Tightening the Frontier of Decidability for Decisiveness

Gaspard Fougea', Serge Haddad!, Lina Ye!:2, Shreyas Jain?, and Alain Finkel!

(1) ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France
(2) CentraleSupélec
(3) Indian Institute of Science Education and Research (IISER)

G. Fougea, et al. Decidability for Decisiveness 1/22



Plan

@ Preliminaries

Decida

ity for Decisiveness



Markov Chains
A Markov Chain (MC) M = (S, p) is defined by:

@ S, a countable set of states;
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@ S, a countable set of states;
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For effectivity, one requires that:

e for all s € S, the support of p(s) is finite and computable;

@ p is computable.
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For effectivity, one requires that:

e for all s € S, the support of p(s) is finite and computable;

@ p is computable.

Here ¢ — g; should be computable.
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High-Level Models for Markov Chains

h(X),+1
g(

X), -1

Markov chains are issued from non deterministic high-level models by:

@ adding (computable) weights for the transitions of the model;
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High-Level Models for Markov Chains

h(X),+1 h(1) h(3)

h(1)+g(1 h(2)+9(2 h(3)+9(3)

g(X), -1 h<1>+g<1> h(2)+g(2> h<3>+g<3) h(4>+g<4>

Markov chains are issued from non deterministic high-level models by:

@ adding (computable) weights for the transitions of the model;

@ given a state, getting the probabilities
by normalization of the weights of the enabled transitions.
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Markov chains are issued from non deterministic high-level models by:

@ adding (computable) weights for the transitions of the model;

@ given a state, getting the probabilities
by normalization of the weights of the enabled transitions.

The weights are dynamic (resp. static)
if they (resp. do not) depend on the current state.
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g(X), -1 h<1>+g<1> e +g(2> h<3>+g<s) h(4>+g<4>

Markov chains are issued from non deterministic high-level models by:

@ adding (computable) weights for the transitions of the model;

@ given a state, getting the probabilities
by normalization of the weights of the enabled transitions.

The weights are dynamic (resp. static)
if they (resp. do not) depend on the current state.

The weights are static if A and g are constant.
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Computing Reachability Probabilities

Let M be a Markov chain, so an (initial) state, and A a subset of states, then
Pr a5, (FA) represents the probability to reach A from sy.

The Computing Reachability Probability (CRP) problem is defined by:

@ Input: effective M, s, effective A, and a rational number 6 > 0;

@ Output: an interval [low, up| such that up — low < 6 and
Pra s, (FA) € [low, up).

In finite Markov chains, it can be solved in polynomial time.
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Let M be a Markov chain, so an (initial) state, and A a subset of states, then
Pr a5, (FA) represents the probability to reach A from sy.

The Computing Reachability Probability (CRP) problem is defined by:
@ Input: effective M, s, effective A, and a rational number 6 > 0;
@ Output: an interval [low, up| such that up — low < 6 and
Pr s, (FA) € [low,up.

In finite Markov chains, it can be solved in polynomial time.

How to solve the CRP problem of infinite Markov chains?

@ ad-hoc algorithms for particular class of probabilistic models,
e.g., static Probabilistic Pushdown Automata (pPDA)
(Brédzil et al, FMSD 2013);

@ generic algorithms for probabilistic models satisfying a semantical property,
e.g., decisiveness (Abdulla et al, LMCS 2007).
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Motivation of previous and current work
(Finkel et al. CONCUR 2023 and this work)

Limitations of existing approaches

@ models with only constants (static) transition weights cannot model
phenomena like congestion in networks (Abdulla et al, LMCS 2007);

Our contributions

@ models may contain dynamic weights;
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Motivation of previous and current work
(Finkel et al. CONCUR 2023 and this work)
Limitations of existing approaches

@ models with only constants (static) transition weights cannot model
phenomena like congestion in networks (Abdulla et al, LMCS 2007);

@ the decisiveness problem for some standard models are not yet studied.
Our contributions
@ models may contain dynamic weights;

@ Decidability results of decisiveness problem
for dynamic probabilistic counter machines and Petri nets.
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Decisiveness

M is decisive w.r.t. so € S and A C S if almost surely a run starting from sq:

@ either reaches A;
o or EF A, i.e., the set of states from which A is unreachable.

