE. The very first implementation of CoqInE
was done by Boespflug and Burel [BB12] and was restricted to the calculus of inductive
constructions which extends the 2-sorts CoC, with inductive types presented in more
details in Section 9.3. Assaf re-implemented this tools as a Coq plugin and added support
for the infinitive hierarchy of universe and cumulativity [Ass15b] as well as partial support
for other features such as modules, local let definitions, fixpoints and floating universes
which are all discussed in the following sections. Lately, the encoding techniques discussed
in Chapters 5, 6 and 8 allowed to add support for universe polymorphism to CoqInE.
In this chapter we discuss other significant improvements of this tool some of them made

179

github.com/Deducteam/CoqInE

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 180

possible by our new encoding paradigm.
Since Dedukti embeddings are often used for interoperability purposes, the translator

was designed to be highly configurable. Several encodings of different subsets of the logic of
Coq are provided and the user is given the choice to select the encoding and translation
they think is the best fit for their need further down the line and according with the
features used in the library they want to translate. For instance, the translation of the
GeoCoq library, see Section 9.8, was designed so that its image is expressed in the same
fragment as the, somewhat weaker, logic of Isabelle/HOL. Therefore translated terms
were expected never to rely on conversion or dependent types, therefore simplifying the
translation.

In order to keep the reader closer to the actual implementation, examples in this
chapter, will be given in the syntax of Dedukti rather than in the concise symbolic
notation adopted up until now. The correspondence with previously defined notations is
summed up in the following table:

λΠ≡ Dedukti λΠ≡ Dedukti λΠ≡ Dedukti
� Kind S Sort B Bool
∗ Type U Univ ε eps

Πx :A.B (x : A) →B T Term > true
A→ B A →B u univ I I
λx :A.B (x : A) 7→B π pi ∧ and

pair pair ↑ cast
See deducteam.github.io ⊆ SubType A Axiom

for the full syntax R Rule
C Cumul

C Code u cu
D Decode π cPi
c code cL cLam � ST
u uncode cA cApp ∀ forall

In Dedukti, rewrite rules are declared with an explicit context of meta-variables and
meta-applications are represented as simple applications:

λΠ≡ f X (λz. Y [z]) −→ Y [X]
Dedukti [X,Y]~ f X (z 7→Y z) ↪→Y X.

9.2 Renouncing left-linearity
Relying on non-linear rules is generally regarded as both unsafe and inefficient. For this
reason non-linearity in encoding systems is usually avoided or kept, as much as possible,
under control, as in Chapter 6 where (H3) was introduced to avoid the non-linear identity
casts elimination, u(C, c(C, T)) −→ T .

Non-linearity is unsafe because it compromises the confluence of higher-order rewriting
together with β which is essential to guarantee the subject reduction property of the en-
coding as well as all subsequent properties, including the conservativity of the translation.

deducteam.github.io

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 181

In Chapter 4 we show that under some conditions non-linear rules may actually be safely
considered, even in a non-terminating system.

The implementation of non-linearity rewriting is also usually inefficient. In the po-
tential redex u(u, c(v, t)), for instance, it is necessary to check the convertibility of the
subterms u and v to decide whether the non-linear rule applies or not. This check may re-
quire to compute the normal form of both terms to conclude that they are not convertible,
preventing therefore the rule from being fired.

In practice however non-linear rewrite rules sometimes allow to use rewriting in a
more convenient and sometimes even more efficient way. Indeed, the many artifacts put
in place to avoid non-linearity make the translation a lot more verbose. This compro-
mises the readability of the generated code which no longer has the same structure as
the original development. For this reason, several non-linear rules are considered for the
practical embedding of Coq. Examples, of such useful and somewhat safe non-linearities
are detailed and discussed in the following.

9.2.1 In universe representation

The universe and constraint representation defined in Chapter 6 is convenient in theory but
a bit cumbersome in practice. Inferred universe levels are often quite unnecessary large
algebraic expressions. For instance, assume a context where A is a type of sort Typei.
Then the sort inferred for the type (A→ A→ A)→ A would be Typemax(max(i,max(i,i)),i).
It seems quite natural to rely on non-linear simplification rules such as max i i −→ i and
max (S i) i −→ S i which are admissible and greatly simplify algebraic expressions in some
cases.

In the particular case of the current implementation of Coq, the considered universe
algebraic expressions are of depth 1, either max(u, v), i or i+1, and constraints are upper-
bounded with a level variable. This means that it is actually possible to rely on a universe
representation closer to the one introduced in Definition 6.2.16.

Note however that because we rely on a complete algorithm for explicit constraints
checking, we do not need these rewrite rules, they merely allow smaller representation
of universe expression. The cumbersome Typemax(max(i,max(i,i)),i) may be carried over in
the rest of the translation and will have the same properties than the minimal version
Typei. In fact it is even possible to compute this minimal version at translation time and
type (A→ A→ A) → A directly with Typei although it requires to build less trivial
proofs of the rules predicates. While the predicateR(u, v, max u v) is immediately proven
with refl (max u v), the translation would need to compute a proof of R(i, i, i) such as
pair (refl i) (refl i).

In fact, the proof of constraints may also be simplified using non-linear rules on con-
straint types such as i ≤ i−→>, i ≤ S i−→> or C∧C −→C. These rules provide much
simpler normal forms for constraints and allow, for instance, the simple object represen-
tation pi i i i I A (_ 7→A) for the product type A→ A.

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 182

9.2.2 In subtyping predicates

Subtyping predicates extend the C predicate on sort representations to arbitrary types
in order to allow the general cast operator. While explicitly inhabiting sort predicates
remains manageable, inhabiting subtyping predicates can be quite verbose, even with a
simple reflexivity constructor, refl. For instance, if A ≡β B and `S t : A, then its
translation cast sA sB A B (refl A) t requires to translate A twice.

The non-linear ST-π rule allows a subtyping predicate between two products with
convertible domain to directly reduce to the subtyping of their codomains, as expected.
This allows the translator to provide a proof of the level constraints on the ultimate
codomains only. Assuming A−→−→

β
C←−←−

β
B then we have:

[
Πx :A. Typei ≤ Πx :B. Typej

]
:=

(
π��,�,� [A] λx.u[i],�

)
⊆
(
π��,�,� [B] λx.u[j],�

)
−→−→ (π |C| λx.ui) � (π |C| λx.uj)
−→ ∀ λx :C. (ui � uj) −→ ui � uj −→ i ≤ j

This rule is used in practice to the encoding without any issue noticed. It allows to
simplify the translation since a subtyping instance is now only required to provide the set
of necessary level constraints.

This non-linearity can be extended with the elimination of identity subtyping pred-
icates, C � C −→ I. Note that this extra rule generates, however, critical pairs with
the other rules which requires to successively consider other non-linear rules such as
C(S, S)−→ I and U ≤ U −→ I.

9.2.3 In code representations

The two critical rules of the encoding are the elimination of imbricated coding and uncod-
ing operators:

c(C, u(C, T)) −→ T (c-u)

u(C, c(C, T)) −→ T (u-c)

The first rule remains well-typed when linearized, it is therefore safe to use its efficient
linearized version rather than the original. The second rule u-c, however, cannot.

The first rule was necessary to collapse several imbricated liftings of a term t to ensure
it has a unique representation: s′�↑B� � (�s ↑�A � t) ≡βR

s′
s ↑BA � t. The second rule is required

to eliminate identity casts: ��↑AA � t ≡βR t. This last property is inherently non-linear
but not required for the encoding to be correct as it can be avoided by systematically
subtyping arguments, (H3).

However in practice, this rule allows to avoid this costly casting. Even though it can
be costly, it makes the translation much more compact and readable. The set of critical
pairs of the encoding system with the extra non-linear rule is extended for the four pairs
in Lemma 8.1.3 to the following 8 pairs which all remain joinable:

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 183

Critical pair Closing diagram
←−−
c-u

; 2−−→
u-λ

←−−
c-u

;←−−
c-u

;←−−
c-u

;←−
β

;←−−
c-λ

←−−
c-a

; 1−−→
c-u

−−→
u-a

;−−→
c-u

;−−→
c-u

;−−→
c-u

←−−
c-a

; 1−−→
c-λ

−→
β

;←−
β

;←−
cβ

←−−
u-a

;−−→
u-λ

−→
cβ

;−→
β

;←−
β

New critical pair Closing diagram
←−−
c-u

; 2−−→
u-c

=

←−−
u-c

; 2−−→
c-u

=

←−−
u-c

; 2−−→
c-λ

←−−
u-c

;←−−
u-c

;←−
β

;←−−
u-λ

←−−
u-a

;−−→
u-c

−−→
c-a

;−−→
u-c

;−−→
u-c

9.3 Inductive constructions

9.3.1 Inductive Types and Constructors

Inductive types have become a rather predominant feature of the Coq system. They
are a powerful extension of the Calculus of Constructions, introduced by Coquand and
Paulin-Mohring [CP90, PM93] and used extensively since then. Since they quickly become
quite complex to reason with, if considered precisely, they are purposely missing from our
approximation CC∀ω which focuses instead on the presentation of universe polymorphism.

Inductive types allow to define new data-types in the signature from a context ΓC
of constructors that are used to build inhabitants of the defined types, ΓI . Beside con-
structors, inductively defined types come with a destructor allowing to perform struc-
tural induction, or match, on constructed inhabitants. Inductive types can be mutually
defined if they reference one another in the type of their constructors. Mutually de-
fined inductive types have a number p of parameters so that all the inductive types and
the types of their constructors are all products headed with the same p quantifications,
∀(c : T) ∈ ΓI ∪ ΓC , T = Πx1 :A1. . . .Πxp :Ap. T ′. Finally, in order to be well-formed and
accepted in Coq, inductive types must satisfy several other criteria: inductive types must
build a type so their type must be a so-called “arity” (product types which “ultimate”
codomain is a sort), constructors must build inhabitants of one of the defined inductive
types and their type must satisfy the nested positivity condition. Using the notations from
the Coq documentation [Tea], inductive definitions are written Ind[p](ΓI := ΓC).

Example 1: Below are the definition of usual inductively defined data structures:

Natural numbers: Ind[0]
([

nat : Type0

]
:=
[
O : nat
S : nat→ nat

])
Polymorphic lists:

Ind[1]
([

list : ΠA : Type0. Type0

]
:=
[

nil : ΠA : Type0. list A
cons : ΠA : Type0. A→ list A→ list A

])

Even and odd predicates on nat:

Ind[0]


[
even : nat→ Prop
odd : nat→ Prop

]
:=


even0 : even O
evenS : Πn : nat. odd n→ even (S n)
oddS : Πn : nat. even n→ odd (S n)




CHAPTER 9. PRACTICAL EMBEDDING OF COQ 184

Inductive types must all be well-sorted and their constructors must be well-typed in
the context extended with the inductive type declarations. Therefore they may simply be
translated as successive symbols declarations.

nat : Univ (type 0).
O : Term (type 0) nat.
S : Term (type 0) nat →Term (type 0) nat.
list : (A:Univ (type 0)) →Univ (type 0).
nil : (A:Univ (type 0)) →Term (type 0) (list A).
cons : (A:Univ (type 0)) →Term (type 0) A →Term (type 0) (list A)

→Term (type 0) (list A).
even : Term (type 0) nat →Univ prop.
odd : Term (type 0) nat →Univ prop.
even0: Term prop (even O).
evenS: (n:Term (type 0) nat) →Term prop (odd n)

→Term prop (even (S n)).
oddS : (n:Term (type 0) nat) →Term prop (even n)

→Term prop (odd (S n)).

