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Markov Chains

A Markov Chain (MC)M = (S, p) is defined by:

S, a countable set of states;

p: S → Dist(S) (Dist(S): the set of distributions over S).
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For effectivity, one requires that:

for all s ∈ S, the support of p(s) is finite and computable;

p is computable.
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High-Level Models for Markov Chains

h(X),+1

g(X),−1

Markov chains are issued from non deterministic high-level models by:

adding (computable) weights for the transitions of the model;

given a state, getting the probabilities
by normalization of the weights of the enabled transitions.
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1-state and 1-counter machine

tincre : q
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Markov chains are issued from non deterministic high-level models by:

adding (computable) weights for the transitions of the model;

given a state, getting the probabilities
by normalization of the weights of the enabled transitions.

The weights are dynamic (resp. static)

if they (resp. do not) depend on the current state.
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adding (computable) weights for the transitions of the model;

given a state, getting the probabilities
by normalization of the weights of the enabled transitions.

The weights are dynamic (resp. static)

if they (resp. do not) depend on the current state.

The weights are static if h and g are constant.
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Computing Reachability Probabilities

LetM be a Markov chain, s0 an (initial) state, and A a subset of states, then
PrM,s0(FA) represents the probability to reach A from s0.

The Computing Reachability Probability (CRP) problem is defined by:

Input: effectiveM, s0, effective A, and a rational number θ > 0;

Output: an interval [low, up] such that up− low ≤ θ and
PrM,s0(FA) ∈ [low, up].

In finite Markov chains, it can be solved in polynomial time.

How to solve the CRP problem of infinite Markov chains?

ad-hoc algorithms for particular class of probabilistic models,
e.g., static Probabilistic Pushdown Automata (pPDA)
(Brádzil et al, FMSD 2013);

generic algorithms for probabilistic models satisfying a semantical property,
e.g., decisiveness (Abdulla et al, LMCS 2007).
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Motivation of previous and current work

(Finkel et al. CONCUR 2023 and this work)

Limitations of existing approaches

models with only constants (static) transition weights cannot model
phenomena like congestion in networks (Abdulla et al, LMCS 2007);

the decisiveness problem for some standard models are not yet studied.

Our contributions

models may contain dynamic weights;

Decidability results of decisiveness problem
for dynamic probabilistic counter machines and Petri nets.
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Decisiveness

M is decisive w.r.t. s0 ∈ S and A ⊆ S if almost surely a run starting from s0:

either reaches A;
or EFA, i.e., the set of states from which A is unreachable.

Illustration with a polynomial random walk: s0 = 1 and A = {0}

0 1 2 3 · · ·
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1− p

p

1− p

p

1− p

p

1− p

It is decisive iff p ≤ 1
2

The decisiveness problem w.r.t. s0 and finite A for polynomial safe one-counter
pCM with a single state is decidable in linear time. (Finkel et al., CONCUR 2023)
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Research on decisiveness

Decisiveness is studied via different approaches:

In relationship to statistical model checking (Barbot et al., 2024)

Extension of the notion of decisiveness for MDPs (Bertrand et al., 2020)

Study of decisiveness for stochastic hybrid systems (Bouyer et al., 2022)
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From QBD to pCM

Quasi Birth-Death Process (QBD) is a probabilistic model

widely used and analyzed in performance evaluation.

It is equivalent to a probabilistic 1-counter machine with following constraints:

Counter updates are incrementations and decrementations;

For all states q, q′, positive integers n, n′ and ∆ ∈ {−1, 0, 1}

Pr((q, n), (q′, n+∆)) = Pr((q, n′), (q′, n′ +∆))

.
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From pCM to pHM

A probabilistic Homogenous 1-counter Machine (pHM) is an extension of QBD:

the weights are polynomials whose single variable X is the counter value;

but the coefficients of MQ are still constant:

MQ(q, q
′) =

∑
t=(q−→q′)∈∆>

W (t)∑
t=(q−→)∈∆>

W (t)
where∆> are the transitions for the positive counter

Illustration. (The transitions for the null counter are omitted)

q′ q q′′

X, 1

X2 + 1,−1 X + 1,−1

X2, 0
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where∆> are the transitions for the positive counter

Illustration. (The transitions for the null counter are omitted)

q′ q q′′
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Consider the Markov chain over Q× N, denoted as MQ,N, then

MQ,N[(q, ν), ((q
′, ν + 1))] =

ν

2(ν2 + ν + 1)
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∑
t=(q−→q′)∈∆>

W (t)∑
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W (t)
where∆> are the transitions for the positive counter

Illustration. (The transitions for the null counter are omitted)

q′ q q′′

X, 1

X2 + 1,−1 X + 1,−1

X2, 0

The decisiveness problem of a pHM with irreducible MQ is decidable in
polynomial time (Finkel et al. CONCUR 2023).

