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Abstract6

The imax-successor algebra, where imax is the function defined by imax(n, 0) = 0 and imax(n, s(m))7

= max(n, s(m)), is used to represent universe levels in impredicative type theory, in particular with8

universe polymorphism which introduces level variables, so it is present in proof systems such as9

Coq and Lean. In particular, we need to know when two elements of this algebra are equivalent,10

and we may also want to decide the inequality. In this article, we introduce a canonical form for the11

terms of this algebra, and we provide a canonization algorithm. It permits deciding level equivalence12

by checking the canonical form equality, and also permits easily checking if a level is smaller than13

another one.14
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1 Introduction19

The formalization of mathematical theorems and the verification of software lead to the20

development of many logical systems. Predicate Logic is a quite general theory but does not21

allow for instance to quantify over predicates, preventing the expression of some propositions.22

Then, more powerful logic have been introduced through the years. This paper being23

motivated by the universe polymorphism in impredicative type theory, the introduction will24

briefly remind the history of these theories, to understand what they bring.25

Pure Type Systems26

A lot of theories are based on extensions of Church’s simply-typed λ-calculus which does27

not permit to express terms over arbitrary types (preventing for instance to talk about all28

the groups). To address this, Martin-Löf introduces a dependent type theory with a type of29

all types [24], and later, to avoid paradoxes such as Girard’s one, introduced a distinction30

between small types and large types (which are types containing types, and are also called31

universes) [26].32

In the same years, Girard and Reynolds independently invented System F, an extension of33

Church’s simply-typed λ-calculus with type polymorphism, and even later, Girard presented34

System Fω which add type operators i.e. the ability to quantify on terms to create types.35

The Calculus of Constructions [13] introduced by Coquand in his PhD thesis combined36

features from both Martin-Löf Type Theory and System Fω. This system allows quantifying37

on types or terms to build new types and new terms, and it is the pinnacle of the λ-cube of38

Barendregt [4], which classifies type systems depending on the quantification possibilities.39

The Calculus of Constructions is an elegant system with strong properties such as40

normalization and logical consistency. However, quantification over Type is not possible41

since it makes the system incoherent. This lead Coquand to generalize the system with a42

predicative hierarchy of universes [12], in the same way as predicative Martin-Löf type theory43
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23:2 A Canonical Form for Universe Levels

[25]. They contain a countable sequence of universes U0 : U1 : · · · , where U0 is the universe of44

the propositions, the indices being referred to as universes levels.45

These logical systems are generalized under the name of Pure Type Systems [5, 6].46

▶ Definition 1. A Pure Type System (PTS) is defined by a set of sorts S (that corresponds47

to universes), a set of axioms A ⊆ S2 and a set of rules R ⊆ S3.48

A describes the sorts typing (s1 has the type s2 when (s1, s2) ∈ A), and R describes the49

possible quantifications and their typing rules. The terms are the following, where s ∈ S and50

x ranges an infinite set of variables.51

t ::= s | x | Πx : t · t | (λx : t · t) | t t52

and the typing rules are given in Figure 1.53

(Empty) [ ] WF (Decl)
Γ ⊢ A : s x ̸∈ Γ

Γ, x : A WF
(Var) Γ WF (x : A) ∈ Γ

Γ ⊢ x : A
54

(Sort) (s1, s2) ∈ A
⊢ s1 : s2

(Prod)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 (s1, s2, s3) ∈ R

Γ ⊢ Πx : A ·B : s3
55

(App)
Γ ⊢ t : Πx : A ·B Γ,⊢ u : A

Γ ⊢ t u : B[x := u]
(Abs) Γ, x : A ⊢ t : B Γ ⊢ Πx : A ·B : s

Γ ⊢ λx · t : Πx : A ·B
56

(Conv)
Γ ⊢ B : s Γ ⊢ t : A A ≡β B

s ∈ S
Γ ⊢ t : B

57

Figure 1 Typing rules of PTS.

Both CC∞ and predicative Martin-Löf type theory have a set of sorts indexed over the58

natural numbers, with for all i ∈ N, Ui : Ui+1. Their difference reside in their set of rules.59

Impredicativity60

With the aim of building a consistent system, paradox such as Girard’s one should be avoided.61

When Coquand analysed it, he found that a product from Type to Type could not live in62

Type: it should live in a greater type (hence the distinction between small and large types).63

With an infinite hierarchy of universes, this principle remains: a product from Ui to Uj64

should live in a greater universe. Therefore, in the predicative Martin-Löf type theory, the65

set of rules is
{

Ui, Uj , Umax(i,j)
}

. The choice of CC∞ is different (and does not break the66

consistency either): a product from Ui to U0 lives in U0, so it follows the rules
{

Ui, Uj , Uimax(i,j)
}

67

where imax : N → N → N is defined for all i, j ∈ N by imax(i, 0) = 0 and imax(i, j + 1) =68

max(i, j + 1).69

This corresponds to the so-called impredicativity of Prop (hence the name imax for70

impredicative max) which notably permits to say that we can quantify over all the propositions71

and still get a new proposition. It is a philosophical questioning: should ΠP : Prop, P → P72

be considered as a proposition since it is created by quantifying over all the propositions?73

Universe Polymorphism74

A PTS can be enriched with universe polymorphism which allows the user to quantify over75

universes [27, 22, 14]. For instance, it permits to declare simultaneously the identity for all76

the types of any universes with λs : S · λA : s · λx : A · x. This feature adds universe variables77
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to the language of a PTS. In the case of CC∞, it is equivalent to extend the syntax of the78

levels with level variables.79

▶ Definition 2 (Levels). A level is a term of the grammar80

ℓ := 0 | S(ℓ) | max(ℓ, ℓ) | imax(ℓ, ℓ) | x81

where x is an element of a countable set of variables X . We denote by L the set of the levels,82

and we say that a level is concrete if it does not contain any variable.83

▶ Definition 3. We call CC∞
∀ the extension of CC∞ with universe polymorphism.84

The universe polymorphic identity of CC∞
∀ is the term85

id ::= λi : L, λA : Ui, λx : A, x.86

We can use it by instantiating the level variable. For instance, id 1 Prop is the identity of87

Prop while id 2 U1 is U1’s one. This instantiation is done throughout substitution functions,88

which replace a level variable by a level, and valuation functions which replace level variables89

by integers.90

▶ Definition 4 (Valuation). A function σ : X → N is called a valuation. For all valuations σ,91

we define inductively the value of a level ℓ over σ, denoted as JℓKσ, with92

J0Kσ = 0 JS(ℓ)Kσ = S(JℓKσ) JxKσ = σ(x)93

Jmax(ℓ1, ℓ2)Kσ = max
(
Jℓ1Kσ, Jℓ2Kσ

)
Jimax(ℓ1, ℓ2)Kσ = imax

(
Jℓ1Kσ, Jℓ2Kσ

)
94

This interpretation through the valuations explains why, even if levels are abstract terms,95

we defined them with the same symbols 0, s, max and imax that are used for the natural96

numbers. Indeed, the concrete levels can clearly be identified as the natural numbers and97

the levels’ semantic, through the valuations, justifies to use the same symbol and permits to98

see the valuations as functions that realise levels, turning them into concrete ones.99