Note however that none of the inductive well-formedness conditions performed by Coq
are guaranteed by the encoding or the translation. For now it is necessary to rely on an
external check in order to trust the consistency of a translated signature with inductive
definitions. However the encoding aims at providing a correct (well-typed) representation.

9.3.2 Destructors

The destructor of an inductive type is a very general scheme that allows to use inhabitants
of an inductive type by assuming they are necessarily built using one of the type’s construc-
tors. It encompasses both the usual destruction rule of inductively defined propositions
such as disjunctions or conjunctions, and pattern matching on elements of inductively
defined sets such as natural numbers or lists.

match m as x in I q a return P with
(c1 x11 . . . x1p1) =⇒ f1
. . .
(cn xn1 . . . xnpn) =⇒ fn
end

This construction allows to inhabit the type P{ai 7→ ti}{x 7→ m} depending on the term
m inhabiting the instance I q t1 . . . tn of the inductive type I. It requires to provide an
exhaustive list of case functions: fi : P{ai 7→ ti}{x 7→ ci xi1 . . . xipi} for all i and terms
ti (depending on the xi1 . . . xipi) such that ci xi1 . . . xipi : I q t1 . . . tn. These terms ti
can simply be inferred from the type declaration of each constructor, assuming that pi is
such that it is fully applied. Note that the parameters q = q1, . . . , qp, are uniformly fixed.

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 185

The translation of such constructions requires a dedicated match function:
match_I :

q1:P1 →...→qp:Pp →
s : Sort →
P : (a1:A1 →...→ak:Ak →Term sI (I q1 ...qp a1 ...ak) →Univ s) →
case_c1 : (x11:B11 →...→x1p1:B1p1 →

Term s (P t11 ...t1k (c1 q1 ...qp x11 ...x1p1))) →
...→
case_cn : (xn1:Bn1 →...→xnpn:Bnpn →

Term s (P tn1 ...tnk (cn q1 ...qp xn1 ...xnpn))) →
a1:A1 →...→an:An →
x : I q1 ...qp a1 ...an →Term s (P a1 ...an x).

Where the term tij are such that for all i, ci q1 . . . qp x1 . . . xk : I q1 . . . qp ti1 . . . tik.
Occurrences of this destructor are then translated to the well-typed

match_I [q1] . . . [qp] [s] (λax. [P]) (λx1. [f1]) . . . (λxn. [fn]) [t1] . . . [tn] [m]

Conversion in the Calculus of inductive Constructions is extended with the ι-rule that
provide destructors with some computational power:

match ck q a with (ci xi =⇒ fi)1≤i≤n end ≡ι fk{xk 7→ a}

This is quite naturally represented with a rewrite rule for each constructor ci:
[q1 ... qp s P case_c1 ... case_cn a1 ... ak xi1 ... xipi]
match_I q1 ...qp s P case_c1 ...case_cn a1 ...ak (ci xi1 ...xipi)
↪→case_ci xi1 ...xipi.

9.3.3 Brackets versus S-injectivity

It is not clear that the rule for constructor elimination preserves subject reduction. Indeed,
the inferred type for the left-hand side is Term s (P a1 . . . ak (ci x1 . . . xpi)) while the right
hand side is of type Term s (P t1 . . . tk (ci x1 . . . xpi)) for the particular terms ti such that
ci x1 . . . xk : I q1 . . . qp t1 . . . tk. A sufficient condition for the rule to be type-preserving is
therefore that ai ≡βR ti for all i. And indeed, for the left-hand side to be well-typed, it
must be the case that (respectively) the inferred and expected type for the last argument
of P are convertible:

Term sI (I q1 . . . qp t1 . . . tk) ≡βR Term sI (I q1 . . . qp a1 . . . ak)

Dedukti’s algorithm for type preservation checking is currently not powerful enough to
infer, on its own, that this constraint ensures ai ≡βR ti and therefore that the generated
rule is type preserving. It is only allowed to destruct constraints that are headed by a so-
called static symbol: such that no rewrite rule are headed by that symbol. The I symbol
is static here but the Term symbol is not because several rewrite rules are Term-headed.
In fact Term is not even injective since

Term (u 0) t ≡βR Term (u 1) (cast 1 2 (u 0) (u 1) t)

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 186

while we have neither u 0 ≡βR u 1 nor convertibility of the second arguments.
However our translation guarantees that, despite having rewrite rules, the functional

symbol Term is {2}-injective. The general definition of S-injectivity for a set S of argument
positions as well as more detailed use cases in the context of rewrite rule checking can be
found in Jui-Hsuan Wu and Blanqui’s work [Wu19, Bla20].

This means that it is “injective in its second argument”: whenever s ≡βR s′ and
Term s t ≡βR Term s′ t′ then necessarily t ≡βR t′. This property is sufficient to guarantee
that all the match elimination rules are in fact type preserving. From the typing constraint
of the left-hand side, we can deduce that

I q1 . . . qp t1 . . . tk ≡βR I q1 . . . qp a1 . . . ak

and then by injectivity of I, this can only hold when ai ≡βR ti for all i which in turn
obviously guarantees that

Term s (P a1 . . . ak (ci x1 . . . xpi)) ≡βR Term s (P t1 . . . tk (ci x1 . . . xpi))

For Dedukti to accept this rule we need to rely on a hint mechanism called brackets,
or dot patterns in previous versions [BB12]. For instance, the translation of destructor
elimination rules for evenS is:

[s P case_even0 case_evenS case_oddS n]
match_I s P case_even0 case_evenS case_oddS {S n} (evenS n)

↪→case_evenS n.

The expression in brackets is

• interpreted as the S n expression when checking rule type preservation;

• interpreted as a fresh meta-variable, Z, applied to all available locally bounded
variables (which is none in our example), when using the rule for matching;

• whenever the rule is fired, it is systematically checked at runtime that the bracket’s
match is in fact convertible with the provided expression S n.

This solution allows to check type-preservation but at the cost of a “safety net” which is
checked at runtime every time the rule is used and even though that check is in theory
not necessary because conversion is guaranteed by typing. Note that this mechanism is
a bit different from conditional rewriting. In this mechanism, if the rule ever matched a
term with a substitution σ such that Zσ 6≡βR (S n)σ, then, not only would the rule not
be fired, but an exception would also be raised, since by assumption, the matched term
cannot be well-typed.

These systematic checks explain some of the performance issues in the translation
of Coq developments that heavy rely on inductive-based conversion. Implementing the
inference or declaration of S-injectivity to be properly used at rule checking could bring
dramatic improvement to this way of encoding computational rules which is a major
feature of Coq.

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 187

9.4 Fixpoints

9.4.1 Definition

Fixpoints are constructions allowing to build proofs or functions that may recursively refer
to other instances of themselves. The computation of an applied fixpoint may therefore
require further computation of the same fixpoint which compromise, the termination of
reduction. Besides, a general fixpoint scheme may allow circular proofs which compromise
the soundness of the system. To prevent both of these issues, Coq enforces recursive calls
in fixpoints to be on a structurally smaller set of arguments.

For instance, addition on natural numbers can be defined as the following fixpoint
Definition plus :=

fix plus (n m:N) {struct n} : N
:= match n with 0 ⇒ m | S n' ⇒ S (plus n' m) end.

Reusing the notations of [Tea], a fixpoint is written

Fix fi{f1/k1 : A1 := t1, . . . , fn/kn : An := tn}

where the ki are the indices of a structurally decreasing argument of the mutually recursive
function symbols fi. This means that each of the Ai typing the fi must be headed with
at least ki products: Ai = Πx1 :A1

iΠxki :Akii . Ti and occurrences of fi in tj must have
its ki-th arguments structurally smaller than xkj . The above fixpoint is well-typed in
the context Γ if each Ai has a sort si and each ti has type Ai in the extended context
Γ, f1 : A1, . . . , fn : An, therefore allowing occurrences of f1, . . . , fn in the ti.

Our example is well-typed since we have k = 1 and the first argument of the recursive
call to plus in t is n′ which is bound by a structural decomposition (match) of n and

plus :N→ N→ N`S λnm :N. (match n with 0⇒ 0, S n′ ⇒ plus n′m end) :N→ N→ N

Fixpoints naturally add computational power to Coq through the ι rule:

Fix fi{F} a1 . . . aki −→ι ti{fi 7→ Fix fi{F}} a1 . . . aki

only if aki is headed by a constructor. If the previously stated condition of F are verified,
then this reduction can be proven strongly normalizing together with β and the other
reduction rules of Coq. Note that the following rule would obviously not be terminating.

Fix fi{F} −→
ι

ti{fi 7→ Fix fi{F}}

This rewrite rules guarantees that in our example:

plus (S x) y := Fix (plus := . . .) (S x) y
−→
ι

match S x with . . . end {plus 7→ Fix (. . .)}
−→
ι

S (plus x y) {plus 7→ Fix (. . .)}
= S (Fix (. . .) x y) =: S (plus x y)

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 188

which does not reduce further as the Fix operator is applied to variables which are not
headed by a constructor and therefore prevent the ι rule to be further used.

While embedding fixpoints in Dedukti, we need to be very careful to reflect this
computational rule while guaranteeing that it can only be fired if the ki-th argument is
headed by a constructor, otherwise instances of fixpoint will be non-terminating, even
when restricting to head normalization.

9.4.2 A first implementation

In Boespflug and Burel [BB12], a fixpoint occurring in a context Γ = y1 : B1, . . . , yp : Bp
is represented with 2n fresh symbols defined beforehand and quantifying over the context
Γ. Note the anonymous duplication of the last argument in the f′i:

f1 : y1 : B1 →...→yp : Bp →x11 : A1 →...→x1k1 : A1k1 →T1
...
fn : y1 : B1 →...→yp : Bp →xn1 : A1 →...→xnkn : Ankn →Tn

f'1: y1 : B1 →...→yp : Bp →x11 : A1 →...→x1k1 : A1k1 →A1k1 →T1
...
f'n: y1 : B1 →...→yp : Bp →xn1 : A1 →...→xnkn : Ankn →Ankn →Tn

We then define duplicating rewrite rules
[...] f1 y1 ...yp x11 ...x1k1 →f'1 y1 ...yp x11 x1k1 x1k1
...
[...] fn y1 ...yp xn1 ...xnkn →f'n y1 ...yp xn1 xnkn xnkn

Finally, for all 1 ≤ i ≤ n, the Akii must be an inductive type I a1 . . . aqi and for all
constructors c of I, the following rewrite rule is added

fi y1 ...yp xi1 ...xiki (c a1 ...aqi) ↪→ti

where ti is the translation of the i-th body, ti, which may freely refer to the previously
defined translations fi of the fi. This implementation is correct with respect to the two
following properties of fixpoints:

• all well-typed fixpoint occurrence is translated into a well-typed term, although this
term must be considered in a well-typed extension of the signature;

• the computation rule is reflected in the encoding but is limited to constructor guarded
ki-th argument.

This implementation has however two major issues that make it very inconvenient to
use in practice for Coq development heavily relying on fixpoint computations.