The decisiveness problem of a pHM is decidable in polynomial time (here).
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How to solve the CRP for pHM?

dq = sup{k | C is decisive w.r.t. (q, k) and target Q× {0}}

dq ∈ N ∪ {∞}

Let C be a pHM. Then the decisiveness problem w.r.t (q0, k0) ∈ Q× N
and Q× {0} is decidable in polynomial time.

Computing dq solves the CRP problem.

(but not necessarily the reverse)

Can one compute dq and in the positive case with what complexity?
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Proof sketch (1)

rq = sup{k | Q× {0} is reachable from(q, k)}
Qf = {q ∈ Q | rq <∞} and Q∞ = Q \Qf .

Illustration.

q0 q1 q2 q3
0

+1 +1

−1

−1

rq0 =∞; rq1 = 0; rq2 = 0; rq3 = 1

Qf = {q1, q2, q3} and Q∞ = {q0}

Let C be a pHM. One can compute in polynomial time (rq)q∈Q.
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Proof sketch (2)

We proceed by a case based analysis.

• Assume that Qf = Q. Then for all q ∈ Q, dq =∞.

• Assume that Qf ̸= Q and MQ is irreducible which implies Q∞ = Q.

Then (dq)q∈Q can be computed in polynomial time (Finkel et al. CONCUR 2023).

Without any hypothesis on MQ,

• Every BSCC is viewed as an irreducible Markov chain.

Thus for such q, dq is computed in polynomial time (Finkel et al., CONCUR
2023).

Let Yf (resp. Y∞) be the set of states q of the BSCCs of MQ

such that dq <∞ (resp. dq =∞).

• From every SCC Z such that Yf is unreachable, almost surely one reaches Y∞.

Thus for all q ∈ Z, dq =∞.

• From every SCC Z such that Yf is reachable then for all q ∈ Z, dq <∞
and we have designed a polynomial time algorithm to compute such dq.
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Polynomial Probabilistic Petri Nets: Decisiveness
The decisiveness problem of polynomial pPNs

w.r.t. an upward closed set is undecidable (Finkel et al. CONCUR 2023).

Sketch of Proof.

weak simulation of C

· · · pn sim

•

p0

stop

again
exiti exiti′

By reduction of the halting problem for a normalized counter machine C.
A normalized CM resets the counters at the start and the end of the computation.

The probabilistic Petri net infinitely repeats a weak simulation for C incrementing

a counter of simulations sim (single variable of the polynomial weights),

with at each instruction some (variable) probability to exit the simulation.
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Sketch of Proof (continued)

Simulation of an incrementation

i : cj ← cj + 1;goto i′

pi

cj

pi′

stop

inci exiti

Simulation of a decrementation

i : if cj > 0 then
cj ← cj − 1;goto i′

else
goto i′′

pi

cj

qi

pi′ pi′′ stop
sim

deci

begZi

endZi

exiti

rmi
2

When cheating the net is punished by a possible decrementation of sim.
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Sketch of Proof (continued)

Due to the choice of the polynomial weights, when sim goes to infinity,

If i is an incrementation, W (exiti) = o(W (inci));

If i is a decrementation, W (exiti) = o(W (begZi)) and W (begZi) = o(W (deci)).

Thus the more the simulations are achieved without cheating

the less probable the net will stop or cheat.

Assume that C halts.

The infinite path corresponding to the repetition of the correct simulation of C

has a non null probability:
∏

n∈N (1− 1
p(n) ) > 0 if deg(p) ≥ 2

Thus the net is not decisive w.r.t. ↑stop.

The analysis of the case when C does not halt is much more involved.
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Thus the more the simulations are achieved without cheating

the less probable the net will stop or cheat.

Assume that C halts.

The infinite path corresponding to the repetition of the correct simulation of C

has a non null probability:
∏

n∈N (1− 1
p(n) ) > 0 if deg(p) ≥ 2

Thus the net is not decisive w.r.t. ↑stop.

The analysis of the case when C does not halt is much more involved.
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From Polynomial Weights to Affine Weights

Incrementation

pi

cj

pi′ stop

inci exiti

W (inci)(m) = (m(sim) + 2)2 − 1

Pr(pi, stop) = 1/(m(sim) + 2)2

pi

cj

pi′

stop

inc1i

inc2i

inti

exiti

W (incji )(m) = (m(sim) + 1)

Pr(pi, stop) = 1/(m(sim) + 2)2
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Conclusion and Perspectives

Contributions

Establish the decidability result of decisiveness
for pHM without the irreducibility hypothesis;

Establish the undecidability result of decisiveness
for probabilistic Petri nets with affine weights.

Perspectives

Study the decidability of decisiveness of static pPNs w.r.t. arbitrary finite set;

Establish sufficient conditions for decisiveness for models
with undecidability of decisiveness;

Examine the relationship between
decisiveness and divergence introduced in (Finkel et al, RP 2023 ).
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