Formalizing mathematics in Lean J

Floris van Doorn

November 9, 2021

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 1/26

Proof assistants

Proof assistants are programs that can check the validity of a proof if that
proof is written in a language it can understand.

In CS, this is used to prove that software or hardware has no bugs.

@ CompCert: A formally-verified C compiler.

In math, this is used to prove deep mathematical theorems.

@ The Kepler conjecture: A formally verified proof of a four centuries
old problem

» Reviewers were unable to check the proof given on paper.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 2 /26

Verifying Math /CS: similarities

Verifying math is similar to verifying software.

@ You can use proof assistants for either purpose.

@ You have to carefully write down the statement, including all
assumptions.

@ Automation of routine steps is immensely helpful.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021

3/ 26

Verifying Math /CS: differences

Verifying math is different from verifying software.
Math ...

@ recursively builds on itself

@ is very interconnected

InCS ...
@ Often definitions are much larger

@ Proofs often need to check many different cases

Floris van Doorn Formalizing mathematics in Lean November 9, 2021

4 /26

Lean

Lean is a proof assistant developed by Leonardo
de Moura at Microsoft Research.

It has a type theory with dependent types, very
similar to Coq. THECREM PROVER

def nextPrime (n : N) : {m: N //
prime m A V (k : N), prime k > n <k <> m < k }

This can be seen as

@ a program that computes the smallest prime larger than the input;

@ a proof that there are infinitely many primes.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 5/ 26

mathlib

mathlib is the mathematical library of Lean.
It contains many areas of mathematics in a single library.
It has 440k lines of code + 100k lines of documentation/comments.

There are 180+ contributors to mathlib. All contributions are reviewed by
at least one of the maintainers.

There is a highly active community on leanprover.zulipchat.com with
discussions, people helping each other, people teaching newcomers.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 6 /26

leanprover.zulipchat.com

Demo

Let's prove a basic exercise in topology:

Lemma
If f: X =Y isamap between two topological spaces that is continuous
at every x € X, then f is a continuous.

Recall:

Definition

f is continuous if f~1(U) is open (in X) for every open U €Y.

A is a neighborhood of x if it is a superset of an open set containing x.

Notation: A € N.
[is continuous at x if f7(A) € N, for every neighborhood A € N} (.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 7/ 26

Demo

Lemma
If f: X =Y isamap between two topological spaces that is continuous
at every x € X, then f is a continuous.

Proof.

Let U ¢ Y be open.

To show that f~1(U) is open, it is sufficient to show that f~1(U) is a
neighborhood of every point z € f~1(U).

Therefore take x in f~1(U). Then U is a neighborhood of f(x), hence
f~Y(U) is a neighborhood of 2. Therefore f~1(U) is open. O

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 8 /26

Topics in mathlib: algebra

/-= **Abel-Ruffint Theorem**: not every polynomial root
1s expressible using radicals. -/

theorem exists_not_solvable_by_rad :
3 x: C, is_algebraic Q x A -~ is_solvable_by_rad Q x

The proof specifically shows that the roots of z° — 4z + 2 are not
expressible by radicals.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 9 /26

Topics in mathlib: calculus

/-- Fundamental theorem of calculus, part 2 -/

theorem integral_deriv_eq_sub
(hderiv : V x € interval a b, differentiable_at R f x)
(hint : interval_integrable (deriv f) volume a b)
/ yin a..b, derivf y=£fb-f a

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 10 / 26

Topics in mathlib: combinatorics

There does not exist a partition of a hypercube in dimension n > 3 into
finitely many smaller cubes of different sizes.

/-- **Dissection of Cubes*™: A cube cannot be cubed. -/
theorem cannot_cube_a_cube :

V{n : N}, n > 3 —»

V{¢ : Type} [fintype ¢] {cs : ¢ - cube n},

2 < #H —~

pairwise (disjoint on (cube.to_set o cs)) —

(U@), (cs i) .to_set) = unit_cube.to_set —

injective (cube.width o cs) —

false

Floris van Doorn Formalizing mathematics in Lean November 9, 2021

11/ 26

Goals of mathlib

The goal of mathlib is to be a general-purpose library for all areas of
mathematics.