• It lifts local fixpoint definitions out of their local context which needs to be encoded
as arguments in the definition of the fixpoints. This duplication does not interfere
with the computation of the fixpoint but it makes its translation quite cumbersome
and nearly impossible to read by a human.

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 189

• Two identical fixpoints defined separately would have nonconvertible translations.
For instance two identical definitions of the addition define convertible terms in Coq,
yet are translated to distinct symbols with identical sets of rules, but not convertible.

In order to fix these two issues, we need a way to represent fixpoints directly as a
Dedukti term inside a local context and with the same correctness of computation power.

9.4.3 First-class fixpoints

We describe here a very technical encoding of fixpoints as first-class constructions. We
detail the implementation with as much precision as we think is required for the reader
to get an idea why this implementation is correct. This implementation heavily relies
on the public/private separation of the encoding to guarantee the conservativity of the
representation.

We start by considering a signature defining a private type of unary natural numbers
to represent indices and length as well as a guarding function defined on the translation
of all well-sorted types.

_N : Type.
_0 : _N.
_S : _N → _N.

Guarded? : Type.
guarded : Guarded?.
def guarded? : s : Sort → Ind : Univ s → Term s Ind → Guarded?.

SingleArity : Type.
def SA : _N → s : Sort → Univ s → SingleArity.

MutualArity : _N → Type.
MAnil : MutualArity _0.
MAcons : n : _N → SingleArity → MutualArity n → MutualArity (_S n).

def MutualFixpoint (n : _N) (MA : MutualArity n) : Type.

The SingleArity type represents pairs of a well-sorted type (which should be an arity
even though it is not guaranteed by the encoding) together with an index, the position of
the structurally decreasing argument. If `S A : s, then (k,A) is translated as SA [k] [s] [A].

The MutualArity type represents lengthed lists of SingleArity. Instances are built
using the usual constructors of lists.

The MutualFixpoint type represents a MutualArity together with a list of bodies
with the expected type. We will assume a single constructor MF expecting an integer n
and a MutualArity of size n such that MF n [SA k1 s1 A1 ; ... ; SA kn sn An]
has type

t1 : (Term s1 A1 →...→Term sn An →Term s1 A1) →
... →
tn : (Term s1 A1 →...→Term sn An →Term sn An) →MutualFixpoint

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 190

This constructor therefore allows to build a representation for the list of bodies {f1/k1 :
A1 := t1, . . . , fn/kn : An := tn} of a mutual fixpoint. The declared types enforce that all
provided arities have a sort and of courses that there are as many bodies as arities and that
the bodies have the expected type: they define an inhabitant of Ai but may recursively
refer to all Aj to do so.

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 191

Using this constructor, the representation of {f1/k1 : A1 := t1, . . . , fn/kn : An := tn}
is therefore:

MF (MACons (SA k1 s1 A1) (... MACons (SA kn sn An) MANil)...)
(f1 : Term s1 A1 7→...7→fn : Term sn An 7→t1)
...
(fn : Term s1 A1 7→...7→fn : Term sn An 7→tn)

It now only remains only to define the projections, Fix fi{. . . }, of fixpoints encoded
this way:
def fix_proj :

n : N →
MA: MutualArity n →
MutualFixpoint n MA →
i : N →
Ith_Arity n MA i.

where Ith_Arity n MA i simply computes, using rewrite rules, the i-th arity in the MA list of
arities. The actual implementation relies on code representation to ensure the irrelevance
of the arities typing sorts.

As an example, the usual definition of the plus function
Definition plus : N→ N→ N :=

fix f (n:N) (m:N) {struct n} : N := match n with 0 ⇒ m | S n' ⇒ S (plus n' m) end.

would be translated, as follow:
nat : Univ 0.
Z : Term 0 nat.
S : Term 0 nat →Term 0 nat.
def arr (A:Univ 0) : Univ 0 := prod 0 0 A (x:Term 0 A 7→A).

plus : Term 0 nat →Term 0 nat →Term 0 nat
:= fix_proj (_S _0)

(MAcons _0
(SA _0 (univ 0) (arr nat (arr nat nat)))
MAnil

)
(MF ...(plus 7→x 7→y 7→match_nat x Z (x' 7→S (plus x' y)))
_0.

9.4.4 Hacking through the quadratic blowup

To properly define a well-typed constructor MF as described before and used in CoqInE is
a bit technical. However, since the type-rewriting techniques involved could probably be
reused in other embedding in the λΠ≡, we rely on simpler examples to provide the main
ideas behind its definition.

Assume a quite standard implementation of lengthed lists in Dedukti:

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 192

A : Type.

N : Type.
0 : N.
S : N →N.

LList : N →Type.
nil : LList 0.
cons : n:N →LList n →A →LList (S n).

In order to build a list of length 3, we need to use
def mylist_3 := cons (S (S 0)) (cons (S 0) a (cons 0 nil a)) a.

which is a bit costly since we need to repeat the successive length in each occurrence of
the cons constructors. This may seem negligible here but the unary integer representation
actually forces to rely on a term of size n2 to represent a list of length n. Besides, this
immediately becomes a problem when considering, for instance, the case of polymorphic
lists :

T : A →Type.
PLList : A →N →Type.
pnil : a:A →PLList a 0.
pcons : a:A →n:N →PLList a n →T a →PLList a (S n).

In order to build a polymorphic list on length n, one needs to repeat the same polymorphic
argument in all the n+ 1 successive constructors.

A work around this issue is to define the following well-typed functions:
def PLListAux : A →N →N →Type.
[a,n] PLListAux a n 0 ↪→PLList a n.
[a,n,m] PLListAux a n (S m) ↪→T a →PLListAux a n m.

def acc : (a:A) →(n:N) →(m:N) →PLListAux a n m
→T a →PLListAux a (S n) m.

[n ,a,PL] acc a n 0 PL ↪→Pcons a n PL.
[n,m,a,PL,e] acc a n (S m) PL e ↪→acc a n m (PL e).

def smart_cons : (a:A) →(n:N) →PLListAux a n n.
[a] smart_cons a 0 ↪→Pnil a.
[a,n] smart_cons a (S n) ↪→acc a n n (smart_cons a n).

The defined smart_cons functional symbol can be successively applied once to the
polymorphic parameter a, once to a size integer argument, n, and eventually to n argu-
ments of type T a. This application has type PLList a n and it rewrites, as expected, to
the fully expanded representation of the polymorphic lengthed list formed with the last n
arguments.

a : A.
e1 : T a. e2 : T a. e3 : T a.
#INFER smart_cons a (S (S (S 0))).

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 193

(; (T a) -> (T a) -> (T a) -> PLList a (S (S (S 0))) ;)
#EVAL smart_cons a (S (S (S 0))) e1 e2 e3.
(; Pcons a (S (S 0)) (Pcons a (S 0) (Pcons a 0 (Pnil a) e1) e2) e3 ;)

Finally, we consider a structure of several lists sharing the same size and polymorphic
parameter. The parameters to build an object in this structure will have to be duplicated in
the structure constructor and each of the lists constructors. A way to avoid this duplication
is to use, once again, a smart constructor that provides a list constructor of the expected
type:
struct : Type.
pair : (a:A) →(n:N) →PLList a n →PLList a n →struct.

def smart_pair : (a:A) →(n:N) →
(PLListAux a n n →PLList a n) →
(PLListAux a n n →PLList a n) →
struct.

[a,n,l1,l2] smart_pair a n l1 l2
↪→pair a n (l1 (smart_cons a n)) (l2 (smart_cons a n)).

#EVAL smart_pair a (S (S 0)) (c 7→c e1 e2) (c 7→c e2 e3).
(; pair a (S (S 0))

(Pcons a (S 0) (Pcons a 0 (Pnil a) e1) e2)
(Pcons a (S 0) (Pcons a 0 (Pnil a) e2) e3) ;)

While that last optimization may seem superfluous, it becomes critical for instance when
the types of the second list may depend on the first one. In the case of fixpoints, for
instance, a first list is provided with the indexed arities (Ai/ki) and then a second list
must be provided with the bodies of the fixpoints definitions which expected type depends
on the previous list.

The following usual fixpoint definition
Definition f : N→ N :=

fix f (n:N) {struct n} : N := match n with 0 ⇒ 0 | S n' ⇒ S (g n') end
with g (n:N) {struct n} : N := n
for f.

is therefore translated to the (relatively) concise
def f : Term set nat →Term set nat :=

fixproj 2
(c 7→c (SA 0 set (prod set set set I nat (n : Term set nat 7→nat)))

(SA 0 set (prod set set set I nat (n : Term set nat 7→nat))))
(c 7→c (f0 7→ g0 7→ (n:Term set nat) 7→

match_nat set (n0 : Term set nat 7→nat)
O (n' : Term set nat 7→S (g0 n')) n

)
(f07→ g0 7→ (n:Term set nat) 7→ n))

0.

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 194

Finally a similar technique can be used to chain the construction of conjunctions proofs
or usage of transitivity in the proof of cumulativity. As an example, the encoding offers
the following constructors:

c1 : eps A. c2 : eps B. c3 : eps C.
(; Duplication of B and C ;)
pair A (and B C) c1 (pair B C c2 c3) : eps (and A (and B C)).
(; No duplication ;)
smart_pair (Some A) c1 (Some B) c2 (Some C) c3 None : eps (and A (and B C)).

c1 : eps (Cumul s0 s1).
c2 : eps (Cumul s1 s2).
c3 : eps (Cumul s2 s3).
(; Duplication of s0 and s2 ;)
trans s0 s2 s3 (trans s0 s1 s2 c1 c2) c3 : eps (Cumul s0 s2).
(; No duplication ;)
smart_trans s0 (Some s1) c1 (Some s2) c2 (Some s3) c3 None : eps (Cumul s0 s2).

The technique to properly define smart_pair and smart_trans as well-typed symbols is
not detailed here but is similar to the ones previously described. Typing ensures that the
smart constructors may only be used to build proofs that could be without them. In fact
fully applied smart constructors actually rewrite to an expression using exclusively the safe
constructors. This representation is therefore redundant but identical parts were all dupli-
cated from a single term and are therefore shared in memory. In the context of encodings,
these proofs are discarded anyway to ensure their non-relevance and their expanded form
does not even need to be computed in the process of typechecking translations.

9.5 Universe polymorphisms

9.5.1 Template universe polymorphism

Template universe poymorphism was introduced by Herbelin as an implicit form of universe
polymorphism for inductive types in their uniform parameters: those that specified in all
occurrences of the constructors types. It allows inductive types to be universe polymorphic
in some of their parameters which type is an arity while keeping monomorphic constructors.

For instance, the previously defined list is actually implicitly template polymorphic
when defined in Coq. This means that for all universe level i, if `S A : Typei then we
have `S list A : Typei:

Check list N : Set. Check list Type : Type.

Note that this polymorphism is unannotated. The sort of list A is deduced from the
inferred type of A. In particular, it is not necessarily stable and may decrease by substitu-
tion or along reduction. Constructors, however, are monomorphic and any type parameter
Ai has a fixed (floating) sort si enforced to be above the sort of the corresponding type
argument in all later occurrences of the constructor.

This allows to build lists from other lists but forbids for instance to apply cons to
list or to itself:

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 195

Check cons (cons a nil) nil : list (list A).
Fail Check cons list.
Fail Check cons (@cons).
(* Fails indeed: cannot ensure that "Type@{max(Set,list.u0+1)}"

is a subtype of "Type@{list.u0}"). *)

In previous implementations of CoqInE, this form of polymorphism was simply ig-
nored in the translation and static global universe levels were used:
option: Univ 2 →Univ 2.
Some : A : Univ 2 →Term 2 A →Term 2 (option A).