EFA

null probability
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Decisiveness
M is decisive w.r.t. so € S and A C S if almost surely a run starting from sq:

@ either reaches A:
e or EF A, ie., the set of states from which A is unreachable.

lllustration with a polynomial random walk: sp =1 and A = {0}

@ P p p
oo od
1-p 1-p 1-p 1-p

It is decisive iff p < %
The decisiveness problem w.r.t. sq and finite A for polynomial safe one-counter
pCM with a single state is decidable in linear time. (Finkel et al., CONCUR 2023)
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Research on decisiveness

Decisiveness is studied via different approaches:

@ In relationship to statistical model checking (Barbot et al., 2024)
e Extension of the notion of decisiveness for MDPs (Bertrand et al., 2020)

@ Study of decisiveness for stochastic hybrid systems (Bouyer et al., 2022)

G. Fougea, et al. Decidability for Decisiveness 9/22



Plan

© One-counter machines

Decidability for Decisiveness



From QBD to pCM

Quasi Birth-Death Process (QBD) is a probabilistic model
widely used and analyzed in performance evaluation.

It is equivalent to a probabilistic 1-counter machine with following constraints:

@ Counter updates are incrementations and decrementations;
o For all states ¢, ¢’, positive integers n,n’ and A € {—1,0,1}

Pr((q,n),(¢,n+ A)) =Pr((g.n'), (¢",n + A))
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From pCM to pHM

A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

@ the weights are polynomials whose single variable X is the counter value;

lllustration. (The transitions for the null counter are omitted)

X,1 X2,0

Jof

X%24+1,-1 X+1,-1
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From pCM to pHM

A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

@ the weights are polynomials whose single variable X is the counter value;

lllustration. (The transitions for the null counter are omitted)

X,1 X2,0

Ol

X241,-1 X+1,-1

Consider the Markov chain over () x N, denoted as Mg n, then

Mg nl(g,v), (v +1))] =

v
202+ v+1)
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From pCM to pHM

A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

@ the weights are polynomials whose single variable X is the counter value;
@ but the coefficients of M, are still constant:

MQ((] q/) — Et:(q—)q')EA> W(t)
’ Dim(g—yeas W)

where A> are the transitions for the positive counter

lllustration. (The transitions for the null counter are omitted)

X,1 X2,0

O JOf

X24+1,-1 X+1,-1

X2+ X+1 1

Mala. ) = Male.0") = 5oy = 5
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From pCM to pHM

A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

@ the weights are polynomials whose single variable X is the counter value;
o but the coefficients of M, are still constant:
Di—(q—q)ean- W(t)

/
MQ (q, q ) = where 2\, are the transitions for the positive counter

Doi—(g—)ea. W(t)

lllustration. (The transitions for the null counter are omitted)

X,1 X2,0

o Jof

X2 +1,-1 X+1,-1

The decisiveness problem of a pHM with irreducible M, is decidable in
polynomial time (Finkel et al. CONCUR 2023).

The decisiveness problem of a pHM is decidable in polynomial time (here).
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How to solve the CRP for pHM?

o dy =sup{k | C is decisive w.r.t. (¢,k) and target Q x {0}}

e dy € NU{oo} N vt
L] L]
C is decisive w.r.t { ° .
(g,k) and Q x {0}
L] L[]
q/

Let C be a pHM. Then the decisiveness problem w.r.t (go, ko) € Q@ x N
and @ x {0} is decidable in polynomial time.