Besides, two levels can also be compared using these valuations. They are equivalent if100

they give the same concrete levels through any valuation.101

▶ Definition 5 (Level comparison). Let ℓ1, ℓ2 ∈ L. We say that ℓ1 ⩽ ℓ2 if for all valuations102

σ, Jℓ1Kσ ⩽ Jℓ2Kσ. In the same way, we say that ℓ1 ≡ ℓ2 if for all valuations σ, Jℓ1Kσ = Jℓ2Kσ.103

Hence, ℓ1 ≡ ℓ2 if and only if ℓ1 ⩽ ℓ2 and ℓ2 ⩽ ℓ1.104

This equivalence shows that universe such as Ux and Umax(x,x) should be identified.105

However, it is not obvious to check. It is not syntactic, like it was without universe106

polymorphism, and the imax function makes it complicated.107

The aim of this paper is to address this problem. To do so, we study the imax-successor108

algebra, and we provide a canonical form for its terms, hence a way to decide level equivalence109

by syntactic comparison of the canonical form.110

Motivation111

Our main motivation lies in the interoperability between proof systems Indeed, it became a112

big challenge in the research on proof-checking, which aims to avoid the redevelopment of113

the same proof. Instead of developing translators from each system to another one, logical114

frameworks propose to define theories in a common language, which makes translation easier.115

CVIT 2016
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The λΠ-calculus modulo rewriting (λΠ/ ≡) [10] is a logical framework that extends λΠ116

(the simply-typed λ-calculus with dependent types) with higher-order rewrite rules [16, 28]117

that can be used to define functions, but also types; terms are then identified modulo β and118

these rewrite rules. The computational part of the type theories can then be represented119

using the expressiveness of rewrite systems.120

The Calculus of Constructions and its subtheories can be expressed in λΠ/ ≡ [8], and, in121

[15], Cousineau and Dowek showed how to express some PTS. Therefore, several systems122

have been encoded in λΠ/ ≡: HOL-Light [29, 1], Agda [19], Matita [1], but also parts of123

Coq [18, 9]. Besides, since there exist multiple implementations of λΠ/ ≡ such as Dedukti124

[2], Lambdapi [23], or Kontroli [17], these embeddings have been implemented, leading to125

effective translations [29, 20, 21].126

To define CC∞
∀ in λΠ/ ≡, we need to define its levels. It can be done with a type nat127

together with functions max, and imax, and rewrite rules to define them. This permits to128

express CC∞ in λΠ/ ≡, but the equivalence relation that comes with level variables adds129

some difficulties.130

Indeed, for all term u of CC∞
∀ , let us note |u| its translation in λΠ/ ≡, and let us consider131

a function f : Ui → Uj and a term t : Uk where k ≡ i. Since f t is well-typed, then |f t|132

should be well-typed in λΠ/ ≡. Therefore, |t| should have the type |Ui|, whereas it has the133

type |Uk|. We deduce that |Ui| and |Uk| should be convertible types, and then that equivalent134

levels should be convertible terms. With a canonical form and rewrite rules to compute it,135

this statement becomes decidable!136

Related Work137

The max-successor algebra is well-studied, and so, some solutions exist in the predicative138

case. In [30], Voevodsky represented each level as max(n, n1 + x1, . . . , nk + xk) where n ⩾139

max(n1, . . . , nk). Then, if there exists i ̸= j such that xj = xi, we simplify the term and keep140

only max(ni, nj) + xi. Therefore, we obtain a minimal representation for the max-successor141

algebra.142

In [19], Genestier encoded the universe polymorphism of Agda in λΠ/ ≡ using a similar143

idea and a representation modulo associativity and commutativity (for the max symbol), and144

Blanqui gave another presentation of this algebra in [7], with an encoding without matching145

modulo associativity and commutativity.146

The imax-successor algebra is less studied. [3] proposed an encoding, but it does not147

fully reflect the equalities; for instance, the levels max(imax(x, y), x) and max(x, y) are not148

convertible. Besides, Férey also worked on the encoding of universe polymorphism [18].149

Finally, an algorithm to check level inequality, and so level equivalence, is presented in150

[11], but it does not rely on a canonical form.151

Outline152

In Section 2, we study the imax-successor algebra and extend it in order to propose a153

representation. Then, Section 3 shows that this leads to a canonical form which is generalized154

to the level extension in Section 4. A canonization algorithm is given in Section 5.155

2 Level Representation156

To begin with, let us present our procedure. We use the same idea presented above in the157

predicative case: find a subset E of levels such that any level can be represented as max U158
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with U ⊂ E, and such that max U has a minimal representation that ensures this uniqueness159

property:160

max U ≡ max V ⇐⇒ U = V.161

In the predicative case, E = N ∪ {n + x, n ∈ N, x ∈ X}; and the minimal representation162

consists in having one term n (the maximum of two integers can be simplified) and for all163

x ∈ X at most one term n + x since max(n + x, m + x) = max(n, m) + x. To obtain the164

canonical representation, we push the successor symbols inside the max, and we obtain165

max U with U ⊂ E. Then, U can be simplified by removing u if there exists v ∈ U such that166

v ̸= u and u ⩽ v, leading to the minimal representation.167

This gives us the intuition that we need. An element of E should be very basic and168

simple in the sense that it is not equivalent to a maximum of other levels.169

In this first section, we study the imax-successor algebra and its equivalences in order to170

find such a subset of levels.171

2.1 Levels as Maximum172

The very first step to simplify the terms is to pull the max symbol out and then to express any173

level as a maximum of levels that do not contain any max, that is the principle of our idea. The174

successor can be distributed over max since for all u, v ∈ L, S(max(u, v)) ≡ max(S(u), S(v)),175

and the two next propositions show how to distribute imax over max.176

▶ Proposition 6. For all u, v, w ∈ L,177

imax(u, max(v, w)) ≡ max(imax(u, v), imax(u, w)).178

Proof. Let t = imax(u, max(v, w)), t1 = imax(u, v) and t2 = imax(u, w), and let σ be a179

valuation.180

If JvKσ = JwKσ = 0, then Jmax(t1, t2)Kσ = 0 = JtKσ.181

If JvKσ ̸= 0 and JwKσ = 0, then Jmax(t1, t2)Kσ = max(JuKσ, JvKσ) = JtKσ.182

If JvKσ = 0 and JwKσ ̸= 0, then Jmax(t1, t2)Kσ = max(JuKσ, JwKσ) = JtKσ.183

Else, Jmax(t1, t2)Kσ = max(JuKσ, JvKσ, JwKσ) = JtKσ.184

◀185

▶ Proposition 7. For all u, v, w ∈ L,186

imax(max(u, v), w) ≡ max(imax(u, w), imax(v, w)).187

Proof. Let σ be a valuation. If JwKσ = 0, then both terms are evaluated to 0. Else, they are188

evaluated to max(JuKσ, JvKσ, JwKσ). ◀189

Then, any level can be expressed as a maximum of levels without max. Note that for190

this, we consider that max takes a set of levels as argument. We obtain this theorem.191

▶ Theorem 8. For all t ∈ L, there exists u1, . . . , un in the grammar192

ℓ := 0 | S(ℓ) | imax(ℓ, ℓ) | x193

such that t ≡ max(u1, . . . , un).194

CVIT 2016



23:6 A Canonical Form for Universe Levels

2.2 Simplification of the Levels195

We can now focus on levels without maximum. The uniqueness property sought for the196

representation requires the levels to be very basic, and then search to simplify them.197