Surprisingly this approximation actually works in practice and allows to type-check a
couple of files from Coq’s prelude, showing that this feature is not necessary to start using
type-parameterized inductive types. However the translation eventually becomes ill-typed
since, for instance, `S option nat : Type0 in Coq but `D option (lift 0 2 nat) : Univ 2
in Dedukti.

A first optimization consists in using a sort parameter
option : s : Sort →Univ s →Univ s
Some : s : Sort →A : Univ s →Term s A →Term s (option s A)

This solution works better since now `D option 0 nat : Univ 0.
However we have: (λA : Type2. option A) nat ≡β option nat and yet

(A 7→option 2 A) (lift 0 2 nat) −→
β

option 2 (lift 0 2 nat) 6≡βR option 0 nat

Besides constructors should be monomorphic to avoid building inhabitants of the inductive
type for higher levels than itself.

A solution is to provide a cast-erasing rewrite rule on the sort-polymorphic inductive
type while keeping a static monomorphic constructor:
def option : s : Sort →Univ s →Univ s.
[s,s',A] option s (lift s' _ A) ↪→lift s' s (option s' A).
Some : A:Univ 2 →Term 2 A →Term 2 (option 2 A).

The choice of option’s sort argument is now “irrelevant” in some sense. The type obtained
by lifting nat, Term (option 2 (lift 0 2 nat)) reduces to Term 0 (option 0 nat).

Finally, using code representation we actually rely on a private version of the inductive
type just like we do for universe polymorphic declarations:
def option : s : Sort →Univ s →Univ s
option' : Code →Code
[s,A] code _ (option s A) ↪→option' (code s A).
Some : A : Univ 2 →Term 2 A →Term 2 (option 2 A)

This ensures Term s' (option s' (lift s s' A)) is convertible with Term s (option s A)
since both reduce to Decode (option' (code (univ s) A)).

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 196

9.5.2 Cumulative universe polymorphism

In the particular case of universe polymorphic inductive definitions, Coq recently in-
troduced a new form of universe polymorphism for inductive definitions which allows a
less constraining convertibility criteria in some cases. The sort parameters of cumulative
universe polymorphic inductive types in Coq are either:

• Invariant: this is the default kind of universe polymorphic parameters and the
default in non-cumulative polymorphic declarations. All invariant sort parameters
must be equal for instances to be convertibles. These parameters are translated as
simple sort parameters in Dedukti without difficulty.

• Irrelevant: as the sort parameter of template polymorphic lists discussed before.
They are ignored when deciding whether two instances are convertible and can there
be rewritten into private representations erasing them so that they are irrelevant in
the translation.

• Covariant: when they occur in the type of the constructors rather than in the
parameters of the defined inductive type. In that case, subtyping is extended covari-
antly, meaning that a type instance is a subtype from an other if all of its covariant
sort parameters are pairwise smaller. This was translated by extending the sub-
typing predicate in the encoding system with rewrite rules reducing the subtyping
between instances to the corresponding covariant parameters subtyping constraints.

9.6 Local let-in
Coq allows not only variables declarations to be added to a context but also variable
definitions: (x := t : T). Context well-formedness is checked with

Σ; Γ WFS Σ; Γ `S t : T x 6∈ Γ
Σ; Γ, (x := t : T) WFS

W-Local-Def

and such definitions are introduced with a dedicated term construction let x := t in u:

Σ; Γ `S t : T Σ; Γ, (x := t : T) `S u : U
Σ; Γ `S let x := t in u : U{x 7→ t}

Let

This construction enrich the conversion with the so-called ζ-reduction:

let x := t : T in u −→
ζ

u{x 7→ t}

Dedukti does not have such a construction and the only way, that we know of, to
encode this construction is to rely on so called let-lifting. If t|p = (let x := u : U in v) is
a subterm of t at position p in a derivable judgment Σ; i/φ;∅ `S t : s or Σ; i/φ;∅ `S t : τ .
Then we write Γ = x1 : A1, . . . , xn : An the typed local context at this instance, i.e. the

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 197

list of typed binding between the root of t and the occurrence of the let−in. We define
the lifting of that occurrence outside of t as the definition of an extra symbol:

let_x : Πx1 :A1. . . .Πxn :An. U := u

well-typed in Σ; i/φ;∅, so that Σ′ := Σ, (let_x[i/φ] : Πx1 :A1. . . .Πxn :An. U := u) is
well-formed. We then translate the following judgment

Σ′; i/φ;∅ `S t[v{x 7→ let_xi x1 . . . xn}]p : τ
where the let−in occurrence has been replaced with its body, v, in which all occurrences
of x have been replaced with the newly defined symbol with the same universe variables
and applied to the same arguments in the same order. This is well-typed since

Σ′; i/φ;x1 : A1, . . . , xn : An `S let_xi x1 . . . xn : U
and let_xi x1 . . . xn−→

δ
u to match x−→

ζ
u in t|p.

As an example, the following well-typed Coq definition
Definition t : eq N 0 0 := let x := N : Type in let y := 0 : N in eq_refl x y.

is translated into
def let_x (i : Lvl) : Univ i := lift (type 0) (type i) I nat.
def let_y (i : Lvl) : Term (type 0) nat := 0.
def t (i : Lvl) : Term (type 0) (eq nat 0 0)

:= eq_refl (let_x i) (let_y i).

This convenient let−in construction is first-class in Coq and often used extensively
in developments, in particular to name intermediate goals in interactively defined proofs.
Therefore many occurrences of let−in do not actually require the convertibility relation
associated with the bound variable. For instance, we have

. . .

`S 2 : N
. . .

x := 2 : N `S x+ x : N
`S let x := 2 : N in x+ x : N

However the x := 2 : N definition was not required to derive `S x+ x : N. A simple x : N
declaration would have sufficed. In that particular case, the let−in could have therefore
been replaced with a simple cut:

. . .

x : N `S x+ x : N
`S λx :N. x+ x : Πx :N.N

. . .

x := 2 : N `S x+ x : N
`S (λx :N. x+ x) 2 : N

When translating Coq developments that are meant to be interoperable with other logics
that do not support the ζ-reduction, all occurrences of let−in must be of this kind and
it is therefore possible to configure CoqInE to systematically translate them as β-redexes
rather than the previously described elaborate (and verbose) let-lifting. If the rest of the
translation fails, the translator is however able to backtrack and eventually translate it as
a well-typed let-lifting.

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 198

9.7 Minimal universe constraints
In Coq proofs, universe levels are not usually declared beforehand. Instead the user may
rely on typical ambiguity to omit the level in Type occurrences which are then replaced
with anonymous or universe polymorphic (locally bound) levels at type-checking. The
universe constraints required to type check a term are not declared either. Coq must
work backwards as it tries to type a term t and infer on the fly a set of constraints φ large
enough so that t is indeed typable but guaranteeing that this set remains stratifiable.

Then Coq performs a minimization pass to keep only a minimal set of constraints
large enough to infer all the constraints that were previously inferred when expanding the
typical ambiguity in the user-defined terms. For performance, but also user readability, it
removes duplicates or trivial constraints as well as constraints that can be inferred from
others using transitivity. For instance, a set of inferred constraints {i ≤ j, j ≤ k, i ≤ k}
will be minimized to {i ≤ j, j ≤ k} the last constraints being inferrable from the first two,
it is dropped.

The translator, CoqInE, on the other hand relies on Coq’s type checking and must
therefore work with the minimized set of constraints. It is required to rebuild the for-
gotten constraints with the transitivity symbol, tr, every time the translation requires a
constraint missing from the minimized set. This is done with a simple breadth-first search
where the absence of cycle guarantees that constraints can only be used once and therefore
runs in linear time.

9.8 In practice
The previous iterations of the CoqInE tool already allowed to translate Coq’s standard
library. However only the first few generated files, all from the Init folder in Coq’s
prelude, were well-typed. The main reason for this is that the encoding used to rely on an
approximation of template polymorphism and first-class fixpoints, both features implicitly
occurring quite often, even in the standard library. Yet, the issues were usually complicated
corner cases and most standard examples passed, therefore allowing to showcase the tool.
Most of these problematic features were in fact absent from the Matita system, a simpler
variant of Coq, which is why Assaf chose to target this system first.

Our work on universe embedding as well as the practical techniques described in this
section allowed to extend CoqInE to correctly represent and translate a much large subset
of the Coq system. In particular, the current implementation now offers limited support
for universe polymorphism, both from template polymorphic inductive types and “true”
polymorphism. The covered subset is now large enough to allow the translation of Coq’s
prelude as well as numerous files from the standard library.

In particular we were able to translate the following selections of Coq libraries into
Dedukti, each showing off a different use case of the tool.

• The GeoCoq project (geocoq.github.io/GeoCoq) is a Coq implementation of sev-
eral geometry formalisms and developments. Our first target was the formalization

geocoq.github.io/GeoCoq

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 199

of the original proofs from the first book of Euclid’s Elements. The corresponding
library is sizable but not too complicated, relying exclusively on the simplest fea-
tures of Coq. In collaboration with Boutry, Narboux and Thiré, we were able to
fully translate it, including the Pythagorean theorem, using a simple version of the
encoding. It is at the moment one of the largest proof library encoded in Dedukti.
In particular this development allowed some post-processing treatment of the files
in Dedukti files.

• Our second target, from the same project, was the implementation of the first part
of Tarski’s “Metamathematische Methoden in der Geometrie”. In collaboration with
Boutry, we were able to fully translate it but the generated files could only be
checked up to Chapter 14 mostly because of performance issues in the translation
of fixpoints. The Coq development heavily relies on co-linearity and co-planarity
algorithms which were implemented directly in Coq rather than in the meta language
of tactics. The corresponding terms therefore required a lot of (Coq) computation
to be reduced or checked. In order to check the translated Dedukti terms, it was
required to perform the same computations in the correct but slower encoding. It
even required more computation since Dedukti type checking algorithm is not as
clever as Coq’s. Removing this particular tactic from the development allowed to
go as far as Chapter 16. This development does not features universe polymorphism,
apart from some requirements from the standard library, but it showcases the correct
representation of inductive types and fixpoints algorithms which are heavily used in
this geometrical development.

• Finally a selection of 30 files from the standard library and 18 short hand-written
examples was translated and checked. This last batch is quite small but heavily
relies on the previously unavailable advanced features of Coq such as universe poly-
morphism. This selection is used as unit tests for the tool.

A benchmark of sizes, translation and checking times indicators can be found in Fig-
ure 9.1. These numbers are a mere order of magnitude of the tool’s performance and should
not be taken for an accurate benchmark for several reasons. Among the several bias we
point two out. In both GeoCoq benchmarks, only the project’s files are checked with Coq,
the standard library is omitted, even though it is then translated and rechecked in De-
dukti. In the case of GeoCoq’s Tarski benchmark, several files from Coq’s standard library
are included even though sometimes only a single definition is required from them. In order
to minimize the translation, a non negligible part of these Coq files is “pruned” out after
translation and only a minimalized version is checked in Dedukti. All developments are
open source and referenced on Deducteam’s web page https://github.com/Deducteam/.

