Formalizing mathematics in Lean

Floris van Doorn

November 9, 2021

Proof assistants are programs that can check the validity of a proof if that proof is written in a language it can understand.

In CS, this is used to prove that software or hardware has no bugs.

• CompCert: A formally-verified C compiler.

In math, this is used to prove deep mathematical theorems.

- The Kepler conjecture: A formally verified proof of a four centuries old problem
 - Reviewers were unable to check the proof given on paper.

Verifying math is similar to verifying software.

- You can use proof assistants for either purpose.
- You have to carefully write down the statement, including all assumptions.
- Automation of routine steps is immensely helpful.

Verifying math is different from verifying software. Math ...

- recursively builds on itself
- is very interconnected

In CS ...

- Often definitions are much larger
- Proofs often need to check many different cases

Lean is a proof assistant developed by Leonardo de Moura at Microsoft Research.

It has a type theory with dependent types, very similar to Coq.

def nextPrime (n : \mathbb{N}) : { m : \mathbb{N} // prime m $\land \forall$ (k : \mathbb{N}), prime k \rightarrow n < k \leftrightarrow m \leq k }

This can be seen as

- a program that computes the smallest prime larger than the input;
- a proof that there are infinitely many primes.

mathlib is the mathematical library of Lean.

It contains many areas of mathematics in a single library.

It has 440k lines of code + 100k lines of documentation/comments.

There are 180+ contributors to mathlib. All contributions are reviewed by at least one of the maintainers.

There is a highly active community on leanprover.zulipchat.com with discussions, people helping each other, people teaching newcomers.

Let's prove a basic exercise in topology:

Lemma

If $f: X \to Y$ is a map between two topological spaces that is continuous at every $x \in X$, then f is a continuous.

Recall:

Definition

f is continuous if $f^{-1}(U)$ is open (in X) for every open $U \subseteq Y$. A is a neighborhood of x if it is a superset of an open set containing x. Notation: $A \in \mathcal{N}_x$. f is continuous at x if $f^{-1}(A) \in \mathcal{N}_x$ for every neighborhood $A \in \mathcal{N}_{f(x)}$.

Lemma

If $f: X \to Y$ is a map between two topological spaces that is continuous at every $x \in X$, then f is a continuous.

Proof.

Let $U \subseteq Y$ be open. To show that $f^{-1}(U)$ is open, it is sufficient to show that $f^{-1}(U)$ is a neighborhood of every point $x \in f^{-1}(U)$. Therefore take x in $f^{-1}(U)$. Then U is a neighborhood of f(x), hence $f^{-1}(U)$ is a neighborhood of x. Therefore $f^{-1}(U)$ is open. /-- **Abel-Ruffini Theorem**: not every polynomial root
 is expressible using radicals. -/
theorem exists_not_solvable_by_rad :
 ∃ x : C, is_algebraic Q x ∧ ¬ is_solvable_by_rad Q x

The proof specifically shows that the roots of $x^5 - 4x + 2$ are not expressible by radicals.

```
/-- Fundamental theorem of calculus, part 2 -/
theorem integral_deriv_eq_sub
  (hderiv : ∀ x ∈ interval a b, differentiable_at ℝ f x)
  (hint : interval_integrable (deriv f) volume a b) :
   ∫ y in a..b, deriv f y = f b - f a
```

There does not exist a partition of a hypercube in dimension $n \ge 3$ into finitely many smaller cubes of different sizes.

```
/-- **Dissection of Cubes**: A cube cannot be cubed. -/

theorem cannot_cube_a_cube :

\forall \{n : \mathbb{N}\}, n \ge 3 \rightarrow

\forall \{\iota : \text{Type}\} [fintype \iota] {cs : \iota \rightarrow cube n},

2 \le \#\iota \rightarrow

pairwise (disjoint on (cube.to_set \circ cs)) \rightarrow

(U(i : \iota), (cs i).to_set) = unit_cube.to_set \rightarrow

injective (cube.width \circ cs) \rightarrow

false
```

The goal of mathlib is to be a general-purpose library for all areas of mathematics.

