Tightening the Frontier of Decidability for Decisiveness

 $\underline{\mathsf{Gaspard\ Fougea}}^1$, Serge Haddad^1 , Lina $\mathsf{Ye}^{1,2}$, Shreyas Jain^3 , and $\mathsf{Alain\ Finkel}^1$

- (1) ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France
 (2) CentraleSupélec
 - (3) Indian Institute of Science Education and Research (IISER)

Plan

- Preliminaries
- ② Decisiveness
- One-counter machines
- Petri nets
- Conclusion

A Markov Chain (MC) $\mathcal{M} = (S, p)$ is defined by:

• S, a countable set of states;

0

 \bigcirc

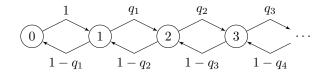
 \bigcirc

(3)

. . .

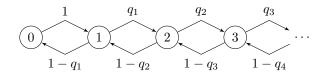
A Markov Chain (MC) $\mathcal{M} = (S, p)$ is defined by:

- S, a countable set of states;
- $p: S \to Dist(S)$ (Dist(S): the set of distributions over S).



A Markov Chain (MC) $\mathcal{M} = (S, p)$ is defined by:

- S, a countable set of states;
- $p: S \to Dist(S)$ (Dist(S): the set of distributions over S).

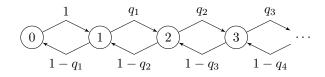


For effectivity, one requires that:

- for all $s \in S$, the support of p(s) is finite and computable;
- p is computable.

A Markov Chain (MC) $\mathcal{M} = (S, p)$ is defined by:

- S, a countable set of states;
- $p: S \to Dist(S)$ (Dist(S): the set of distributions over S).



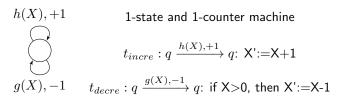
For effectivity, one requires that:

- for all $s \in S$, the support of p(s) is finite and computable;
- p is computable.

Here $i \rightarrow q_i$ should be computable.

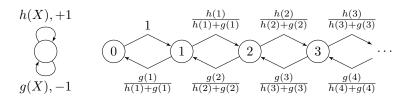
Markov chains are issued from non deterministic high-level models by:

• adding (computable) weights for the transitions of the model;



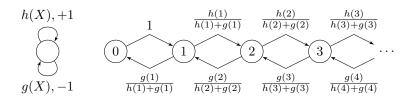
Markov chains are issued from non deterministic high-level models by:

• adding (computable) weights for the transitions of the model;



Markov chains are issued from non deterministic high-level models by:

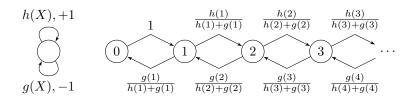
- adding (computable) weights for the transitions of the model;
- given a state, getting the probabilities by normalization of the weights of the enabled transitions.



Markov chains are issued from non deterministic high-level models by:

- adding (computable) weights for the transitions of the model;
- given a state, getting the probabilities
 by normalization of the weights of the enabled transitions.

The weights are *dynamic* (resp. *static*) if they (resp. do not) depend on the current state.



Markov chains are issued from non deterministic high-level models by:

- adding (computable) weights for the transitions of the model;
- given a state, getting the probabilities
 by normalization of the weights of the enabled transitions.

The weights are *dynamic* (resp. *static*) if they (resp. do not) depend on the current state.

The weights are static if h and g are constant.

Computing Reachability Probabilities

Let \mathcal{M} be a Markov chain, s_0 an (initial) state, and A a subset of states, then $\mathbf{Pr}_{\mathcal{M},s_0}(\mathbf{F}A)$ represents the probability to reach A from s_0 .

The Computing Reachability Probability (CRP) problem is defined by:

- Input: effective \mathcal{M} , s_0 , effective A, and a rational number $\theta > 0$;
- Output: an interval [low, up] such that $up low \le \theta$ and $\mathbf{Pr}_{\mathcal{M}, s_0}(\mathbf{F}A) \in [low, up]$.

In finite Markov chains, it can be solved in polynomial time.

Computing Reachability Probabilities

Let \mathcal{M} be a Markov chain, s_0 an (initial) state, and A a subset of states, then $\mathbf{Pr}_{\mathcal{M},s_0}(\mathbf{F}A)$ represents the probability to reach A from s_0 .

The Computing Reachability Probability (CRP) problem is defined by:

- Input: effective \mathcal{M} , s_0 , effective A, and a rational number $\theta > 0$;
- Output: an interval [low, up] such that $up low \le \theta$ and $\mathbf{Pr}_{\mathcal{M}, s_0}(\mathbf{F}A) \in [low, up]$.