It is worth mentioning that experiments to use the new encoding techniques to encode
the arithmetic library of Matita were not conclusive yet because of performance issues
since the new encoding relies on more reduction steps for convertibility. These issues raise
interesting questions about the implementation of Dedukti and ways to have a tighter
control over the reduction strategy.

https://github.com/Deducteam/

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 200

GeoCoq Euclid GeoCoq Tarski Coq std
Files 237 124 48

LoC (w/o comments/empty) 20200 81000 6040
Size 1.4 Mb 2.46 Mb 420 Kb

Compressed size 112 Kb 391 Kb 68.6 Kb
Translation size 497 Mb 1.0 Gb 24.3 Mb

Compressed translation 14.5 Mb 33 Mb 520 Kb
Translation time 24m26s 10m58s 5.7s

Coq checking time 7m17s 7m06s 17.6s
(Byte.v alone: 7.4s)

10m38s 1h52 10.9s
Dedukti checking time (CoincR.dk: 56m) (Byte.dk: 4.9s)

(CongR.dk: 46m)

Figure 9.1: Translation benchmark of several Coq developments

Finally the new features of CoqInE, together with some other tools, are expected to
allow some interoperability between Coq developments and other systems. For instance,
two models of hyperbolic geometry were expressed, one within the Isabelle/HOL proof
assistant, based on Poincaré’s disc model [SMB20] and the other within Coq based on
Klein’s disc model. An isomorphism between these two models was devised by the authors
of these developments and could be formalized. Instead of manually replicating one devel-
opment into the other proof system, the Dedukti representation could be used, either as
an intermediary representation to translate from Coq to Isabelle, or as a middle ground
in which both developments could be expressed in a common logical subset of the logics
of both proof assistants.

Conclusion

201

Conclusion

In the first part of this manuscript, we relied on van Oostrom’s decreasing diagrams to
provide several confluence criteria for higher-order rewrite systems, both left-linear and
non-left-linear, considered together with the usual functional reduction.

In the linear case, our approach consisted in using the multi-step orthogonal extension
of the reduction β∪R in order to show the existence of a decreasing diagram for any local
peak. This technique is standard to prove the confluence of left-linear systems without
critical pair. We show that it extends, in particular, to the case where orthogonal critical
pairs have decreasing diagrams.

We also introduced a new criteria for the confluence of non-left-linear systems restricted
to a subset of well-layered terms featuring a confined first-order layer. The syntactical
layering of the considered terms is designed to forbid problematic interactions between
non-left-linear rules and higher-order rules. Such interactions were exploited to fabricate
confluence counter-examples but the terms of the pure λ-calculus that they rely on are not
usually well-typed. However, because confluence on untyped terms must first be proven
in order to consider a well behaved typing system, our syntactical restriction plays the
role of an intermediate step providing just enough guarantees for confluence to hold while
allowing as many as possible, if not all, well-typed terms.

While non-left-linear rewrite rules are extremely useful, they have been avoided so far in
higher-order typed settings to which confluence is the keystone most other properties rely
on. Our work now allows non-left-linearity to be used and its confluence to be addressed
by considering syntactical restrictions on terms.

In the second part of this manuscript, we introduced several techniques, both theoreti-
cal and practical, to correctly encode universes and type systems relying on them in λΠ≡.
We especially focused on the translation of an extension of the Calculus of Constructions
featuring some form of universe polymorphism. The encoding system is type-preserving
assuming its confluence and the translation mechanism relying on derivation rather than
terms was proven correct. These techniques were implemented in practice, along with
practical clever tricks that were permitted by them, in order to improve the CoqInE
translator, targeting the Coq system. Finally we succeeded in translating the first several
sizable Coq libraries into a Dedukti encoding.

Universe polymorphism has long been a roadblock in the integration of Coq numerous

202

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 203

developments into Dedukti. Indeed complex features such as inductive types, fixpoints
and universe polymorphism occur even in the standard library, as early as in the prelude
subset which could therefore not even be translated using a simple encoding of the calculus
of constructions. Our contributions, both theoretical and practical now allow to associate
Coq’s formalism and developments to current work on interoperability. There even has
been some effort in the minimization of universes in Coq development using the work of
Thire [Thi20].

Related and future work

Regarding confluence of term-rewriting

We believe this work still requires some improvement to be easily applied to higher-order
rewrite systems used in practical applications such as logical system encoding. Some ways
to further extend our confluence result in the non-linear case were already mentioned in
Section 4.6. In particular the layering condition can most likely be relaxed so as to include
much more terms than those encompassed by our, quite strict, layering over N. While most
difficulties regarding layering should already be addressed in this manuscript, extending
Theorem 3.5.9 to orthogonal sub-rewriting is bound to be a challenging but rewarding
task. The resulting theorem would indeed be quite useful in practical non-terminating
embedding.

The introduced syntactical restrictions may appear cumbersome at first. For some
systems, however, they turn out to be quite natural. Sorts, for instance, are inherently
different from λ-terms and therefore their representations in an encoding may be syntacti-
cally separated without any risk to threaten neither the correctness nor the conservativity
of said encoding. In fact, such systems already rely on typing to ensure they are no more
expressive than the system they represent. The syntactical restriction is but an extra
constraint to consider in order to offer this guarantee.

Restricting the set of considered terms is hard to avoid when considering non-linear and
higher-order rules together. We believe that our syntactical restriction can be extended
to encompass a much wider class of terms. For instance, the attentive reader probably
noticed that our main confluence theorem does not directly apply to our encoding of Coq’s
universe polymorphism since the single non-left-linear rule considered is such that terms
cannot easily be layered.

Indeed, well-typed instances of the non-left-linear rule may very well substitute the non-
linear meta-variable with other redexes of that same rule, breaking the critical hypothesis
(H4). In fact there are even such instances that are in the image of the translation.
Until that gap is bridged, confluence and conservativity of our embedding is unlikely to
be proven and therefore it cannot be trusted as a type checker of Coq’s logic.

It does however allow to prove the confluence, see Lemma 6.1.1, of the simpler system
in Figure 9.6 embedding the infinitely sorted PTS�. While restricting subtyping to sorts
only conveniently allows to put them in a distinct, lower layer, this does not work for the
more general subtyping of CTS unless all terms can be layered. It was, in fact, conjectured

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 204

[Thi20] that CTS derivation trees can be annotated with a layering satisfying conditions
quite close to ours. If that conjecture turned out to be true, then it could be used to prove
the confluence of our embedding using duplicated versions of the coding and uncoding
operators (c and u) for each level.

It finally remains to see how the introduced syntactical conditions can be used in
practice. Their simplicity allows both well-layeredness of terms and layer preservation of
rules to be easily checked before type checking without any significant extra cost. An
implementation of these checks as well as simple criteria for hypothesis (H0) through
(H5) and a unification algorithm for the computation of critical pairs could all be added
to type checkers such as Dedukti for a more convenient practical use of safe non-left-
linear systems. The stratification could probably even allow a more efficient computation
since, going down one level, some rules become unavailable and can be disregarded for
faster computed reduction steps.

Regarding logical system encoding

In order to achieve a completely satisfying theoretical encoding of Coq in Dedukti, the
following issues still need to be addressed.

• The remaining non-linearities in the rewrite system should either be eliminated or
better controlled so that the encoding defines a proven confluent rewrite system on
a subset of terms large enough to encompass the image of the translation.

• Conservativity of our derivation tree translation should then be proven. The chal-
lenge here is that we cannot use Coq’s normalization property to restrict ourselves to
normal forms in λΠ≡ since these normal forms would not necessarily be in the pub-
lic encoding. Indeed, private symbols were precisely introduced to provide canonical
but unsafe normal forms. A more promising lead would be to adapt Assaf’s proof
of conservativity of PTS which did not require normalization and relied instead on
a back translation which was made explicit in our case in Definition 8.4.1.

• The polymorphism embeddings mentioned in 6.4.2 were not considered in detail
in this manuscript as they did not seem to fit our particular needs. It is however
likely that these techniques would shine in different contexts and should therefore
be further investigated and tested out.

There still remain several features of Coq that we did not manage to represent in
Dedukti in a completely satisfactory way. We mention a couple of them here.

• Coq admits the η conversion rule: if Σ; i/φ; Γ `S t : Πx :A.B then t ≡η λx :A. t x.
This conversion rule is only defined on well-typed terms and therefore has to be con-
sidered in a given signature and context. Considering this conversion as a rewriting
relation in an untyped setting yields either a non-terminating η-expansion or the
η-reduction which is not confluent together with β. To reflect this conversion in our
encoding, it is possible to reflect it only on the code representation of terms |t|Σ;Γ
which can only represent well-typed terms.

CHAPTER 9. PRACTICAL EMBEDDING OF COQ 205

• Modules and functors are a key component is the organization of Coq code yet
they are not easily translated in Dedukti. Rather than representing functors using
Dedukti terms and rewrite rules, it seems more reasonable to extend Dedukti
with support for similar feature.

• Co-inductive types, co-recursive functions, and positivity criteria for inductive types
were, for the most part, ignored in our development. Including these features would
allow to support a larger part of the available practical Coq developments. It is
however likely that their implementation would require to introduce even more com-
plex encoding, possibly non-terminating or relying on further extensions of rewriting
such as conditional rewriting.

• The more features supported by the encoding, the more complex and specialized the
encoding is bound to become. Instead, it should be possible to focus on developing
techniques to transform Coq proofs so that they rely on a minimal set of features
before translating them. This would allow the translation to be more easily reused
in different contexts, in particular where the avoided features are not available.

Finally, there have been many recent developments in the encoding of other complex
type systems into Dedukti which could probably reuse some of the several encoding
techniques introduced in this manuscript. For instance, a translation of a subset of PVS
was introduced by Gilbert [Gil17, Gil18] and could probably be extended to rely on an
adapted form of proof irrelevance in the expression of PVS’s predicate subtyping. The use
of predicates rather than functional symbols was particularly useful to support universe
algebraic expression but it could still be adopted in the encoding of PTS and CTS since
they allow to separate the type system encoding from the sort structure. This modular
way of encoding may even simplify the encoding of complex A, R and C relations and is
necessary if one of them is not functional.

Appendix

206

Bibliography

207

Bibliography

[Abe13] Andreas Abel. Normalization by Evaluation: Dependent Types and Impred-
icativity. habilitation, Ludwig-Maximilians-University Munich, 2013.

[ADJL16] Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Untyped
Confluence in Dependent Type Theories. In Proceedings Higher-Order Rewrit-
ing Workshop, Proc. Higher-Order rewriting Workshop, Porto, Portugal, June
2016. Easy-Chair.

[Ass14] Ali Assaf. A calculus of constructions with explicit subtyping. In Hugo Her-
belin, Pierre Letouzey, and Matthieu Sozeau, editors, 20th International Con-
ference on Types for Proofs and Programs, TYPES 2014, May 12-15, 2014,
Paris, France, volume 39 of LIPIcs, pages 27–46. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2014.

[Ass15a] Ali Assaf. Conservativity of embeddings in the lambda pi calculus modulo
rewriting (long version). CoRR, abs/1504.05038, 2015.

[Ass15b] Ali Assaf. A framework for defining computational higher-order logics. PhD
thesis, École polytechnique, Paris, 2015.