The main issue is imax: its asymmetry complicates its interaction with other symbols.198

The previous equivalences show how to remove the interaction between imax and max, now,199

we will study how imax interacts with the other symbols. We aim to restrict the localisation200

of the imax symbol to specific parts of the levels in order to understand and control their201

influence on the levels semantic.202

Firstly, we recall these equivalences that are direct consequences of the semantic of imax.203

They permit to deal with 0 and the successor.204

▶ Proposition 9. For all u, v ∈ L,205

imax(u, 0) ≡ 0 imax(0, v) ≡ v imax(u, S(v)) ≡ max(u, S(v))206

And we show how to remove imax symbol in second argument of imax.207

▶ Proposition 10. For all u, v, w ∈ L,208

imax(u, imax(v, w)) ≡ max(imax(u, w), imax(v, w)).209

Proof. Let σ be a valuation. If JwKσ = 0, then both terms are evaluated to 0. Else, they are210

evaluated to max(JuKσ, JvKσ, JwKσ). ◀211

Thus, we can consider that the second argument of imax is always a variable. It is212

more complicated to directly enforce the form of its first argument, but we can obtain one213

restriction by distributing S over imax. However, we cannot do it as directly as we distribute214

the S over max, as shown in the next example.215

▶ Example 11. We consider the levels t1 = S(imax(y, x)) and t2 = imax(S(y), S(x)). By216

considering a valuation σ such that σ(x) = 0 and σ(y) = 1, t1 ̸≡ t2.217

▶ Proposition 12. For all u, v ∈ L,218

S(imax(u, v)) ≡ max(S(v), imax(S(u), v)).219

Proof. Let σ be a valuation. If JvKσ = 0, then both terms are evaluated to 1. Else they are220

evaluated to S(max(JuKσ, JvKσ)). ◀221

Finally, all of these propositions lead to this grammar restriction.222

▶ Theorem 13. For all t ∈ L, there exists u1, . . . , un in the grammar223

ℓ := Sk+1(x) | Sk(0) | imax(ℓ, x)224

such that t ≡ max(u1, . . . , un).225

▶ Remark 14. For all t in the grammar of Theorem 13, there exists x1, . . . , xn ∈ X , and v =226

Sk(0) or v = Sk+1(x) such that t = imax(imax(imax(· · · imax(v, x1), x2) · · · )), xn−1), xn).227

We will note such a term t by [v, x1, . . . , xn].228
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2.3 Introducing New Levels229

Here, we continue the simplification process in order to find simple enough terms to reach the230

uniqueness property. Indeed, the terms of the grammar of Theorem 13 are still not simpler231

enough.232

▶ Example 15. Let us consider t = max(imax(x, y), x). Then, t ≡ max(x, y).233

The problem is the following: if imax(x, y) permits to consider x if y is not zero, it234

also consider y in all cases. Then, it is redundant with y and lead to the equivalence235

imax(x, y) ≡ max(y, imax(x, y)). We would like to obtain imax(x, y) = max(y, t) with some236

level t, but imax(x, y) cannot be simplified more.237

In fact, the second argument of imax has too many responsibilities since it should be238

taken into account, but it is also a condition to take into account the first argument.239

This leads us to think that these responsibilities should be separated by introducing240

a term f(x, y) such that Jf(x, y)Kσ is 0 if JyKσ = 0 and JxKσ otherwise. This permits us241

to simplify imax(x, y) into max(y, f(x, y)), and since f(x, y) ≤ x, max(y, f(x, y), x) can be242

turned into max(y, x).243

Since, the imax are nested in the grammar of Theorem 13, we may need to have multiple244

variables as conditions; we generalize this idea of new terms and extend the level’s grammar245

with two symbols V and C.246

▶ Definition 16 (Extended levels). An extended level is a term of the grammar247

ℓ := 0 | S(ℓ) | max(ℓ, ℓ) | imax(ℓ, ℓ) | x | V({ℓ, . . . , ℓ}, ℓ, k) | C({ℓ, . . . , ℓ}, k)248

where k ∈ N. We extend J·Kσ and the level comparison to the extended levels with249

JV(E, u, k)Kσ =
{

0 if ∃v ∈ E, JvKσ = 0
JuKσ + k else

250

JC(E, k)Kσ =
{

0 if ∃u ∈ E, JuKσ = 0
k else

251

We denote by L+ the set of extended levels.252

The symbols V and C stand for ‘variable sublevel’ and ‘constant sublevel’ in the sense253

that their semantic consists in taking into account a non-constant or a constant extended254

level u when a set of extended levels E does not contain a null one.255

▶ Definition 17. We denote by S the set of sublevels. Let u ∈ S, u = V(E, v, k) or256

u = C(E, k). We call E the verification conditions of u denoted by VC(u), and k is its257

constant part denoted by ω(u). We also define the variable part of u denoted by ν(u) which258

is 0 in the case of a constant sublevel and v in the case of a variable sublevel.259

Besides, we said that a verification condition u is checked (by a valuation σ) if JuKσ ̸= 0260

and we said that a sublevel u is active if JuKσ ̸= 0.261

For all u ∈ S and for all valuations σ, we then have JuKσ = ω(u) + Jν(u)Kσ if u is262

active and 0 otherwise. Moreover, u is active if its verifications conditions are checked and263

ω(u) + Jν(u)Kσ ̸= 0.264

If L is semantically, and even syntactically, a subset of L+, one could note that reverse265

is not true. Indeed, some extended levels are not equivalent to any level. For instance, let266

CVIT 2016
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x ∈ X and u = C({x}, 1). Then, there is no v ∈ L such that u ≡ v. So, even some sublevels267

are not equivalent to any level.268

In fact, since for all u ∈ L+, u ≡ V(∅, u, 0), the sublevels are as powerful as the levels.269

However, this is not a problem. Keeping with our idea, we just want to show that any level is270

equivalent to a maximum of sublevels, so we do it for the grammar presented in Theorem 13.271

For that, we show how sublevels permit to replace nested imax.272

▶ Proposition 18. Let E = {x1, . . . , xn} ⊂ X , k ∈ N, y ∈ X , and for all i ∈ {1, . . . , n},273

ui = V({xi+1, . . . , xn}, xi, 0). Then,274

[Sk(y), x1, . . . , xn] ≡ max(V(E, y, k), u1, . . . , un),275

[Sk+1(0), x1, xn] ≡ max(C(E, k + 1), u1, . . . , un).276

Proof. Let σ be a valuation, t be the left-hand side term and u = k + σ(y) and u = k + 1 in277

the second case. If for all 1 ⩽ i ⩽ n, σ(xi) ̸= 0, then278

JtKσ = max(σ(xn), . . . , σ(x1), u)279

∀u ∈ {1, . . . , n}, JuiKσ = σ(xi)280

JV(E, y, k)Kσ = k + σ(y) JC(E, k)Kσ = k + 1281

and else, we take the largest i ∈ {1, . . . , n} such that σ(xi) = 0, then282

JtKσ = max(σ(xn), . . . , σ(xi+1))283

∀j ∈ {1, . . . , i}, JujKσ = 0284

JV(E, y, k)Kσ = 0 JC(E, k)Kσ = 0285

∀j ∈ {i + 1, . . . , n}, JujKσ = σ(xj)286

hence the equality. ◀287

These equivalences only differ in the first sublevel of the max which is a variable sublevel288

in the first case (to consider Sk(y)) and a constant one in the second case (to consider k).289