Computing d, solves the CRP problem.
(but not necessarily the reverse)

Can one compute dy and in the positive case with what complexity?
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Proof sketch (1)

o 1, =sup{k | @ x {0} is reachable from(q, k)}
0 Qr={qeQ|rg<oo}and Q =Q\ Q.

Illustration.

+1 +1

-1

|
EDL
o
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Proof sketch (1)

e r, =sup{k | @ x {0} is reachable from(q, k)}
0 Qr={qeQ|ry<oo}and Qc =Q\ Q.

Illustration.

+1 +1

N
-1

|
EDL
o

0 1g =00;7q =0; 14, =0;7g, =1

° Qr={q1,q,q3} and Qs = {qo0}
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Proof sketch (1)

e r, =sup{k | @ x {0} is reachable from(q, k)}
0 Qr={qeQ|ry<oo}and Qc =Q\ Q.

Illustration.

+1 +1

N
-1

|
EDL
o

0 1g =00;7q =0; 14, =0;7g, =1

° Qr={q1,q,q3} and Qs = {qo0}

‘ Let C be a pHM. One can compute in polynomial time (r4)4eq- ‘

G. Fougea, et al. Decidability for Decisiveness 14 /22



Proof sketch (2)
We proceed by a case based analysis.

e Assume that Q5 = Q. Then for all ¢ € Q, dy = o0.

oy <3 = E 9ae
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Proof sketch (2)
We proceed by a case based analysis.
e Assume that Q5 = Q. Then for all ¢ € Q, dy = o0.

o Assume that Q¢ # @ and M is irreducible which implies Q = Q.
Then (dy)4eq can be computed in polynomial time (Finkel et al. CONCUR 2023).
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o Assume that Q¢ # @ and M is irreducible which implies Q = Q.
Then (dy)4eq can be computed in polynomial time (Finkel et al. CONCUR 2023).

Without any hypothesis on Mg,

e Every BSCC is viewed as an irreducible Markov chain.
Thus for such ¢, d, is computed in polynomial time (Finkel et al., CONCUR
2023).
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Proof sketch (2)
We proceed by a case based analysis.
o Assume that Q¢ = Q. Then for all ¢ € Q, dy = o0.

o Assume that Q¢ # @ and M is irreducible which implies Q = Q.
Then (dy)4eq can be computed in polynomial time (Finkel et al. CONCUR 2023).

Without any hypothesis on Mg,

e Every BSCC is viewed as an irreducible Markov chain.
Thus for such ¢, d, is computed in polynomial time (Finkel et al., CONCUR
2023).
Let Y} (resp. Y ) be the set of states g of the BSCCs of Mg
such that d, < oo (resp. d, = 00).

e From every SCC Z such that Y7 is unreachable, almost surely one reaches Y.
Thus for all g € Z, dy = 0.
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Proof sketch (2)

We proceed by a case based analysis.
o Assume that Q¢ = Q. Then for all ¢ € Q, dy = o0.

o Assume that Q¢ # @ and M is irreducible which implies Q = Q.
Then (dy)4eq can be computed in polynomial time (Finkel et al. CONCUR 2023).

Without any hypothesis on Mg,

e Every BSCC is viewed as an irreducible Markov chain.
Thus for such ¢, d, is computed in polynomial time (Finkel et al., CONCUR
2023).

Let Y} (resp. Y ) be the set of states g of the BSCCs of Mg
such that d, < oo (resp. d, = 00).

e From every SCC Z such that Y7 is unreachable, almost surely one reaches Y.
Thus for all g € Z, dy = 0.

e From every SCC Z such that Y is reachable then for all ¢ € Z, dy; < o0
and we have designed a polynomial time algorithm to compute such d,.
15/22
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Polynomial Probabilistic Petri Nets: Decisiveness

The decisiveness problem of polynomial pPNs
w.r.t. an upward closed set is undecidable (Finkel et al. CONCUR 2023).

Sketch of Proof.

®

Po

weak simulation of C

exit;
(.