[AYT09] Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama. Proving confluence of
term rewriting systems automatically. In Ralf Treinen, editor, Rewriting Tech-
niques and Applications, 20th International Conference, RTA 2009, Brasília,
Brazil, June 29 - July 1, 2009, Proceedings, volume 5595 of Lecture Notes in
Computer Science, pages 93–102. Springer, 2009.

[Bar81] Hendrik Pieter Barendregt. The lambda calculus : its syntax and semantics.
Studies in logic and the foundations of mathematics. North-Holland, Amster-
dam, New-York, Oxford, 1981.

[Bar93] H. P. Barendregt. Lambda Calculi with Types, page 117–309. Oxford Univer-
sity Press, Inc., USA, 1993.

[Bar99] Bruno Barras. Auto-validation d’un système de preuves avec familles induc-
tives. PhD thesis, Université de Paris VII, Paris, France, 1999.

208

BIBLIOGRAPHY 209

[BB12] Mathieu Boespflug and Guillaume Burel. Coqine: Translating the calculus
of inductive constructions into the λπ-calculus modulo. CEUR Workshop
Proceedings, 878, 06 2012.

[BFG94] F. Barbanera, M. Fernandez, and J.H. Geuvers. Modularity of strong nor-
malization and confluence in the algebraic lambda-cube. In Proceedings 9th
Annual IEEE Symposium on Logic in Computer Science (Paris, France, July
4-7, 1994), pages 406–415, United States, 1994. IEEE Computer Society.

[BG05] Bruno Barras and Benjamin Grégoire. On the role of type decorations in the
calculus of inductive constructions. In C.-H. Luke Ong, editor, Computer Sci-
ence Logic, 19th International Workshop, CSL 2005, 14th Annual Conference
of the EACSL, Oxford, UK, August 22-25, 2005, Proceedings, volume 3634 of
Lecture Notes in Computer Science, pages 151–166. Springer, 2005.

[Bla01] Frédéric Blanqui. Type theory and rewriting. PhD thesis, Université de Paris
XI, Orsay, France, 2001.

[Bla06] Frédéric Blanqui. Termination and confluence of higher-order rewrite systems.
CoRR, abs/cs/0610064, 2006.

[Bla20] Frédéric Blanqui. Type Safety of Rewrite Rules in Dependent Types. In
Zena M. Ariola, editor, 5th International Conference on Formal Structures
for Computation and Deduction (FSCD 2020), volume 167 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 13:1–13:14, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[BPT17] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700
syntactical models of type theory. In Certified Programs and Proofs (CPP
2017), pages 182 – 194, Paris, France, January 2017.

[CD07] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the
lambda-pi-calculus modulo. In Simona Ronchi Della Rocca, editor, Typed
Lambda Calculi and Applications, 8th International Conference, TLCA 2007,
Paris, France, June 26-28, 2007, Proceedings, volume 4583 of Lecture Notes
in Computer Science, pages 102–117. Springer, 2007.

[CH85] Thierry Coquand and Gérard Huet. Constructions: A higher order proof sys-
tem for mechanizing mathematics. In Bruno Buchberger, editor, EUROCAL
’85, pages 151–184, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[CH86] T. Coquand and Gérard Huet. The calculus of constructions. Technical Report
RR-0530, INRIA, May 1986.

[Chu40] Alonzo Church. A formulation of the simple theory of types. J. Symbolic
Logic, 5(2):56–68, 06 1940.

BIBLIOGRAPHY 210

[Con04] Evelyne Contejean. A certified ac matching algorithm. In Vincent van Oost-
rom, editor, Rewriting Techniques and Applications, pages 70–84, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[Coq85] Thierry Coquand. Une théorie des constructions. PhD thesis, Université de
Paris VII, Paris, France, 1985. Thèse de doctorat dirigée par Huet, Gérard
Mathématiques. Informatique Paris 7 1985.

[Coq86] T. Coquand. An analysis of Girard’s paradox. Technical Report RR-0531,
INRIA, May 1986.

[Cou02] Judicaël Courant. Explicit universes for the calculus of constructions. In Vic-
tor A. Carreño, César A. Muñoz, and Sofiène Tahar, editors, Theorem Prov-
ing in Higher Order Logics, pages 115–130, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[CP90] Thierry Coquand and Christine Paulin. Inductively defined types. In Per
Martin-Löf and Grigori Mints, editors, COLOG-88, Berlin, Heidelberg, 1990.
Springer Berlin Heidelberg.

[CTW20] Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. The Taming of the
Rew: A Type Theory with Computational Assumptions. Proceedings of the
ACM on Programming Languages, 2020.

[Cur34] Haskell B. Curry. Functionality in combinatory logic. In Proceedings of the
National Academy of Sciences of the United States of America, pages 584–590,
1934.

[dB83] N. G. de Bruijn. AUTOMATH, a Language for Mathematics, pages 159–200.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[DHKP98] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Unifica-
tion via Explicit Substitutions: The Case of Higher-Order Patterns. Research
Report RR-3591, INRIA, 1998. Projet COQ, Projet PARA, PROTHEO.

[Dow19] Dowek, Gilles and Jouannaud, Jean-Pierre and Liu, Jiaxiang. Confluence
in (un)typed higher-order type theories ii. draft. hal-, INRIA, march 2019.
available from http://dedukti.gforge.inria.fr/.

[DW93] Gilles Dowek and Benjamin Werner. On the definition of the eta-long normal
form in type systems of the cube. In Informal Proceedings of the Workshop
on Types for Proofs and Programs, 1993.

[Dyb98] Peter Dybjer. A general formulation of simultaneous inductive-recursive def-
initions in type theory. Journal of Symbolic Logic, 65:2000, 1998.

[EKO19] Jörg Endrullis, Jan Willem Klop, and Roy Overbeek. Decreasing diagrams
for confluence and commutation, 2019.

BIBLIOGRAPHY 211

[FcT19] Gaspard Férey and François Thiré. Proof irrelevance in lambdapi modulo
theory, 2019. Submitted to TYPES 2019.

[Fel13] Bertram Felgenhauer. Rule labeling for conuence of left-linear term rewrite
systems. In International Workshop on Confluence, pages 23–27, 2013.

[FJ19a] Gaspard Férey and Jean-Pierre Jouannaud. Confluence in (un)typed higher-
order theories i, 2019. Submitted to TOCL.

[FJ19b] Gaspard Férey and Jean-Pierre Jouannaud. Confluence in (un)typed higher-
order theories i, 2019. Submitted to MFPS 35.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi
Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi,
and Laurent Théry. A Machine-Checked Proof of the Odd Order Theorem.
In Sandrine Blazy, Christine Paulin, and David Pichardie, editors, ITP 2013,
4th Conference on Interactive Theorem Proving, volume 7998 of LNCS, pages
163–179, Rennes, France, July 2013. Springer.

[Gen20a] Guillaume Genestier. Encoding Agda Programs using Rewriting. 5th Inter-
national Conference on Formal Structures for Computation and Deduction,
2020.

[Gen20b] Guillaume Genestier. Termination Criteria for Higher-Order Rewriting with
Dependent Types. Phd thesis, LSV, ENS Paris-Saclay, Université Paris-Saclay,
France, 2020.

[Gil17] Frédéric Gilbert. Proof certificates in PVS. In ITP 2017 - 8th International
Conference on Interactive Theorem Proving, volume 10499 of ITP 2017: In-
teractive Theorem Proving, pages 262–268, Brasilia, Brazil, September 2017.
Springer.

[Gil18] Frédéric Gilbert. Extending higher-order logic with predicate subtyping: appli-
cation to PVS. PhD thesis, Université Sorbonne Paris Cité, France, 2018.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, These dÉtat, Paris VII, 1972.

[GN91] Herman Geuvers and Mark-Jan Nederhof. Modular proof of strong normal-
ization for the calculus of constructions. Journal of Functional Programming,
1(2):155–189, 1991.

[Gog94] Healfdene Goguen. The metatheory of UTT. In Peter Dybjer, Bengt Nord-
ström, and Jan M. Smith, editors, Types for Proofs and Programs, Interna-
tional Workshop TYPES’94, Båstad, Sweden, June 6-10, 1994, Selected Pa-
pers, volume 996 of Lecture Notes in Computer Science, pages 60–82. Springer,
1994.

http://www.lsv.fr/~genestier/Documents/Publi/FSCD_2020.pdf

BIBLIOGRAPHY 212

[Gon05] Georges Gonthier. A computer-checked proof of the four colour theorem.
Technical report, Microsoft Research, Cambridge, 2005.

[Gon08] Georges Gonthier. The four colour theorem: Engineering of a formal proof.
Notices of the AMS, 55(11):1382–1393, 2008.

[Hal05] Thomas C. Hales. A proof of the kepler conjecture. Annals of Mathematics,
162(3):1065–1185, 2005.

[Her05] Hugo Herbelin. Type inference with algebraic universes in the calculus of
inductive constructions. Manuscript, 2005.

[HHP93a] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of Association for Computing Machinery (JACM), pages 194–
204, 1993.

[HHP93b] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. J. ACM, 40(1):143–184, January 1993.

[Hin64] J. Roger Hindley. The Church-Rosser Property and a Result in Combinatory
Logic. PhD thesis, University of Newcastle upon Tyne, 1964.

[Hin69] J. R. Hindley. An abstract form of the Church-Rosser theorem. i. J. Symb.
Log., 34(4):545–560, 1969.

[How80] William Alvin Howard. The formulae-as-types notion of construction. In
Haskell Curry, Hindley B., Seldin J. Roger, and P. Jonathan, editors, To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism.
Academic Press, 1980.

[HP89] Robert Harper and Robert Pollack. Type checking, universe polymorphism,
and typical ambiguity in the calculus of constructions draft. In J. Díaz and
F. Orejas, editors, TAPSOFT ’89, pages 241–256, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg.

[HP91] Robert Harper and Robert Pollack. Type checking with universes. Theoretical
Computer Science, 89(1):107 – 136, 1991.

[Hue72] Gérard Huet. Constrained Resolution: A Complete Method for Higher-Order
Logic. PhD thesis, Jennings Computer Center, 1972.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems: Abstract properties and applications to term rewrit-
ing systems. J. ACM, 27(4):797–821, October 1980.

[JL12a] Jean-Pierre Jouannaud and Jianqi Li. Church-Rosser properties of normal
rewriting. In Patrick Cégielski and Arnaud Durand, editors, Computer Science
Logic (CSL’12) - 21st Annual Conference of the EACSL, CSL 2012, September

BIBLIOGRAPHY 213

3-6, 2012, Fontainebleau, France, volume 16 of LIPIcs, pages 350–365. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[JL12b] Jean-Pierre Jouannaud and Jiaxiang Liu. From diagrammatic confluence to
modularity. Theor. Comput. Sci., 464:20–34, 2012.

[JvO09] Jean-Pierre Jouannaud and Vincent van Oostrom. Diagrammatic confluence
and completion. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Ma-
tias, Sotiris Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages
and Programming, pages 212–222, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[Kd89] J.W. Klop and R.C. de Vrijer. Unique normal forms for lambda calculus with
surjective pairing. Information and Computation, 80(2):97 – 113, 1989.

[Klo80] Jan Willem Klop. Combinatory reduction systems. PhD thesis, CWI tracts,
1980.

[KvOvR93] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Com-
binatory reduction systems: introduction and survey. Theoretical Computer
Science, 121(1):279 – 308, 1993.