▶ Remark 19. There is no syntactic restriction on the verification conditions; they are not290

necessarily variables but can be any type of levels. In the same way, the variable part of291

a variable sublevel can be any type of level. Proposition 18 states that we only need them292

to be variables, but we made this choice of presentation to facilitate the level instantiation293

(developed in Section 5). Indeed, a variable will then be replaced by any level, and we want294

to make this substitution transparent in our level representation.295

2.4 An Appropriate Set of Sublevels296

We have restrained our study to the sublevels. Now, we show that some of them are not297

necessary, in the sense that they can be obtained as a maximum of other ones. The first298

restriction is related to the representation of 0. Indeed, for all E ⊂ X , C(E, 0) ≡ 0. Since we299

already have 0 ≡ max(∅), we can remove all these sublevels. The second restriction is a little300

more subtle and is illustrated with this example.301

▶ Example 20. With t1 = V(∅, x, 0) and t2 = V({x}, x, 0), we have t1 ≡ t2 since for all302

valuation σ, Jt1Kσ = σ(x) = Jt2Kσ.303

The issue here is the fact that the variable part of a variable sublevel does not necessarily304

appear in its first argument. This is the key of the following equivalence.305
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▶ Proposition 21. Let x ∈ X , E ⊂ X \ {x} and k ∈ N. Then306

V(E, x, k) ≡ max(V(E ∪ {x}, x, k), C(E, k)).307

Proof. Let σ be a valuation, t = V(E, x, k), u = C(E, k), and v = V(E ∪ {x}, x, k).308

If there exists y ∈ E such that σ(y) = 0, then JtKσ = JuKσ = JvKσ = 0.309

Else, if σ(x) = 0, then JtKσ = k, JuKσ = k and JvKσ = 0.310

Else, σ(x) ̸= 0, and then JtKσ = σ(x) + k, JuKσ = k and JvKσ = σ(x) + k.311

Hence the result. ◀312

We end up with this set of sublevels which permits to express any level.313

▶ Definition 22 (Canonical sublevels). A canonical sublevel is an element of the set314

S = {V(E, x, k), E ⊂ X , x ∈ E} ∪ {C(E, k), E ⊂ X , k > 0}315

▶ Theorem 23. Let t ∈ L. Then there exists a finite U ⊂ S such that t ≡ max U .316

▶ Definition 24. Let U be a finite subset of S. We say that max U is a representation and317

we denote by R the set of representation.318

Besides, for all t ∈ L+, we say that max U is a representation of t if t ≡ max U , and we319

say that the elements u of U are the elements of the representation (denoted as u ∈ max U320

by convenience).321

▶ Remark 25. In the rest of the paper, representations will often be denoted by U or V , as if322

they were subsets of canonical sublevels. However, keep in mind that they are special cases323

of levels and not subsets. In particular, they can be compared using ≡ and ⩽324

The canonical sublevels correspond to the set of sublevels that we search for, and, in the325

next section, we will show how to ensure the uniqueness property.326

We could try to merge the two types of sublevels by introducing a special variable 1 such327

that for all valuation σ, σ(1) = 1. We will then see C(E, K + 1) as V(E ∪ {1},1, K). This328

simplifies some results but makes the presentation less clear, and the distinction should still329

be done in a lot of cases.330

▶ Remark 26. Let u ∈ S and let σ be a valuation. Then u is active if and only if all its331

verification conditions are checked.332

Proof. If u is a constant sublevel C(E, K), then JuKσ = 0 if some VC is not checked, and333

JuKσ = K > 0 else.334

Else, u = V(E, x, K) with x ∈ E, then JuKσ = 0 if some VC is not checked, and335

JuKσ = K + σ(x) ≥ σ(x) = 1 else. ◀336

3 A Canonical Form for Levels337

The previous section defined R, the set of representations, and showed that any level is338

equivalent to one of its elements. The goal of this one is to show that any level has a minimal339

representation and that it is unique. This will be the canonical form.340

▶ Definition 27 (Minimal representation). Let U ∈ R. We say that U is minimal if and only341

if for all u, v ∈ U such that u ̸= v, u and v are incomparable. We denote by R the set of the342

minimal representations.343

By Theorem 23, any level has a representation, so a minimal one since the set of344

representation is well-founded. The challenging part is the uniqueness. To show it, we study345

the core of the definition of a minimal representation: the sublevel comparison.346
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3.1 Sublevel Comparison347

The sublevels can be easily compared. It is quite normal since we choose them to be very348

basic.349

▶ Theorem 28 (Sublevels comparison). Elements of S are compared as follows.350

V(E, x, L) ̸⩽ C(F, K) (1)351

C(E, L) ⩽ C(F, K) ⇐⇒ F ⊂ E ∧ L ⩽ K (2)352

C(E, L) ⩽ V(F, x, K) ⇐⇒ (F ⊂ E ∧ L ⩽ K + 1) (3)353

V(E, x, L) ⩽ V(F, y, K) ⇐⇒ F ⊂ E ∧ x = y ∧ L ⩽ K (4)354

Proof. With σ such that σ(x) = K + 1 and σ(y) = 1 if y ̸= x, we show the first case. Indeed,355

JV(E, x, L)Kσ = K + 1 + L, and K = JC(F, K)Kσ hence V(E, x, L) ̸⩽ C(F, K). The cases 2, 3356

and 4 correspond to Propositions 29–31 proved below. ◀357

▶ Proposition 29. Let E, F ⊂ X and L, K ∈ N. Then358

C(E, L) ⩽ C(F, K) ⇐⇒ F ⊂ E ∧ L ⩽ K.359

Proof. We note t1 = C(E, L) and t2 = C(F, K). Let us suppose F ⊂ E and L ⩽ K. Let σ360

be a valuation.361

If there exists y ∈ F such that σ(y) = 0, then Jt2Kσ = 0 and since F ⊂ E, Jt1Kσ = 0.362

Else, Jt1Kσ ⩽ K ⩽ L = Jt2Kσ.363

In both cases, Jt1Kσ ⩽ Jt2Kσ hence t1 ⩽ t2.364

Now, we show the other implication by contraposition.365

If there exists y ∈ F such that y ̸∈ E, we take σ such that σ(y) = 0 and for all z ̸= y,366

σ(z) = 1. Then, Jt1Kσ = L > 0 = Jt2Kσ.367

If L < K we take σ such that for all y, σ(y) = 1. Then, Jt2Kσ = K > L = Jt1Kσ.368

◀369

▶ Proposition 30. Let E, F ⊂ X , x ∈ E and K, L ∈ N. Then370

C(E, L) ⩽ V(F, x, K) ⇐⇒ (F ⊂ E ∧ L ⩽ K + 1).371

Proof. We note t1 = C(E, L) and t2 = V(F, x, K). Let us suppose F ⊂ E and L ⩽ K + 1.372