It is decentralized: every contributor comes with their own plans and goals.

One unified goal is to have a full undergraduate math curriculum by next
year.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 12 /26

Projects

Definition of perfectoid spaces (Buzzard, Commelin, Massot)
Independence of the Continuum hypothesis (Han, van Doorn)

Witt vectors (Commelin, Lewis)

Huang's sensitivity theorem (Barton, Commelin, Han, Hughes, Lewis,
Massot)

o Finiteness of the class group of a global field (Baanen, Dahmen,
Narayanan, Nuccio)

o Liquid Tensor Experiment (Commelin et al)
@ Sphere Eversion and convex integration (Massot, Nash, van Doorn)

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 13 /26

Tools

We have various tools to help develop and maintain mathlib.

o Automatically generated documentation pages;
@ Tactics for general-purpose or domain-specific automation
» suggest searches the library for an applicable lemma.
» simp: general-purpose simplifier.
» abel, ring, linarith, omega, continuity: domain-specific
automation.
» tidy, finish, solve_by_elim: general purpose automation.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021

14 / 26

Tools: simps

Consider:

def yoneda C = (C°? = Type vi) =
{ obj = A X,
{ obj =AY, unop Y — X,
map =AY Y £ g, f.unop » g },
map = A XX £, {app:=AYg, g>»=fl}}

@[simp] lemma obj_obj (X : C) (Y : CP) :
(yoneda.obj X).obj Y = (unop Y — X) = rfl

@[simp] lemma obj_map (X : C) {Y Y : CP} (£ : Y — Y :
(yoneda.obj X).map f = A g, f.unop > g = rfl

@[simp] lemma map_app {X X' : C} (f : X — X/) (Y : C°P) :
(yoneda.map f).app Y = A g, g » f := rfl

These three lemmas can be automatically generated by the @[simps]
attribute.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 15 / 26

Tools: Semantic Linters

We have a suite of semantic linters: they look through mathlib for
common mistakes.

They run on every new commit to mathlib.

Some mistakes that it catches:
@ A lemma has a hypothesis that is never used;
A definition is incorrectly marked as a lemma;
A definition has no documentation string;
You created a loop in the simplification lemmas;

You created a loop in the type-class search.

e 6 6 o o

Floris van Doorn Formalizing mathematics in Lean November 9, 2021

16 / 26

Design Decisions

In mathlib we have made some design decisions to make it convenient to
formalize mathematics.

@ Most of the library uses classical logic.
o Definitional equality is used sparingly.

@ Dependent types and quotients are used to define general types.
Example: LY(X,Y;).

@ We have a single repository where all components can work together.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 17 / 26

Refactoring mathematics

One important feature of mathlib is to reduce duplication of proofs.
@ Definitions and proofs should be in the greatest generality possible
(within reason).
@ This regularly requires refactoring of mathematics.
@ There are also regular large-scale refactors on the library to make
basic definitions more convenient or more general.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 18 / 26

Refactoring mathematics: limits

Jim () =yo lim f(z) = -0
l’—>$0
TExQ

There are many different versions of limits.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021

19 /26

Refactoring mathematics: limits

Jim () =yo lim f(z) = -0
I—>IO
TExQ

There are many different versions of limits.

These can all be unified by defining limits in terms of filters.

N, = neighborhoods of x
NS ={A| An[x,00) is a neighborhood of x in [x,00)}
N+°° = {A | Elyv [yvoo) S A}

f:X =Y converges to a filter G on Y along filter F' on X if
VAeG, fY(A)eF.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021

19 /26

Type Classes

A major component of reusability of definitions is the use of type-classes.

This allows us to define concepts and prove theorems about general types
with some structure.