It is decentralized: every contributor comes with their own plans and goals.

One unified goal is to have a full undergraduate math curriculum by next year.

- Definition of perfectoid spaces (Buzzard, Commelin, Massot)
- Independence of the Continuum hypothesis (Han, van Doorn)
- Witt vectors (Commelin, Lewis)
- Huang's sensitivity theorem (Barton, Commelin, Han, Hughes, Lewis, Massot)
- Finiteness of the class group of a global field (Baanen, Dahmen, Narayanan, Nuccio)
- Liquid Tensor Experiment (Commelin et al)
- Sphere Eversion and convex integration (Massot, Nash, van Doorn)

We have various tools to help develop and maintain mathlib.

- Automatically generated documentation pages;
- Tactics for general-purpose or domain-specific automation
 - suggest searches the library for an applicable lemma.
 - simp: general-purpose simplifier.
 - abel, ring, linarith, omega, continuity: domain-specific automation.
 - tidy, finish, solve_by_elim: general purpose automation.

Tools: simps

```
Consider:

def yoneda C \Rightarrow (C^{op} \Rightarrow Type v_1) :=

{ obj := \lambda X,

{ obj := \lambda Y, unop Y \longrightarrow X,

map := \lambda Y Y' f g, f.unop \gg g},

map := \lambda X X' f, { app := \lambda Y g, g \gg f } }

@[simp] lemma obj_obj (X : C) (Y : C<sup>op</sup>) :

(yoneda.obj X).obj Y = (unop Y \longrightarrow X) := rfl

@[simp] lemma obj_map (X : C) { Y Y' : C^{op}} (f : Y \longrightarrow Y') :

(yoneda.obj X).map f = \lambda g, f.unop \gg g := rfl

@[simp] lemma map_app { X X' : C} (f : X \longrightarrow X') (Y : C<sup>op</sup>) :

(yoneda.map f).app Y = \lambda g, g \gg f := rfl
```

These three lemmas can be automatically generated by the @[simps] attribute.

We have a suite of semantic linters: they look through mathlib for common mistakes.

They run on every new commit to mathlib.

Some mistakes that it catches:

- A lemma has a hypothesis that is never used;
- A definition is incorrectly marked as a lemma;
- A definition has no documentation string;
- You created a loop in the simplification lemmas;
- You created a loop in the type-class search.

o ...

In mathlib we have made some design decisions to make it convenient to formalize mathematics.

- Most of the library uses classical logic.
- Definitional equality is used sparingly.
- Dependent types and quotients are used to define general types. Example: $L^1(X, Y; \mu)$.
- We have a single repository where all components can work together.

One important feature of mathlib is to reduce duplication of proofs.

- Definitions and proofs should be in the greatest generality possible (within reason).
- This regularly requires refactoring of mathematics.
- There are also regular large-scale refactors on the library to make basic definitions more convenient or more general.

Refactoring mathematics: limits

$$\lim_{\substack{x \to x_0 \\ x \neq x_0 \\ x \neq x_0}} f(x) = y_0 \qquad \qquad \lim_{\substack{x \to x_0^- \\ x \neq x_0}} f(x) = y_0 \qquad \qquad \lim_{\substack{x \to -\infty}} f(x) = y_0^+$$

There are many different versions of limits.

Refactoring mathematics: limits

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = y_0 \qquad \qquad \lim_{\substack{x \to x_0^-}} f(x) = -\infty$$
$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = y_0 \qquad \qquad \lim_{\substack{x \to -\infty}} f(x) = y_0^+$$

There are many different versions of limits.