Let σ be a valuation.373

If there exists y ∈ F such that σ(y) = 0, then Jt2Kσ = 0 and since F ⊂ E, Jt1Kσ = 0.374

Else, σ(x) ≥ 1 (because x ∈ F ) and then Jt2Kσ = σ(x) + K ≥ 1 + K ≥ L ≥ Jt1Kσ.375

In both cases, Jt1Kσ ⩽ Jt2Kσ hence t1 ⩽ t2.376

Now, we show the other implication by contraposition. First, we note that L > 0.377

If there exists y ∈ F such that y ̸∈ E, we take σ such that σ(y) = 0 and for all z ̸= y,378

σ(z) = 1. Then, Jt1Kσ = K > 0 = Jt2Kσ.379

If L > K + 1 we take σ such that for all y, σ(y) = 1. Then, Jt1Kσ = L > K + 1 = Jt1Kσ.380

◀381

▶ Proposition 31. Let E, F ⊂ X , x ∈ E, y ∈ F and L, K ∈ N. Then382

V(E, x, L) ⩽ V(F, y, K) ⇐⇒ F ⊂ E ∧ x = y ∧ L ⩽ K.383

Proof. We note t1 = V(E, x, L) and t2 = V(F, y, K). Let us suppose F ⊂ E, x = y and384

L ⩽ K. Let σ be a valuation.385
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If there exists y ∈ F such that σ(y) = 0, then Jt2Kσ = 0 and since F ⊂ E, Jt1Kσ = 0.386

Else, Jt1Kσ ⩽ σ(x) + L ⩽ σ(x) + K = Jt2Kσ.387

In both cases, Jt1Kσ ⩽ Jt2Kσ hence t1 ⩽ t2.388

Now, we show the other implication by contraposition.389

If there exists z ∈ F such that z ̸∈ E, we take σ such that σ(z) = 0 and for all j ̸= z,390

σ(j) = 1. We note that z ̸= x (since z ̸∈ E and x ∈ E) hence σ(x) = 1. Then,391

Jt1Kσ = L + 1 > 0 = Jt2Kσ.392

If x ̸= y we take σ such that σ(x) = K +2, σ(y) = 1 and for all z ̸= x and z ̸= y, σ(z) = 1.393

Then, Jt1Kσ = K + L + 2 > K + 1 = Jt2Kσ.394

If L > K we take σ such that for all z, σ(z) = 1. Then, Jt1Kσ = L + 1 > K + 1 = Jt2Kσ.395

◀396

As a corollary, we get that the sublevel equivalence is a syntactic equality, which is quite397

natural; the uniqueness property would be impossible otherwise.398

▶ Corollary 32. Let t1, t2 ∈ S. Then t1 ≡ t2 ⇐⇒ t1 = t2.399

Proof. We have t1 ≡ t2 ⇐⇒ t1 ⩽ t2 ∧ t2 ⩽ t1, we conclude with Theorem 28. ◀400

3.2 The Uniqueness Property401

Now, we can show the uniqueness property. First, we show that two equivalent minimal402

representations have the same variable sublevels.403

▶ Proposition 33. Let U, V ∈ R such that U ≡ V . Then404

V(E, x, k) ∈ U ⇐⇒ V(E, x, k) ∈ V.405

Proof. Let V(E, x, k) be a sublevel of U . We consider σ such that406

σ(y) =


2 + max{ω(u), u ∈ U or u ∈ V } if y = x

1 if y ∈ E \ {x}
0 else

407

We have JUKσ = JV(E, x, k)Kσ = k + σ(x) and then JV Kσ = k + σ(x). Then,408

either there exists V(F, y, l) in V such that σ(y) + l = σ(x) + k and F ⊂ E ∪ {x} = E409

(else F contains a variable z such that σ(z) = 0),410

or there exists C(F, l) in V such that l = σ(x) + k.411

Since σ(x) > max{ω(u), u ∈ U or u ∈ V }, we deduce that it is the first case (we cannot have412

σ(x) + k = l) and y = x (otherwise we will have σ(y) = 1 and σ(x) > 1 + l). Then, there413

exists V(F, x, k) ∈ V with F ⊂ E.414

If F ⊊ E, then by the same reasoning, we show that there exists V(G, x, k) ∈ U with415

G ⊂ F ⊊ E. But, by minimality, it is impossible to have V(E, x, k) and V(G, x, k) in U with416

G ⊂ E since they are comparable.417

Then E = F and V(E, x, k) is also an element of V . ◀418

And we show the same for the constant sublevels.419

▶ Proposition 34. Let U, V ∈ R such that U ≡ V . Then420

C(E, k) ∈ U ⇐⇒ C(E, k) ∈ V.421
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Proof. Let C(E, k) be a sublevel of U . We show the result by induction on E. If E = ∅, we422

consider σ the zero function. Then, JUKσ = k, hence JV Kσ = k. Since k > 0, it follows that423

C(∅, k) is a sublevel of V .424

In the induction case, we consider σ such that σ(x) = 1 if x ∈ E and σ(x) = 0 otherwise,425

hence JUKσ = k. Then, JV Kσ = k and since k > 0,426

either there exists V(F, x, l) ∈ V such that F ⊂ E and σ(x) + l = k,427

or there exists C(F, k) ∈ V such that F ⊂ E.428

In the first case, we have x ∈ F ⊂ E, then σ(x) = 1 and l = k − 1. Then, by Proposition 33,429

V(F, x, k − 1) ∈ U which is impossible by Definition 27 since it would be comparable with430

C(E, k) ∈ U .431

Then, there exists C(F, k) ∈ V such that F ⊂ E. If F ⊊ E, we apply the induction432

hypothesis and obtain C(F, k) ∈ U , impossible because it would be comparable with C(E, k).433

Then E = F and C(E, k) is also an element of V . ◀434

We immediately obtain that equivalence of minimal representations is set equality.435

▶ Proposition 35. For all U, V ∈ R, U ≡ V ⇐⇒ U = V .436

Proof. The reverse implication is trivial and the direct one is a consequence of Propositions 33437

and 34. ◀438

Finally, we obtain the main theorem: the existence and uniqueness of a minimal repres-439

entation for each level, that is to say a canonical form. First, we show the intuitive property440

that the minimal representation of a maximum of sublevels is formed with some of them.441

▶ Proposition 36. For all U ∈ R, there exists a unique V ∈ R such that U ≡ V . Besides,442

for all v ∈ V , v ∈ U .443

Proof. We apply the following procedure. Let E be the elements of U . While there exists444

u, v ∈ E such that u ⩽ v, we remove u from E, and we obtain a minimal representation such445

that V ⊂ U . Proposition 35 permits to obtain its uniqueness. ◀446

▶ Theorem 37 (Representation). For all t ∈ L, there exists a unique U ∈ R such that t ≡ U .447