In finite Markov chains, it can be solved in polynomial time.

How to solve the CRP problem of infinite Markov chains?

- ad-hoc algorithms for particular class of probabilistic models, e.g., static Probabilistic Pushdown Automata (pPDA) (Brádzil et al, FMSD 2013);
- generic algorithms for probabilistic models satisfying a semantical property,
 e.g., decisiveness (Abdulla et al, LMCS 2007).

Motivation of previous and current work

(Finkel et al. CONCUR 2023 and this work)

Limitations of existing approaches

 models with only constants (static) transition weights cannot model phenomena like congestion in networks (Abdulla et al, LMCS 2007);

Our contributions

• models may contain dynamic weights;

Motivation of previous and current work

(Finkel et al. CONCUR 2023 and this work)

Limitations of existing approaches

- models with only constants (static) transition weights cannot model phenomena like congestion in networks (Abdulla et al, LMCS 2007);
- the decisiveness problem for some standard models are not yet studied.

Our contributions

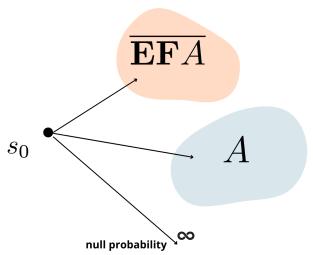
- models may contain dynamic weights;
- Decidability results of decisiveness problem for dynamic probabilistic counter machines and Petri nets.

Plan

- Preliminaries
- 2 Decisiveness
- One-counter machines
- Petri nets
- Conclusion

 \mathcal{M} is decisive w.r.t. $s_0 \in S$ and $A \subseteq S$ if almost surely a run starting from s_0 :

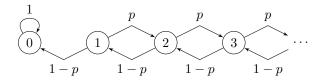
- \bullet either reaches A;
- or $\overline{\mathbf{EF}A}$, i.e., the set of states from which A is unreachable.



 \mathcal{M} is decisive w.r.t. $s_0 \in S$ and $A \subseteq S$ if almost surely a run starting from s_0 :

- \bullet either reaches A;
- or $\overline{\mathbf{EF}A}$, i.e., the set of states from which A is unreachable.

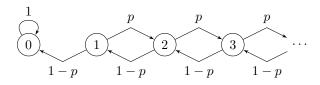
Illustration with a polynomial random walk: $s_0=1$ and $A=\{0\}$



 \mathcal{M} is decisive w.r.t. $s_0 \in S$ and $A \subseteq S$ if almost surely a run starting from s_0 :

- \bullet either reaches A:
- or $\overline{\mathbf{EF}A}$, i.e., the set of states from which A is unreachable.

Illustration with a polynomial random walk: $s_0=1$ and $A=\{0\}$

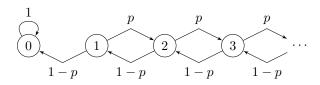


It is decisive iff $p \leq \frac{1}{2}$

 \mathcal{M} is decisive w.r.t. $s_0 \in S$ and $A \subseteq S$ if almost surely a run starting from s_0 :

- \bullet either reaches A:
- or $\overline{\mathbf{EF}A}$, i.e., the set of states from which A is unreachable.

Illustration with a polynomial random walk: $s_0 = 1$ and $A = \{0\}$



It is decisive iff $p \leq \frac{1}{2}$

The decisiveness problem w.r.t. s_0 and finite A for polynomial safe one-counter pCM with a single state is decidable in linear time. (Finkel et al., CONCUR 2023)

Research on decisiveness

Decisiveness is studied via different approaches:

- In relationship to statistical model checking (Barbot et al., 2024)
- Extension of the notion of decisiveness for MDPs (Bertrand et al., 2020)
- Study of decisiveness for stochastic hybrid systems (Bouyer et al., 2022)

Plan

- Preliminaries
- 2 Decisiveness
- One-counter machines
- Petri nets
- Conclusion

From QBD to pCM

Quasi Birth-Death Process (QBD) is a probabilistic model widely used and analyzed in performance evaluation.