These can all be unified by defining limits in terms of filters.

$$\mathcal{N}_x = \text{neighborhoods of } x$$

$$\mathcal{N}_x^+ = \{A \mid A \cap [x, \infty) \text{ is a neighborhood of } x \text{ in } [x, \infty) \}$$

$$\mathcal{N}_{+\infty} = \{A \mid \exists y, \ [y, \infty) \subseteq A \}$$

 $f: X \to Y$ converges to a filter G on Y along filter F on X if

$$\forall A \in G, \ f^{-1}(A) \in F.$$

A major component of reusability of definitions is the use of type-classes.

This allows us to define concepts and prove theorems about general types with some structure.

Applications:

- Common operations: like a * b, ||x||, || i, A i.
- General theory: group, normed_space, complete_lattice
- Decidable propositions for implementing decision procedures.

They play a similar role as canonical structures in Coq.

Type Classes

```
class has_mul (A : Type) := (mul : A \rightarrow A \rightarrow A)
class semigroup (A : Type) extends has_mul A =
(mul_assoc : \forall a b c, (a * b) * c = a * (b * c))
class monoid (A : Type) extends semigroup A, has_one A =
(one mul : \forall a, 1 * a = a) (mul one : \forall a, a * 1 = a)
variables {A : Type} [monoid A]
def pow (a : A) : \mathbb{N} \to A
0 = 1
| (n+1) := a * pow n
theorem pow_add (a : A) (m : \mathbb{N}) : \forall n, a (m + n) = a \hat{m}^* a \hat{n}
| 0 := by rw [add_zero, pow_zero, mul_one]
| (n+1) := by rw [add_succ, pow_succ, pow_add, mul.assoc]
instance : linear_ordered_comm_ring Z := ...
```

Graph

A part of the type-class hierarchy in October 2019.

Floris van Doorn

Formalizing mathematics in Lean

Type Classes

In total there are 760 classes with more than 11000 instances between the classes.

They are used essentially everywhere.

Classes typically have a type as argument, like topological_space X.

There are also many "mixin" type-classes that depend on another type class, like second_countable_topology X, compact_space X, t2_space X, connected_space X, ...

In fact, there are 25 classes that depend on topological_space (and no other classes).

There are also many classes that depend on multiple other classes: [ring R] [topological_space R] [topological_ring R]

Example: intermediate fields

In algebra, you often work with field extensions. L/K (L is an extension of K) means that K is a subfield of L. Example: \mathbb{C}/\mathbb{R} .

One often has to work with multiple extensions: F is an intermediate field if L/F and F/K.

Example: intermediate fields

In algebra, you often work with field extensions. L/K (L is an extension of K) means that K is a subfield of L. Example: \mathbb{C}/\mathbb{R} .

One often has to work with multiple extensions: F is an intermediate field if L/F and F/K.

One option: F and K are subsets of the type L. Problem: inconvenient in practice: the type \mathbb{R} is not the same as the subset $\mathbb{R} \subseteq \mathbb{C}$.

Example: intermediate fields

In algebra, you often work with field extensions. L/K (L is an extension of K) means that K is a subfield of L. Example: \mathbb{C}/\mathbb{R} .

One often has to work with multiple extensions: F is an intermediate field if L/F and F/K.

One option: F and K are subsets of the type L. Problem: inconvenient in practice: the type \mathbb{R} is not the same as the subset $\mathbb{R} \subseteq \mathbb{C}$.

```
variables {K F L : Type*}
variables [field K] [field F] [field L]
variables [algebra K F] [algebra F L] [algebra K L]
variables [is_scalar_tower K F L]
```

Lean 4

A new version of Lean was released this year.

It is a full-fledged dependently-typed programming language, with a compiler to $\mathsf{C}.$

It is highly extensible, with a flexible macro system.

It is not backwards compatible, but mathlib will be ported to Lean 4 next year:

- We can already port compiled Lean 3 files to compiled Lean 4 files (binport).
- There is an experimental method to port source Lean 3 to source Lean 4 files (synport).
- We need to manually implement the Lean 3 tactics in Lean 4: the meta-language has changed significantly.

Thank You