We say that U is the minimal representation of t.448

Proof. By Theorem 23, there exists U ∈ S such that t ≡ U , and by Proposition 36, there449

exists a unique minimal representation of U . ◀450

This theorem states the existence of a canonical form c for L, c being the function that451

associates any level to its minimal representation.452

3.3 Level Comparison453

The canonical form gives us a simple decision procedure for the equivalence, but also more454

generally for the comparison problems. Indeed, a sublevel can be compared to a level using455

its representation.456

▶ Lemma 38. Let u ∈ S and V ⊂ R. Then u ⩽ V if and only if there exists v ∈ V such457

that u ⩽ v.458

Proof. The reverse implication is trivial. We show the direct one by contraposition. We459

suppose that for all v ∈ V , u ̸⩽ v.460

If u = C(E, k), we consider σ such that σ(x) = 1 if x ∈ E and 0 otherwise. Then, for all461

v ∈ V , we have either462
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v = V(F, x, l) or v = C(F, l) with F ̸⊂ E hence JvKσ = 0 < k = JuKσ,463

or v = V(F, x, l) with F ⊆ E and l < k − 1 hence JvKσ = l + 1 < k = JuKσ,464

or v = C(F, l) with l < k hence JvKσ = l < k = JtKσ.465

Then u ̸⩽ V .466

Else, u = V(E, x, k). We consider M = max{ω(v), v ∈ V } and σ such that σ(x) = M + 2,467

σ(y) = 1 if y ∈ E \ {x} and 0 otherwise. Then, for all v ∈ V , we have either468

v = C(F, l) hence JvKσ ⩽ l < k + M + 2 = JuKσ,469

or v = V(F, y, l) and F ̸⊂ E hence JvKσ = 0 < JuKσ,470

or v = V(F, y, l) with F ⊆ E and x ̸= y, hence JvKσ = l + 1 < k + M + 2 = JuKσ,471

or v = V(F, x, l) with F ⊆ E and l < k, hence JvKσ = l + M + 2 < k + M + 2 = JuKσ.472

Then u ̸⩽ V . ◀473

Therefore, we can compare two levels, for instance by comparing each sublevel of the474

minimal representation of the first one to the second one. More generally, two representations475

are compared in the following way.476

▶ Theorem 39. Let U, V ∈ R. Then, U ⩽ V if and only if for all u ∈ U , there exists v ∈ V477

such that u ⩽ v.478

Proof. If U ⩽ V , then for all u ∈ U , u ⩽ V and by Lemma 38, there exists v ∈ V such that479

u ⩽ v. The reverse implication is trivial. ◀480

One can note that Lemma 38 gives us a new proof of the uniqueness property stated in481

Proposition 35.482

Proof. Let U, V ∈ R such that U ≡ V . We want to show that for all u ∈ U , u ∈ V .483

We have u ⩽ U ⩽ V , hence by Lemma 38, there exists v ∈ V such that u ⩽ v. In the484

same way, there exists u′ ∈ U such that v ⩽ u′. Then, by Definition 27, u′ = u (because the485

elements of U are incomparable), and then u ≡ v hence u = v by Corollary 32. ◀486

This shows that there is a link between Lemma 38 and the uniqueness property. In487

fact, this lemma should be understood as an independence lemma. Indeed, if we consider488

max(u1, . . . , un) as a linear combination of u1, . . . , un, then this lemma states that the only489

way to be smaller than a linear combination is to depend on and be smaller than one of the490

elements of this combination.491

This analogy provides a new point of view on our work: S is a ‘linearly independent’492

family (uniqueness of the minimal representation) which generates all the levels through493

‘linear combinations’.494

4 A Canonical Form for Extended Levels495

In this section we are interested in extending the representation theorem to the whole exten-496

ded levels. This is motivated by the level instantiation. Indeed, if u = max(V({x}, x, 0)), then497

instantiate x with max(y, z) gives the term max(V({max(y, z)}, max(y, z), 0)), which is not ca-498

nonical. To obtain its canonical form, we simplify this term in max(V({y}, y, 0),V({z}, z, 0)).499

But, for now, we do not have an algorithm to perform this simplification, and in fact, we500

do not even know if all the extended levels have representations. The different types of level501

are sorted by expressiveness in Figure 2, and our goal is to collapse its last floor, showing502

that L+ ≡ R.503

One could note that for all u, v ∈ L and x ∈ X , u[x/v] ∈ L, and so c(u)[x/v] always has a504

canonical form. But extending the representation theorem and having a general canonization505
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L+ ≡ S

R ≡ R

L S

Figure 2 Comparison of the different types of level.

algorithm is convenient since it results in computing the canonical form of the extended level506

c(u)[x/v] to obtain a canonical form after substitution.507

We show by induction that any extended level has a representation. The result is already508

shown for the basis case of 0 and the variables, and the case of the maximum is easy since509

for all U, V ∈ R, max(U ∪ V ) is a representation of max(U, V ).510

The Successor511

We define inc : S → S such that inc(C(E, K)) = C(E, K + 1) and inc(V(E, x, K)) =512

V(E, x, K + 1), in order to define the successor of a canonical sublevel in terms of rep-513

resentation.514

▶ Proposition 40. For all u ∈ S,515

S(u) ≡ max(inc(u), C(∅, 1)).516

Proof. Let σ be a valuation. If there exists x ∈ VC(u) such that σ(x) = 0, then both terms517

are evaluated to 0. Else, both terms are evaluated to JuKσ + 1. ◀518

We immediately deduce the result.519

▶ Proposition 41. Let U ∈ R. Then,520

S(U) ≡ max{inc(u), u ∈ U} ∪ {C(∅, 1)}.521

The Impredicative Maximum522

Let U, V ∈ R. Following the equivalences imax(0, u) ≡ u and imax(u, 0) ≡ 0, and Proposi-523

tions 6 and 7,524

imax(U, V ) ≡


max(∅) if V = max(∅)
V if U = max(∅)
max
u∈U
v∈V

imax(u, v) else
(5)525

Then, it is sufficient to show that for all u, v ∈ S, imax(u, v) has a representation. We526

could then obtain a representation of imax(U, V ) by taking the elements of the ones of527

imax(u, v) for all u ∈ U and v ∈ V .528

▶ Proposition 42. Let v ∈ S, E ⊂ X , x ∈ E and K ∈ N. Then,529

imax(C(E, K + 1), v) ≡ max(C(E ∪VC(v), K + 1), v)530

imax(V(E, x, K), v) ≡ max(V(E ∪VC(v), x, K), v)531
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Proof. Let t be the bold term, and let σ be a valuation.532

If there exists y ∈ VC(v) such that σ(y) = 0, then both terms are evaluated to 0.533

Else if there exists y ∈ E such that σ(y) = 0, then they are both evaluated to JvKσ.534

Else, for all y ∈ E∪VC(v), σ(y) = 0 and they are evaluated to max(JvKσ, ω(v) + Jν(v)Kσ).535

◀536

The Sublevels537

We consider that each of the VCs of a sublevel are representations. First, we show how to538

remove a max as head-symbol of such a VC U . For the sublevel to be active, its VC should539

be checked and in the case of U , it means that one of its elements u is active. So it leads to540

split it into a maximum.541

▶ Proposition 43. Let V ⊂ L+, U ⊂ R, K ∈ N, and w ∈ L+.542

C(V ∪ {U}, K) ≡ max{C(V ∪ {VC(u)}, K), u ∈ U}543

V(V ∪ {U}, w, K) ≡ max{V(V ∪ {u}, w, K), u ∈ U}544

Proof. Let σ be a valuation, t be the left-hand side term and t′ be the right-hand side term.545