[Las12] Marc Lasson. Realizability and parametricity in Pure Type Systems. Theses,
Ecole normale supérieure de lyon - ENS LYON, November 2012. Thèse de
doctorat dirigée par Patrick Baillot.

[LDJ14] Jiaxiang Liu, Nachum Dershowitz, and Jean-Pierre Jouannaud. Confluence
by critical pair analysis. In Rewriting and Typed Lambda Calculi - Joint Inter-
national Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, pages
287–302, 2014.

[LJO15] Jiaxiang Liu, Jean-Pierre Jouannaud, and Mizuhito Ogawa. Confluence of
layered rewrite systems. In Stephan Kreutzer, editor, 24th EACSL Annual
Conference on Computer Science Logic, CSL 2015, September 7-10, 2015,
Berlin, Germany, volume 41 of LIPIcs, pages 423–440. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

[Luo89] Z. Luo. Ecc, an extended calculus of constructions. In [1989] Proceedings.
Fourth Annual Symposium on Logic in Computer Science, pages 386–395,
1989.

[Luo90] Zhaohui Luo. An extended calculus of constructions. Technical report, Uni-
versity of Edinburgh, 1990.

[Mü92] Fritz Müller. Confluence of the lambda calculus with left-linear algebraic
rewriting. Information Processing Letters, 41(6):293 – 299, 1992.

BIBLIOGRAPHY 214

[Mar08] Luc Maranget. Compiling pattern matching to good decision trees. In Pro-
ceedings of the 2008 ACM SIGPLAN Workshop on ML, ML ’08, page 35–46,
New York, NY, USA, 2008. Association for Computing Machinery.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. J. Log. Comput., 1:497–536, 1991.

[ML75] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H.E.
Rose and J.C. Shepherdson, editors, Logic Colloquium ’73, volume 80 of Stud-
ies in Logic and the Foundations of Mathematics, pages 73 – 118. Elsevier,
1975.

[ML84] Per Martin-Löf. Intuitionistic type theory. Studies in Proof Theory. Napoli:
Bibliopolis, 1984.

[MN98] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their
confluence. Theoretical Computer Science, 192(1):3 – 29, 1998.

[New42] M. H. A. Newman. On theories with a combinatorial definition of "equiva-
lence.". Journal of Symbolic Logic, 7(3):123–123, 1942.

[Oka89] Mitsuhiro Okada. Strong normalizability for the combined system of the typed
lambda calculus and an arbitrary convergent term rewrite system. In Gas-
ton H. Gonnet, editor, Proceedings of the ACM-SIGSAM 1989 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’89, Portland,
Oregon, USA, July 17-19, 1989, pages 357–363. ACM, 1989.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system coq rules and
properties. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda
Calculi and Applications, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[Ros73] Barry K. Rosen. Tree-manipulating systems and church-rosser theorems. J.
ACM, 20(1):160–187, January 1973.

[Rus08] Bertrand Russell. Mathematical logic as based on the theory of types. Amer-
ican Journal of Mathematics, 30(3):222–262, 1908.

[SAB+20] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick
Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Win-
terhalter. The MetaCoq Project. Journal of Automated Reasoning, February
2020.

[Sai15a] Ronan Saillard. Rewriting modulo beta in the lambda-pi-calculus modulo.
Electronic Proceedings in Theoretical Computer Science, 185:87–101, Jul 2015.

[Sai15b] Ronan Saillard. Typechecking in the lambda-Pi-Calculus Modulo : Theory and
Practice. (Vérification de typage pour le lambda-Pi-Calcul Modulo : théorie et
pratique). PhD thesis, Mines ParisTech, France, 2015.

BIBLIOGRAPHY 215

[SBF+20] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and
Théo Winterhalter. Coq Coq Correct! Verification of Type Checking and
Erasure for Coq, in Coq. Proceedings of the ACM on Programming Languages,
pages 1–28, January 2020.

[SMB20] Danijela Simić, Filip Marić, and Pierre Boutry. Formalization of the poincaré
disc model of hyperbolic geometry. Journal of Automated Reasoning, 2020.

[ST14] Matthieu Sozeau and Nicolas Tabareau. Universe Polymorphism in Coq.
In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving,
pages 499–514, Vienna, Austria, July 2014.

[Tea] The Coq Development Team. The Coq Proof Assistant Reference Manual.
INRIA. Available at coq.inria.fr/refman/index.html.

[Thi20] François Thiré. Meta-theory of Cumulative Types Systems and their embed-
dings to the lambda-Pi-calculus modulo theory. PhD thesis, LSV, ENS Paris-
Saclay, Université Paris-Saclay, France, 2020.

[Toy81] Yoshihito Toyama. On the church-rosser property of term rewriting systems.
In NTT ECL Technical Report, page 12, 1981. in Japanese.

[vO94] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting.
PhD thesis, Vrije Universiteit Amsterdam, 1994.

[vO97] Vincent van Oostrom. Developing developments. Theor. Comput. Sci.,
175(1):159–181, 1997.

[vO08] Vincent van Oostrom. Confluence by decreasing diagrams converted. In
Voronkov A., editor, RTA, volume 5117 of Lecture Notes in Computer Sci-
ence, pages 306–320. Springer, 2008.

[vOvR94] Vincent van Oostrom and Femke van Raamsdonk. Weak orthogonality implies
confluence: The higher-order case. In Anil Nerode and Yu. V. Matiyasevich,
editors, Logical Foundations of Computer Science, pages 379–392, Berlin, Hei-
delberg, 1994. Springer Berlin Heidelberg.

[WR27] Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cam-
bridge University Press, 1925–1927.

[Wu19] Jui-Hsuan Wu. Checking the type safety of rewrite rules in the lambda-
Pi-Calculus modulo rewriting. Master’s thesis, Ecole Normale Supérieure,
September 2019.

coq.inria.fr/refman/index.html

Figures

Σ `D Γ WFD (x : A) ∈ Σ
Σ; Γ `D x : A

Pvar

Σ; Γ `D M : A Σ; Γ `D B : s A ≡βR B
Σ; Γ `D M : B

P≡βR

Figure 9.2: Extra typing rules for λΠ≡

216

CHAPTER 9. FIGURES 217

u =
L

σ ∪ τ

p

γ ∪ θ

G

v = Lσ′τ = Hδ

s = Rσ′τ = Rδ

Hϕ = Lστ [Gγ′θ]p = w

Lστ [Dγ′θ]p = t
u′ = Lρ = Hρ

= Lρ[Gρ]p

s′ = Rρ Lρ[Dρ]p = t′

≥ FH < n

Λ n ≥ FH

< mΛ ≤ n

C

< m ≥ FH

m p≥ FH

< n ≤ m p

B

Confluence
(Ind. Hyp.)

Monotonicity
Stability

Monotonicity
Stability

Critical pair’s
decreasing diagram

above the fat line, H

Figure 9.3: Critical pair lemma: Lemma 4.3.8

CHAPTER 9. FIGURES 218

∅ WFP
PWF
∅

Γ `P A : s1 Γ, x : A `P B : s2 (s1, s2, s3) ∈ R
Γ `P Πx :A.B : s3

PΠ

Γ `P A : s x 6∈ Γ
Γ, x : A WFP

PWF
X

Γ, x : A `P M : B Γ `P Πx :A.B : s
Γ `P λx :A.M : Πx :A.B

Pλ

Γ WFP (x : A) ∈ Γ
Γ `P x : A

PX
Γ `P M : Πx :A.B Γ `P N : A

Γ `P M N : B{x 7→ N}
P@

Γ WFP (s1, s2) ∈ A
Γ `P s1 : s2

PS
Γ `P M : A Γ `P B : s A ≡β B

Γ `P M : B
P≡

Γ `P A : s1 (s1, s2) ∈ C
Γ `P A : s2

PC

Figure 9.4: Typing rules for PTS�(S,A,R, C)

∅ WFC
PWF
∅

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C Πx :A.B : s3

PΠ

Γ `C A : s x 6∈ Γ
Γ, x : A WFC

PWF
X

Γ, x : A `C t : B Γ `C Πx :A.B : s
Γ `C λx :A. t : Πx :A.B

Pλ

(x : A) ∈ Γ
Γ `C x : A

PX
(s1, s2) ∈ A
Γ `C s1 : s2

PS
Γ `C u : Πx :A.B Γ `C t : A

Γ `C u t : B{x 7→ t}
P@

Γ `C t : s s �C s′

Γ `C t : s′
P�C

Γ `C B : s Γ `C t : A A �C B
Γ `C t : B

P�

A �C A
�C i

(s, s′) ∈ C∗

s �C s′
�CC

B �C B′

Πx :A.B �C Πx :A.B′
�Cπ

A ≡β A′ A′ �C B′ B′ ≡β B
A �C B

�C≡

Figure 9.5: Typing rules for CTS(S,A,R, C)

CHAPTER 9. FIGURES 219

N : ∗
0 : N

S : N→ N

max : N→ N→ N

S : ∗
Prop : S

Type� : N→ S
A(�) : S → S

R(�,�) : S → S → S
C(�,�) : S → S → ∗

> : ∗
I : >

max (S M) (S N) −→ S (max M N)
max M O −→ M

max O N −→ N

A(Prop) −→ Type0

A(TypeN) −→ Type(SN)
R(S, Prop) −→ Prop

R(Prop, TypeN) −→ TypeN
R(TypeM , TypeN) −→ Type(maxM N)

C(Prop, N) −→ >
C(Type0, TypeN) −→ >

C(Type(SM), Type(SN)) −→ C(TypeM , TypeN)

U� : S → ∗
T� � : Πs :S. Us → ∗

u� : Πs :S. UA(s)
π�� � � : Πs1 s2 :S.Πa : Us1 . (Ts1 a→ Us2)→ UR(s1,s2)
↑�
�
� � : Πs1 s2 :S.C(s1, s2)→ Us1 → Us1
↑�� � : Πs1 s2 :S. Us1 → Us1

↑S′
S
� A −→ ↑S′S A

T� uS −→ US
T�

(
πS
′

S A λx.B[x]
)
−→ Πx : TS A. TS′ B[x]

TS′
(
↑S′S A

)
−→ TS A

↑NN A −→ A

↑MK
(
↑KN A

)
−→ ↑MN A

πNK

(
↑KM A

)
λx.B[x] −→ ↑R(K,N)

R(M,N)

(
πNM A λx : TM A.B[x]

)
πKM A λx.