It is equivalent to a probabilistic 1-counter machine with following constraints:

- Counter updates are incrementations and decrementations;
- ullet For all states q,q', positive integers n,n' and $\Delta\in\{-1,0,1\}$

$$\mathbf{Pr}((q,n),(q',n+\Delta)) = \mathbf{Pr}((q,n'),(q',n'+\Delta))$$

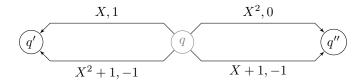
•

11 / 22

A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

ullet the weights are polynomials whose single variable X is the counter value;

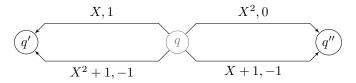
Illustration. (The transitions for the null counter are omitted)



A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

ullet the weights are polynomials whose single variable X is the counter value;

Illustration. (The transitions for the null counter are omitted)



Consider the Markov chain over $Q \times \mathbb{N}$, denoted as $\mathbf{M}_{Q,\mathbb{N}}$, then

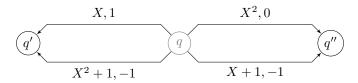
$$\mathbf{M}_{Q,\mathbb{N}}[(q,\nu),((q',\nu+1))] = \frac{\nu}{2(\nu^2+\nu+1)}$$

A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

- ullet the weights are polynomials whose single variable X is the counter value;
- ullet but the coefficients of \mathbf{M}_Q are still constant:

$$\mathbf{M}_Q(q,q') = \frac{\sum_{t=(q \to q') \in \Delta_>} W(t)}{\sum_{t=(q \to) \in \Delta_>} W(t)} \qquad \text{ where $\Delta_>$ are the transitions for the positive counter}$$

Illustration. (The transitions for the null counter are omitted)



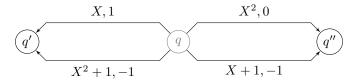
$$\mathbf{M}_{Q}[q, q'] = M_{Q}[q, q''] = \frac{X^2 + X + 1}{2(X^2 + X + 1)} = \frac{1}{2}$$

A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

- ullet the weights are polynomials whose single variable X is the counter value;
- ullet but the coefficients of \mathbf{M}_Q are still constant:

$$\mathbf{M}_Q(q,q') = \frac{\sum_{t=(q \to q') \in \Delta_>} W(t)}{\sum_{t=(q \to) \in \Delta_>} W(t)} \qquad \text{ where $\Delta_>$ are the transitions for the positive counter}$$

Illustration. (The transitions for the null counter are omitted)



The decisiveness problem of a pHM with irreducible \mathbf{M}_Q is decidable in polynomial time (Finkel et al. CONCUR 2023).

The decisiveness problem of a pHM is decidable in polynomial time (here).

12 / 22

How to solve the CRP for pHM?

- $d_q = \sup\{k \mid \mathcal{C} \text{ is decisive w.r.t. } (q, k) \text{ and target } Q \times \{0\}\}$
- $d_q \in \mathbb{N} \cup \{\infty\}$ $\begin{array}{c} d_q \\ \vdots \text{ decisive w.r.t.} \\ (q,k) \text{ and } Q \times \{0\} \end{array}$

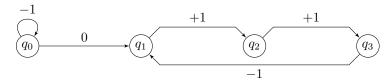
Let $\mathcal C$ be a pHM. Then the decisiveness problem w.r.t $(q_0,k_0)\in Q\times \mathbb N$ and $Q\times \{0\}$ is decidable in polynomial time.

Computing d_q solves the CRP problem. (but not necessarily the reverse)

Can one compute d_q and in the positive case with what complexity?

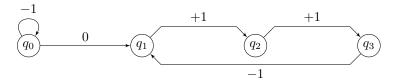
- $r_q = \sup\{k \mid Q \times \{0\} \text{ is reachable from}(q, k)\}$
- $\bullet \ Q_f = \{q \in Q \mid r_q < \infty\} \text{ and } Q_\infty = Q \setminus Q_f.$

Illustration.



- $\bullet \ r_q = \sup\{k \mid Q \times \{0\} \text{ is reachable from}(q,k)\}$
- $Q_f = \{q \in Q \mid r_q < \infty\}$ and $Q_\infty = Q \setminus Q_f$.

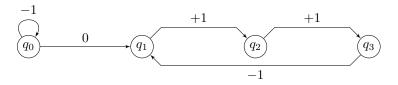
Illustration.



- $r_{q_0} = \infty$; $r_{q_1} = 0$; $r_{q_2} = 0$; $r_{q_3} = 1$
- ullet $Q_f=\{q_1,q_2,q_3\}$ and $Q_\infty=\{q_0\}$

- $\bullet \ r_q = \sup\{k \mid Q \times \{0\} \text{ is reachable from}(q,k)\}$
- $Q_f = \{q \in Q \mid r_q < \infty\}$ and $Q_\infty = Q \setminus Q_f$.

Illustration.