Applications:
e Common operations: likea * b, x|, LI i, A i.
@ General theory: group, normed_space, complete_lattice
o Decidable propositions for implementing decision procedures.
They play a similar role as canonical structures in Coq.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 20 / 26

Type Classes

class has_mul (A : Type) = (mul : A - A — A)

class semigroup (A : Type) extends has_mul A :=
(mul_assoc : Vabec, (@ *b) “c=a*(*c)

class monoid (A : Type) extends semigroup A, has_one A :=

(one_mul : V a, 1 *a=a) (mul_one : Va, a *1=a)

variables {A : Type} [monoid Al
def pow (a: A) : N - A

| O =1

| (n+1) == a * pow n

theorem pow_add (a : A) (m: N) : Vn,a”~ (m+n)=ar-
| O = by rw [add_zero, pow_zero, mul_one]

| (n+1) = by rw [add_succ, pow_succ, pow_add, mul.assoc]

instance : linear_ordered_comm_ring Z := ...

Floris van Doorn Formalizing mathematics in Lean November 9, 2021

a

n

21 /26

Graph

normed_field

—

normed_ring discrete_field

e

normed_group

/

has_norm metric_space

has_dist /

emetric_space uniform_add_group

has,ed157 \

separated

\

regular_space uniform_space,

/

t2_space topologicalladd_grow

! |

t1_space topological |add_monoid

decidable_eq field euclidean_domain local_ring

rincipal_ideal_domain has_mod
division_ring

integral_domain

has_inv has_div domain nonzero_comm_ring is_noetherian_ring

/

nonzero\comm_semiring comm_ring

. topological_ring\ no_zero_divisors
first_countable_topology

topological_semiring zero_ne_one_class ring comm_semiring

Topological_monoid add_comm_group . semiring has_dvd

- comm_monoid

add_group _add_comm_monoid mul_zero_class distrib ~monoid comm_semigroup

add_left_cancel_semigroup &

sequential_space t0O_space has_neg /add_monoid add_comm_semigroup aqq right_cancel_semigroup semigroup
\}\4 l / has_one l
topological_space has_zero add_semigroup has_mul
measurable_space has_add

A part of the type-class hierarchy in October 2019.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 22 /26

Type Classes

In total there are 760 classes with more than 11000 instances between the
classes.

They are used essentially everywhere.

Classes typically have a type as argument, like topological_space X.
There are also many “mixin" type-classes that depend on another type
class, like second_countable_topology X, compact_space X,

t2_space X, connected_space X, ...

In fact, there are 25 classes that depend on topological_space (and no
other classes).

There are also many classes that depend on multiple other classes:
[ring R] [topological_space R] [topological_ring R]

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 23 /26

Example: intermediate fields

In algebra, you often work with field extensions. L/K (L is an extension of
K) means that K is a subfield of L. Example: C/R.

One often has to work with multiple extensions: F'is an intermediate field
if L/F and F|K.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 24 / 26

Example: intermediate fields

In algebra, you often work with field extensions. L/K (L is an extension of
K) means that K is a subfield of L. Example: C/R.

One often has to work with multiple extensions: F' is an intermediate field
if L/F and F|K.

One option: F and K are subsets of the type L.

Problem: inconvenient in practice: the type R is not the same as the
subset R ¢ C.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 24 / 26

Example: intermediate fields

In algebra, you often work with field extensions. L/K (L is an extension of
K) means that K is a subfield of L. Example: C/R.

One often has to work with multiple extensions: F'is an intermediate field
if L/F and F|K.

One option: F and K are subsets of the type L.
Problem: inconvenient in practice: the type R is not the same as the
subset R ¢ C.

variables {K F L : Type*}

variables [field K] [field F] [field L]

variables [algebra K F] [algebra F L] [algebra K L]
variables [is_scalar_tower K F L]

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 24 / 26

Lean 4

A new version of Lean was released this year.

It is a full-fledged dependently-typed programming language, with a
compiler to C.

It is highly extensible, with a flexible macro system.
It is not backwards compatible, but mathlib will be ported to Lean 4 next

year:

@ We can already port compiled Lean 3 files to compiled Lean 4 files
(binport).

@ There is an experimental method to port source Lean 3 to source
Lean 4 files (synport).

@ We need to manually implement the Lean 3 tactics in Lean 4: the
meta-language has changed significantly.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 25/ 26

Thank You

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 26 / 26