(
↑KN B[x]

)
−→ ↑R(M,K)

R(M,N)

(
πNM A λx : TM A.B[x]

)
Figure 9.6: Finite encoding signature for the infinitely sorted CCω: D[CCω]

CHAPTER 9. FIGURES 220

N : ∗
0 : N

S : N→ N

max : N→ N→ N

max (S M) (S N) −→ S (max M N)
max M O −→ M

max O N −→ N

S : ∗
Prop : S

Type� : N→ S
A(�) : S → S

R(�,�) : S → S → S
C(�,�) : S → S → S

A(Prop) −→ Type0

A(TypeN) −→ Type(SN)
R(S, Prop) −→ Prop

R(Prop, TypeN) −→ TypeN
R(TypeM , TypeN) −→ Type(maxM N)

C(S, Prop) −→ Prop
C(Prop, TypeM) −→ TypeM
C(TypeM , TypeN) −→ Type(maxM N)

U� : S → ∗
T� � : Πs :S. Us → ∗

u� : Πs :S. UA(s)
π�� � � : Πs1 s2 :S.Πa : Us1 . (Ts1 a→ Us2)→ UR(s1,s2)
↑�� � : Πs1 s2 :S. Us1 → UC(s1,s2)

T� uS −→ US
T�

(
πS
′

S A (λx.B[x])
)
−→ Πx : TS A. TS′ B[x]

T�
(
↑�S A

)
−→ TS A

Figure 9.7: [Assaf] A finite encoding signature for the infinitely sorted CCω

CHAPTER 9. FIGURES 221

PS

 πA

φ `S A(s1, s2)
Σ; i/φ; Γ `S s1 : s2

 := u[πA]
[s1],[s2]

PX

[
(x : A) ∈ Γ

Σ; i/φ; Γ `S x : A

]
:= x

Pλ

 πA

Σ; i/φ; Γ `S A : s
πt

Σ; i/φ; Γ, x : A `S t : B
Σ; i/φ; Γ `S λx :A. t : Πx :A.B

 := λx : T[s] [πA] . [πt]

P@

 πM

Σ; i/φ; Γ `S M : Πx :A.B
πN

Σ; i/φ; Γ `S N : A
Σ; i/φ; Γ `S M N : B{x 7→ N}

 := [πM] [πN]

PΠ

 πA

Σ; i/φ; Γ `S A : s1

πB

Σ; i/φ; Γ, x : A `S B : s2

πR

φ `S R(s1, s2, s3)
Σ; i/φ; Γ `S Πx :A.B : s3


:= π

[πR]
[s1],[s2],[s3] [πA] λx : T[s1] [πA]. [πB]

P�

 πM

Σ; i/φ; Γ `S M : A
πA

. . . `S A : s
πB

. . . `S B : s′
π

φ `S A �Σφ B

Σ; i/φ; Γ `S M : B


:= [s′]

[s] ↑
[πB]
[πA] p

[
πM—
M :A

]
with p :=

{
strefl [s] [πA] if A ≡βΣφ B
[π] otherwise

Pdecl

(c[j/ψ] : τ) ∈ Σ |u| = |j|
∀i,
E

πi

φ � ψi{j 7→ u}
Σ; i/φ; Γ `S cu : τ{u/j}

 := c [u] [π]

Pdef

(c[j/ψ] := t : τ) ∈ Σ |u| = |j|
∀i,
E

πi

φ � ψi{j 7→ u}
Σ; i/φ; Γ `S cu : τ{u/j}

 := c [u] [π]

Figure 9.8: Typing judgment translation

CHAPTER 9. FIGURES 222

SWF
∅

[
e

∅ WFS

]
:= ∅

SWF
decl

 πΣ

Σ WFS
πτ

Σ; i/φ;∅ `S τ : s . . .

Σ, (c[i/φ] : τ) WFS


:=
[

πΣ
Σ WFS

]
, c : Πi :S.Πc1 : ε [φ1]. . . .Πck : ε [φk]. T[s]

[
πτ—
τ :s

]
, c′ : Πi :S.C
, c I1 . . . In C1 . . . Ck −→

u(c(u[s]{i 7→I},
[
πτ—
τ :s

] {
i 7→ I, c 7→ C

}
), c′ I1 . . . In)

SWF
def

 πΣ

Σ WFS
πτ

Σ; i/φ;∅ `S τ : s
πt

Σ; i/φ;∅ `S t : τ . . .

Σ, (c[i/φ] := t : τ) WFS


:=
[

πΣ
Σ WFS

]
, c : Πi :S.Πc1 : ε [φ1]. . . .Πck : ε [φk]. T[s]

[
πτ—
τ :s

]
, c I1 . . . In C1 . . . Ck−→

[
πt—
t:τ

] {
i 7→ I, c 7→ C

}
Figure 9.9: Signature well-formedness judgment translation

PWF
∅

[
φ atomic � φ

Σ `S i/φ;∅ WFS

]
:= i : S, c1 : ε [φ1] , . . . , ck : ε [φk]

PWF
X

 πΓ

Σ `S i/φ; Γ WFS
πA

Σ; i/φ; Γ `S A : s
Σ; i/φ; Γ, x : A WFS

 := [πΓ] , x : T[s] [πA]

Figure 9.10: Context well-formedness judgment translation

CHAPTER 9. FIGURES 223

�r

[
φ `S A �Σφ A

]
:= I

�C

 π

φ `S C(s, s′)
φ `S s �Σφ s

′

 :=
[

π

φ `S C(s, s′)

]

�π

 π

φ `S B �Σφ B
′

φ `S Πx :A.B �Σφ Πx :A.B′

 :=
[

π

φ `S B �Σφ B
′

]

�≡

A ≡βΣφ A
′

π

φ `S A′ �Σφ B
′ B′ ≡βΣφ B

φ `S A �Σφ B

 :=
[

π

φ `S A′ �Σφ B
′

]

Figure 9.11: Subtyping judgment translation

CHAPTER 9. FIGURES 224

x : 4 `C x : 4
`C λx. x : 4→ 4

`C ∗ : � � �C 4
`C ∗ : 4

`C (λx. x) ∗ : 4

or
x : � `C x : �
`C λx. x : �→ � `C ∗ : �

`C (λx. x) ∗ : � � �C 4
`C (λx. x) ∗ : 4

or
x : � `C x : � � �C 4

x : � `C x : 4
`C λx. x : �→ 4 `C ∗ : �

`C (λx. x) ∗ : 4

or
x : � `C x : �
`C λx. x : �→ �

� �C 4
�→ � �C �→ 4

`C λx. x : �→ 4 `C ∗ : �
`C (λx. x) ∗ : 4

Figure 9.12: Multiple derivations of `C (λx. x) ∗ : 4

c(C, u(C, T)) ↪→ T (c-u)
u(C, c(C, T)) ↪→ T (u-c)

c(π A λx.B[x], λx. F [x]) ↪→ cL (λx :C. c(B[x], F [u(A, x)])) (c-λ)
u(π A λx.B[x], cL λx. F [x]) ↪→ λx : D A. u(B[c(A, x)], F [c(A, x)]) (u-λ)

u(π A λx.B[x], T) U ↪→ u(B[c(A,U)], cA T c(A,U)) (u-a)
cA c(π A λx.B[x], T) U ↪→ c(B[U], T u(A,U)) (c-a)

cA (cL λx. T [x]) U ↪→ T [U] (cβ)

Figure 9.13: Rewrite rules

Titre: Con�uence d'ordre supérieur et encodage d'univers dans le Logical Framework

Mots clés: Lambda calcul, types dépendants, réécriture de terme, con�uence, déduction mod-

ulo, polymorphisme d'univers

Résumé: La multiplicité des systèmes

formels a mis en évidence la nécessité d'un

socle logique commun dans lequel les formal-

ismes logiques pourraient être exprimés. L'enjeu

principal de ce manuscrit est la dé�nition de

techniques d'encodages reposant sur la réécri-

ture de termes et capables de réprésenter les

fonctionnalités avancées des systèmes de types

modernes. Nos encodages s'appuieront sur le

lambda-Pi calcul modulo, un système de types

dépendants, communément utilisé comme cadre

logique, étendu ici par de la réécriture d'ordre

supérieur. On s'intéresse, dans une première

partie, aux critères de con�uence de systèmes

de réécriture avec la bêta réduction. La con�u-

ence d'un système linéaire à gauche se déduit

de l'étude de ses paires critiques pour lesquelles

il faut exhiber un diagramme décroissant vis-à-

vis d'un certain étiquetage des règles. Le cas

non-linéaire nécessite, lui, une compartimental-

isation des termes considérés. On considère,

dans un second temps, l'encodage de systèmes

de types complexes. Sont étudiés successive-

ment, la cumulativité qui nécessite de considérer

des symboles privés pour encoder une forme de

�proof irrelevance�, les expressions algébriques

d'univers sous contraintes d'univers et en�n le

polymorphisme d'univers dont on prouve la cor-

rection d'une fonction de traduction depuis un

sous-ensemble de Coq. L'implantation de ces ré-

sultats a permis de traduire en Dedukti plusieurs

développements Coq de taille signi�cative.

Title: Higher-Order Con�uence and Universe Embedding in the Logical Framework

Keywords: Lambda calculus, dependent types, term rewriting, con�uence, deduction modulo,

universe polymorphism

Abstract: In the context of the multiplicity

of formal systems, it has become a growing need

to express formal proofs into a common logical

framework. This thesis focuses on the use of

higher-order term rewriting to embed complex

formal systems in the simple and well-studied

lambda-Pi calculus modulo. This system, com-

monly used as a logical framework, features de-

pendent types and is extended with higher-order

term rewriting. We study, in a �rst part, crite-

ria for the con�uence properties of higher-order

rewrite systems considered together with the

usual beta reduction. In the case of left-linear

systems, con�uence can be reduced to the study

of critical pairs which must be provided a de-

creasing diagram with relation to some rule la-

beling. We show that in the presence of non-

linear rules, it is still possible to achieve con-

�uence if the set of considered terms is layered.

We then focus, in a second part, on the encod-

ing of higher-order logics based on complex uni-

verse structures. The of cumulativity, a limited

form of subtyping, is handled with new rewrit-

ing techniques relying on private symbols and al-

lowing some form of proof irrelevance. We then

describe how algebraic universe expressions con-

taining level variables can be represented, even

in presence of universe constraints. Eventually

we introduce an embedding of universe poly-

morphism as de�ned in the core logic of the

Coq system and prove the correctness of the

de�ned translation mechanism. These results,

along with other more practical techniques, al-

lowed the implementation of a translator to De-

dukti which was used to translate several sizable

Coq developments.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Formal proof systems
	A unifying logical framework
	Confluence
	Embedding higher-order theories
	In practice
	Outline of this manuscript

	I Confluent Rewriting in the Logical Framework
	Higher-Order Term Rewriting in the Lambda-Pi-calculus
	Terms
	Higher-order term rewriting
	The lambda-Pi-calculus modulo
	Term rewriting formalisms

	Confluence of Left-Linear Systems
	Orthogonal rewriting
	Decreasing Diagrams
	Critical peaks
	Non-overlapping local peaks
	Confluence of rewriting

	Confluence of Non-Left-Linear Systems
	Confinement and layering
	Layered sub-rewriting
	Overlapping sub-rewriting peaks
	Decreasing Diagrams
	Example
	Future work

	II Embedding Higher-order Logics with Universes
	Embedding Cumulativity
	Pure Type Systems
	Introducing cumulativity
	Cumulative Type Systems
	Embedding CTS's in the lambda-Pi-calculus modulo
	Getting some privacy
	A new paradigm

	Calculi of Constructions with Universe Variables
	The infinite universe hierarchy
	Algebraic universes
	Universe constraints
	Deciding cumulativity under constraints

	A Universe Polymorphic Calculus of Constructions
	Definition
	Conservative extensions
	System restrictions

	Embedding Universe Polymorphism in the lambda-Pi-calculus modulo
	The encoding signature
	Translation functions
	Correctness of the translation
	Future work

	Practical embedding of Coq
	The CoqInE translator
	Renouncing left-linearity
	Inductive constructions
	Fixpoints
	Universe polymorphisms
	Local let-in
	Minimal universe constraints
	In practice

	Conclusion
	Appendix
	Bibliography
	Figures