We note w = 0 in the case of the constant sublevel. We note that Jt′Kσ and JtKσ are either K546

or 0, and if K = 0 and JwKσ = 0, then both terms are evaluated to 0. Else, since the VC of a547

canonical sublevel u are checked with σ if and only if JuKσ ̸= 0,548

JtKσ = K + JwKσ ⇐⇒ ∃u ∈ U, JuKσ ̸= 0549

⇐⇒ ∃u ∈ U,∀x ∈ VC(u), σ(x) ̸= 0550

⇐⇒ Jt′Kσ = K + JwKσ.551

Hence the result. ◀552

Note that this result is true when U = max(∅), since we obtain max(∅).553

An induction on the number of VC of the constant sublevel t permits to remove max as554

head-symbol of all the verification conditions. We have to consider all the combinations of555

VC of its guards. The result is similar in both constant and variable sublevel cases, but we556

prefer to split it into two propositions, even if we only have one proof.557

▶ Proposition 44. Let U1, . . . , Un ∈ R, K ∈ N. We note t = C({U1, . . . , Un}, K) and for all558

u1, . . . , un ∈ S we define559

P (u1, . . . , un) = C
(⋃

1≤i≤n VC(ui), K
)

560

Then t ≡ max{P (u1, . . . , un), u1 ∈ U1, . . . , un ∈ Un}.561

▶ Proposition 45. Let U1, . . . , Un ∈ R, K ∈ N, w ∈ L+, and t = V({U1, . . . , Un}, w, K).562

For all u1, . . . , un ∈ S, we define563

P (u1, . . . , un) = V
(⋃

1≤i≤n VC(ui), w, K
)

564

Then t ≡ max{P (u1, . . . , un), u1 ∈ U1, . . . , un ∈ Un}.565

Proof. Let us note t′ the right-hand side term, and let σ be a valuation. We note w = 0 in566

the case of the constant sublevel. We note that Jt′Kσ and JtKσ are either K or 0. Of course, if567
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K = 0 and JwKσ = 0, both terms are evaluated to 0. Else, since the verifications conditions568

of a canonical sublevel u are checked with σ if and only if JuiKσ ̸= 0, hence569

Jt′Kσ = K + JwKσ ⇐⇒ ∀i ∈ {1, . . . , n},∃ui ∈ Ui, JuiKσ ̸= 0570

⇐⇒ ∀i ∈ {1, . . . , n}, JUiKσ ̸= 0571

⇐⇒ JtKσ = K + JwKσ.572

Checkmate! ◀573

The term P (u0, . . . , un) means that if u0 ∈ U0, . . . , un ∈ Un are checked, then U0, . . . , Un574

are checked and the sublevel that we simplify is active as well as P (u0, . . . , un).575

Here again, we note that the result still holds if there exists i such that Ui = ∅, since576

both terms are equivalent to 0.577

The Constant Sublevels578

The induction case of the constant sublevel is solved by Proposition 44. Indeed, in the579

constant sublevel case, for all u1, . . . , un ∈ S, P (u0, . . . , un) ∈ S if K > 0 (hence we obtain a580

representation of t). Besides, if K = 0, a representation of t is max ∅.581

The Variable Sublevels582

However, in the variable sublevels, it is not the case; Proposition 45 only permits us to obtain583

variable sublevels where the verification conditions are variables. Besides, the variable part584

of P (u0, . . . , un) is not necessarily a variable. That is why we now take a look at the variable585

part of variable sublevels.586

▶ Proposition 46. Let U ∈ R, V ⊂ L+, and K ∈ N. Then,587

V(V, U, K) ≡ max{V(V, u, K), u ∈ U}.588

Proof. Let σ be a valuation. If there exists v ∈ V such that JvKσ = 0, then both terms589

are evaluated to 0. Else, for all u ∈ U , JV(V, u, K)Kσ = K + JuKσ and JV(V, U, K)Kσ =590

K + maxu∈U JuKσ hence the result. ◀591

So, it results in sublevels as variable part of variable sublevels, and we watch these in the592

next proposition.593

▶ Proposition 47. Let V ⊂ L+, u ∈ S, and K ∈ N. We note594

f(u) =
{
C(V ∪VC(u), K + ω(u)) if ν(u) = 0
V(V ∪VC(u) ∪ {u}, ν(u), K + ω(u)) else

595

Then V(V, u, K) ≡ max(C(V, K), f(u)).596

Proof. Let σ be a valuation.597

If there exists v ∈ V such that JvKσ = 0, then both terms are evaluated to 0.598

Else if there exists w ∈ VC(u) such that JwKσ = 0, they are evaluated to K.599

Else, they are evaluated to K + JuKσ.600

◀601
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Note that when u ∈ S, having VC(u) as VC is equivalent to having u as VC which602

simplifies f(u) in the case where u is a variable sublevel.603

We can apply these two propositions to P (u0, . . . , un) in Proposition 45, and we get the604

following.605

▶ Proposition 48. Let K ∈ N, U1, . . . , Un ∈ R, V ∈ R, and t = V({U1, . . . , Un}, V, K). For606

all v, u0, . . . , un ∈ S, we define607

f(u1, . . . , un) = C
(⋃

1≤i≤n VC(ui), K
)

,608

g(v, u1, . . . , un) to be (by noting u0 = v),609 
C

(⋃
0≤i≤n VC(ui), K + ω(v)

)
] if ν(v) = 0

V
(⋃

0≤i≤n VC(ui), ν(v), K + ω(v)
)

] else
610

and611

Q(v, u1, . . . , un) = max(f(u1, . . . , un), g(v, u1, . . . , un)).612

Then,613

t ≡ max{Q(v, u1, . . . , un), u1 ∈ U1, . . . , un ∈ Un, v ∈ V }614

Proof. By Proposition 45, it is sufficient to shat for all u1 ∈ U1, . . . , un ∈ Un,615

P (u0, . . . , un) ≡ max{Q(v, u1, . . . , un), v ∈ V }.616

It is the case by Propositions 46 and 47. ◀617

Here, g(v, u1, . . . , un), corresponds to the case where all the VC u1, . . . , un are checked,618

and v is active, and f(v, u1, . . . , un) corresponds to the case where u1, . . . , un are checked but619

v is not active (therefore it is the same as having a constant sublevel, which explains that f620

corresponds to the function P in the constant sublevel case), hence they form Q(v, u0, . . . , vn).621

▶ Remark 49. As for the constant sublevels case, we should take care to consider the sublevels622

f(u1, . . . , un) only if its constant part is not 0. Otherwise, it is equivalent to 0, and it can be623

removed from the max.624

Besides, one could think that we should have the same consideration with g(v, u1, . . . , un)625

when v is a constant sublevel, but since v ∈ S (because it is an element of a representation),626

then ω(v) > 0.627

After that, the case of the variable sublevel is solved.628

General Representation Theorem629

All the induction cases are done. We obtain the main result.630

▶ Theorem 50. For all u ∈ L+, there exists an unique v ∈ R such that u ≡ v.631

Proof. By induction, u has a representation, and therefore a minimal one by Proposition 36.632

◀633
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Algorithm 1 Canonization algorithm