O
exit;

] DPn again sim

stop
()

By reduction of the halting problem for a normalized counter machine C.
A normalized CM resets the counters at the start and the end of the computation.

The probabilistic Petri net infinitely repeats a weak simulation for C incrementing
a counter of simulations sim (single variable of the polynomial weights),
with at each instruction some (variable) probability to exit the simulation.
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Sketch of Proof (continued)

Simulation of an incrementation

i:cj +c¢j+1;goto i’

mne;
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Sketch of Proof (continued)

Simulation of an incrementation Simulation of a decrementation
i:cj +c¢j+1;goto i’ i:if ¢; > 0 then
¢j +c¢; —1;goto i’
else
goto "
Di
Y

mne;

dec; qi exit;
endZ;

G. Fougea, et al. Decidability for Decisiveness 18/22



Sketch of Proof (continued)

Simulation of an incrementation Simulation of a decrementation
i:cj +c¢j+1;goto i’ i:if ¢; > 0 then
¢j +c¢; —1;goto i’
else
goto "
Di
/4
\_/
Cj begZi
ine; dec; qi exit;
endZ;
Tm;

2
Dir : é pir stop
S1m

When cheating the net is punished by a possible decrementation of sim.
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Sketch of Proof (continued)

Due to the choice of the polynomial weights, when sim goes to infinity,

@ If ¢ is an incrementation, W (exit;) = o(W (inc;));

o If i is a decrementation, W (exit;) = o(W (begZ;)) and W (begZ;) = o(W (dec;)).

Thus the more the simulations are achieved without cheating

the less probable the net will stop or cheat.
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Sketch of Proof (continued)

Due to the choice of the polynomial weights, when sim goes to infinity,
@ If ¢ is an incrementation, W (exit;) = o(W (inc;));
o If i is a decrementation, W (exit;) = o(W (begZ;)) and W (begZ;) = o(W (dec;)).

Thus the more the simulations are achieved without cheating

the less probable the net will stop or cheat.

Assume that C halts.

The infinite path corresponding to the repetition of the correct simulation of C

has a non null probability: ],y (1 — ) > 0 if deg(p) > 2

p(n)

Thus the net is not decisive w.r.t. Tstop.
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Sketch of Proof (continued)

Due to the choice of the polynomial weights, when sim goes to infinity,
@ If ¢ is an incrementation, W (exit;) = o(W (inc;));
o If i is a decrementation, W (exit;) = o(W (begZ;)) and W (begZ;) = o(W (dec;)).

Thus the more the simulations are achieved without cheating

the less probable the net will stop or cheat.

Assume that C halts.

The infinite path corresponding to the repetition of the correct simulation of C

has a non null probability: ],y (1 — ) > 0 if deg(p) > 2

p(n)

Thus the net is not decisive w.r.t. Tstop.

The analysis of the case when C does not halt is much more involved.
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From Polynomial Weights to Affine Weights

' Incrementation|

i
stop
W (inc;)(m) = (m(sim) +2)% — 1 W(mcf)(m) = (m(sim) + 1)
Pr(p;, stop) = 1/(m(sim) + 2)2 Pr(p;, stop) = 1/(m(sim) + 2)?
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Conclusion and Perspectives

Contributions

o Establish the decidability result of decisiveness
for pHM without the irreducibility hypothesis;

o Establish the undecidability result of decisiveness
for probabilistic Petri nets with affine weights.
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Conclusion and Perspectives

Contributions

o Establish the decidability result of decisiveness
for pHM without the irreducibility hypothesis;

o Establish the undecidability result of decisiveness

for probabilistic Petri nets with affine weights.

Perspectives

@ Study the decidability of decisiveness of static pPNs w.r.t. arbitrary finite set;

@ Establish sufficient conditions for decisiveness for models
with undecidability of decisiveness;

@ Examine the relationship between
decisiveness and divergence introduced in (Finkel et al, RP 2023 ).
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