- $r_{q_0} = \infty$; $r_{q_1} = 0$; $r_{q_2} = 0$; $r_{q_3} = 1$
- ullet $Q_f=\{q_1,q_2,q_3\}$ and $Q_\infty=\{q_0\}$

Let C be a pHM. One can compute in polynomial time $(r_q)_{q\in Q}$.

4□ > 4□ > 4 = > 4 = > = 90

G. Fougea, et al.

We proceed by a case based analysis.

ullet Assume that $Q_f=Q.$ Then for all $q\in Q$, $d_q=\infty.$

We proceed by a case based analysis.

- ullet Assume that $Q_f=Q.$ Then for all $q\in Q$, $d_q=\infty.$
- Assume that $Q_f \neq Q$ and \mathbf{M}_Q is irreducible which implies $Q_\infty = Q$. Then $(d_q)_{q \in Q}$ can be computed in polynomial time (Finkel et al. CONCUR 2023).

We proceed by a case based analysis.

- ullet Assume that $Q_f=Q.$ Then for all $q\in Q,\ d_q=\infty.$
- Assume that $Q_f \neq Q$ and \mathbf{M}_Q is irreducible which implies $Q_\infty = Q$. Then $(d_q)_{q \in Q}$ can be computed in polynomial time (Finkel et al. CONCUR 2023).

Without any hypothesis on \mathbf{M}_Q ,

ullet Every BSCC is viewed as an irreducible Markov chain. Thus for such $q,\ d_q$ is computed in polynomial time (Finkel et al., CONCUR 2023).

15 / 22

We proceed by a case based analysis.

- ullet Assume that $Q_f=Q.$ Then for all $q\in Q$, $d_q=\infty.$
- Assume that $Q_f \neq Q$ and \mathbf{M}_Q is irreducible which implies $Q_\infty = Q$. Then $(d_q)_{q \in Q}$ can be computed in polynomial time (Finkel et al. CONCUR 2023).

Without any hypothesis on \mathbf{M}_Q ,

ullet Every BSCC is viewed as an irreducible Markov chain. Thus for such $q,\ d_q$ is computed in polynomial time (Finkel et al., CONCUR 2023).

Let Y_f (resp. Y_{∞}) be the set of states q of the BSCCs of \mathbf{M}_Q such that $d_q < \infty$ (resp. $d_q = \infty$).

ullet From every SCC Z such that Y_f is unreachable, almost surely one reaches Y_∞ . Thus for all $q\in Z$, $d_q=\infty$.

We proceed by a case based analysis.

- ullet Assume that $Q_f=Q.$ Then for all $q\in Q$, $d_q=\infty.$
- Assume that $Q_f \neq Q$ and \mathbf{M}_Q is irreducible which implies $Q_\infty = Q$. Then $(d_q)_{q \in Q}$ can be computed in polynomial time (Finkel et al. CONCUR 2023).

Without any hypothesis on \mathbf{M}_Q ,

ullet Every BSCC is viewed as an irreducible Markov chain. Thus for such $q,\ d_q$ is computed in polynomial time (Finkel et al., CONCUR 2023).

Let Y_f (resp. Y_{∞}) be the set of states q of the BSCCs of \mathbf{M}_Q such that $d_q < \infty$ (resp. $d_q = \infty$).

- ullet From every SCC Z such that Y_f is unreachable, almost surely one reaches Y_∞ . Thus for all $q\in Z$, $d_q=\infty$.
- From every SCC Z such that Y_f is reachable then for all $q \in Z$, $d_q < \infty$ and we have designed a polynomial time algorithm to compute such d_q .

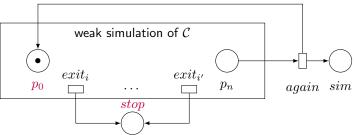
Plan

- Preliminaries
- ② Decisiveness
- One-counter machines
- Petri nets
- Conclusion

Polynomial Probabilistic Petri Nets: Decisiveness

The decisiveness problem of polynomial pPNs w.r.t. an upward closed set is undecidable (Finkel et al. CONCUR 2023).

Sketch of Proof.



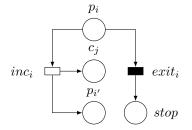
By reduction of the halting problem for a *normalized* counter machine \mathcal{C} .

A normalized CM resets the counters at the start and the end of the computation.

The probabilistic Petri net infinitely repeats a weak simulation for \mathcal{C} incrementing a counter of simulations sim (single variable of the polynomial weights), with at each instruction some (variable) probability to exit the simulation.