Data: u ∈ L+

Result: c(u), the canonical form of u

Function normalize(u)
if u = 0 then

return max(∅)
else if u = x then

return max(V({x}, x, 0))
else if u = max(u, v)) then

// Algorithm 3
else if u = S(u) then

// Algorithm 4
else if u = imax(u, v) then

// Algorithm 5
else if u = C({U1, . . . , Un}, K) then

// Algorithm 6
else if u = V({U1, . . . , Un}, V, K) then

// Algorithm 6
end

5 Computation Algorithm634

We design a recursive algorithm suited to the inductive structure of L+. It is presented635

in Algorithm 1 which already contains the code for the basis cases 0 and x for which the636

canonical form are respectively max(∅) and max(V({x}, x, 0)).637

We are now interested in the code to compute the canonical form in the other cases. We638

will generally use the results developed in Section 4, since they give us a representation for639

some type a level. Then, it is sufficient to minimize this representation. For that, we write640

Algorithm 2 which inserts a sublevel in an independent set of sublevels.641

Algorithm 2 Insertion algorithm

Data: U ⊂ S independent, v ∈ S
Result: W such that c(max(U ∪ {v})) = max(W )
Function insert(U, v)

W ← ∅
for u ∈ U do

if v ⩽ u then
return U

else if v ̸⩽ u then
W ←W ∪ {u}

end
end
return W ∪ {v}

end
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The Maximum642

To compute the canonical form of max(u, v), we use insert to add the sublevels of v to the643

one of u in Algorithm 2.644

Algorithm 3 Case of the maximum

Data: u, v ∈ L+

Result: c(max(u, v))
s← sublevels(normalize(u))
for vi ∈ normalize(v) do

s← insert(s, vi)
end
return max(s)

The Successor645

Thanks to Proposition 40, for all U ∈ R, we know a representation of S(U) for U ∈ R. To646

obtain its canonical form, we could use insert to add its sublevels to an initially empty set.647

Besides, we have a simpler operation.648

▶ Proposition 51. Let U ∈ R and E = {inc(u), u ∈ U}.649

c(S(U)) =
{

max E if ∃u ∈ U, VC(u) = ∅
max E ∪ {C(∅, 1)} else

650

Proof. First, we note that for all u, v ∈ S, if u and v are incomparable, then inc(u) and651

inc(v) are also incomparable. By Proposition 40, max{inc(u), u ∈ U}∪{C(∅, 1)} is equivalent652

to S(U). We distinguish two cases.653

If there exists u ∈ U such that VC(u) = ∅, then u = C(∅, Ni) with Ni > 0 hence654

C(∅, 1) ⩽ inc(u) and the result holds since the other elements are incomparable.655

Else, for all u ∈ U , C(∅, 1) and u are incomparable. Indeed, let σ be a valuation656

such that for all x ∈ X , σ(x) = 0. Then Jinc(u)Kσ = 0 (since VC(u) ̸= ∅), hence657

C(∅, 1) ̸⩽ inc(u). Conversely, let σ be a valuation such that for all x ∈ X , σ(x) = 2. Then,658

Jinc(u)Kσ = Jν(inc(u))Kσ + ω(inc(u)) > 1 (because for a constant sublevel ω(inc(u)) > 1,659

and for a variable one Jν(inc(u))Kσ = 2), hence inc(u) ̸⩽ C(∅, 1).660

◀661

We implement this strategy in Algorithm 4.662

The Impredicative Maximum663

For all u, v ∈ S, Proposition 42 expresses imax(u, v) as a maximum of canonical sublevels,664

and for all U, V ∈ R, Equation (5) expresses imax(U, V ) as a maximum of imax(u, v) with665

u ∈ U and v ∈ V (hence u, v ∈ S). Using these two results, we design Algorithm 5.666

The Constant Sublevels667

The computation of the canonical form of a constant sublevel relies on Proposition 44. Here,668

we immediately returns max(∅) if some VC is 0, and we do not forget the case K = 0 which669

results in 0.670
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Algorithm 4 Case of the successor

Data: u ∈ L+

Result: The canonical form of S(u)
U ← normalize(u)
s← {inc(u), u ∈ U}
for u ∈ U do

if VC(u) = ∅ then
return max(s)

end
end
return max(s ∪ C(∅, 1))

Algorithm 5 Case of the impredicative maximum

Data: u and v levels
Result: The canonical form of imax(u, v)
U ← normalize(u)
V ← normalize(v)
s← sublevels(V )
for u ∈ U, v ∈ V do

if u = V(E, x, K) then
s← insert(s,V(E ∪VC(v)), x, K)

else if u = C(E, K) then
s← insert(s, C(E ∪VC(v)), K)

end
end
return max(s)

Algorithm 6 Case of the constant sublevels

Data: U1, . . . , Un ∈ L+, K ∈ N
Result: c(C({U1, . . . , Un}, K))
if K = 0 then

return max(∅)
for 1 ≤ i ≤ n do

Ui ← normalize(Ui)
if Ui = max(∅) then

return max(∅)
end

end
s← ∅
for u1 ∈ U1, . . . , un ∈ Un do

s← insert
(
C

(⋃
1≤i≤n VC(ui), K

)
, s

)
end
return max(s)

The Variable Sublevels671

The case of the variable sublevel is very similar and relies on Proposition 48.672
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Algorithm 7 Case of the variable sublevels

Data: U1, . . . , Un, V ∈ L+, K ∈ N
Result: c(V({U1, . . . , Un}, V, K))
for 1 ≤ i ≤ n do

Ui ← normalize(Ui)
if Ui = max(∅) then

return max(∅)
end

end
V ← normalize(V )
s← ∅
for u1 ∈ U1, . . . , un ∈ Un do

if K ̸= 0 then
s← insert(C(∪1≤i≤n VC(ui), K), s)

end
for u0 ∈ V do

if u0 = C(E, L) then
s← insert(C(∪0≤i≤n VC(ui), K + L), s)

else if u0 = V(E, x, L) then
s← insert(V(∪0≤i≤n VC(ui), x, K + L), s)

end
end

end
return max(s)

▶ Theorem 52 (Correction). Let u ∈ L+. Then, normalize(u) computes c(u), the canonical673

form of u.674

Proof. First, we note that the insert function terminates and is correct. Then, we show that675

normalize terminates since each recursive call is on smaller terms. The correction of the676

algorithm follows from the explanation of each cases. ◀677

6 Conclusion678

We study the imax-successor and introduced a canonical form for its terms, which gives us679

an easy procedure decision for the equivalence problem. For that, we extended the grammar680

with new terms called sublevels, and we expressed any term as a maximum of sublevels,681

what we have called a representation. Since not all representations are actually terms of the682

algebra, a next step could be to characterize the representations that are. This could lead to683

an even better understanding of the imax-successor algebra.684

In this article, we only provide a naive canonization algorithm that can be improved.685

However, one could note that the size of a canonical form can be exponential in the size686

of the initial term (take for instance nested imax with the term u = [x1, . . . , xn] where the687

variables xi are all different).688

Finally, this representation can be expressed in λΠ/ ≡ with rewrite rules, which is our689

initial motivation, and it is used in a Work In Progress translator from Lean to Dedukti1690

1 https://github.com/Deducteam/Lean2dk
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showing that it can indeed be used to express CC∞
∀ in λΠ/ ≡. The next step here, is to study691

how the expression of universe polymorphism, thanks to this level representation, behaves692

well together with other features such as inductive types or cumulativity.693
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