Simulation of an incrementation

$$i: c_j \leftarrow c_j + 1; \mathbf{goto} \ i'$$

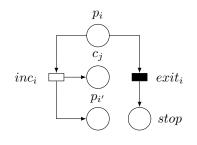


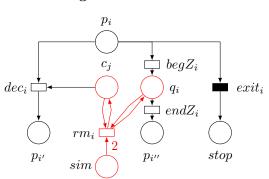
Simulation of an incrementation

$$i: c_j \leftarrow c_j + 1; \mathbf{goto} \ i'$$

Simulation of a decrementation

$$i: \mathbf{if} \ c_j > 0 \ \mathbf{then}$$
 $c_j \leftarrow c_j - 1; \mathbf{goto} \ i'$
else
 $\mathbf{goto} \ i''$



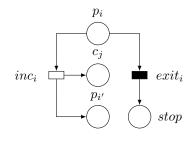


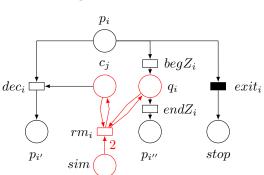
Simulation of an incrementation

$$i: c_j \leftarrow c_j + 1; \mathbf{goto}\ i'$$

Simulation of a decrementation

$$i: \mathbf{if} \ c_j > 0 \ \mathbf{then}$$
 $c_j \leftarrow c_j - 1; \mathbf{goto} \ i'$
else
 $\mathbf{goto} \ i''$





When cheating the net is punished by a possible decrementation of sim.

Due to the choice of the polynomial weights, when sim goes to infinity,

- If i is an incrementation, $W(exit_i) = o(W(inc_i))$;
- If i is a decrementation, $W(exit_i) = o(W(begZ_i))$ and $W(begZ_i) = o(W(dec_i))$.

Thus the more the simulations are achieved without cheating the less probable the net will stop or cheat.

Due to the choice of the polynomial weights, when sim goes to infinity,

- If i is an incrementation, $W(exit_i) = o(W(inc_i))$;
- If i is a decrementation, $W(exit_i) = o(W(begZ_i))$ and $W(begZ_i) = o(W(dec_i))$.

Thus the more the simulations are achieved without cheating the less probable the net will stop or cheat.

Assume that C halts.

The infinite path corresponding to the repetition of the correct simulation of $\ensuremath{\mathcal{C}}$

has a non null probability:
$$\prod_{n\in\mathbb{N}}{(1-\frac{1}{p(n)})}>0$$
 if $deg(p)\geq 2$

Thus the net is not decisive w.r.t. $\uparrow stop$.

Due to the choice of the polynomial weights, when sim goes to infinity,

- If i is an incrementation, $W(exit_i) = o(W(inc_i))$;
- If i is a decrementation, $W(exit_i) = o(W(begZ_i))$ and $W(begZ_i) = o(W(dec_i))$.

Thus the more the simulations are achieved without cheating the less probable the net will stop or cheat.

Assume that C halts.

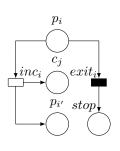
The infinite path corresponding to the repetition of the correct simulation of $\mathcal C$ has a non null probability: $\prod_{n\in\mathbb N}(1-\frac{1}{p(n)})>0$ if $deg(p)\geq 2$

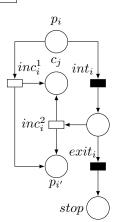
Thus the net is not decisive w.r.t. $\uparrow stop$.

The analysis of the case when ${\cal C}$ does not halt is much more involved.

From Polynomial Weights to Affine Weights

Incrementation





$$W(inc_i)(\mathbf{m}) = (\mathbf{m}(sim) + 2)^2 - 1$$

$$\mathbf{Pr}(p_i, stop) = 1/(\mathbf{m}(sim) + 2)^2$$

$$W(inc_i^j)(\mathbf{m}) = (\mathbf{m}(sim) + 1)$$

$$\mathbf{Pr}(p_i, stop) = 1/(\mathbf{m}(sim) + 2)^2$$

Plan

- Preliminaries
- Decisiveness
- One-counter machines
- Petri nets
- Conclusion

Conclusion and Perspectives

Contributions

- Establish the decidability result of decisiveness for pHM without the irreducibility hypothesis;
- Establish the undecidability result of decisiveness for probabilistic Petri nets with affine weights.

Conclusion and Perspectives

Contributions

- Establish the decidability result of decisiveness for pHM without the irreducibility hypothesis;
- Establish the undecidability result of decisiveness for probabilistic Petri nets with affine weights.

Perspectives

- Study the decidability of decisiveness of static pPNs w.r.t. arbitrary finite set;
- Establish sufficient conditions for decisiveness for models with undecidability of decisiveness;
- Examine the relationship between decisiveness and divergence introduced in (Finkel et al, RP 2023).