
Formalizing mathematics in Lean

Floris van Doorn

November 9, 2021

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 1 / 26

Proof assistants

Proof assistants are programs that can check the validity of a proof if that
proof is written in a language it can understand.

In CS, this is used to prove that software or hardware has no bugs.

CompCert: A formally-verified C compiler.

In math, this is used to prove deep mathematical theorems.

The Kepler conjecture: A formally verified proof of a four centuries
old problem

L Reviewers were unable to check the proof given on paper.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 2 / 26

Verifying Math/CS: similarities

Verifying math is similar to verifying software.

You can use proof assistants for either purpose.

You have to carefully write down the statement, including all
assumptions.

Automation of routine steps is immensely helpful.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 3 / 26

Verifying Math/CS: differences

Verifying math is different from verifying software.
Math . . .

recursively builds on itself

is very interconnected

In CS . . .

Often definitions are much larger

Proofs often need to check many different cases

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 4 / 26

Lean

Lean is a proof assistant developed by Leonardo
de Moura at Microsoft Research.

It has a type theory with dependent types, very
similar to Coq.

def nextPrime (n � N) � { m � N //
prime m , ¦ (k � N), prime k � n < k � m B k }

This can be seen as

a program that computes the smallest prime larger than the input;

a proof that there are infinitely many primes.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 5 / 26

mathlib

mathlib is the mathematical library of Lean.

It contains many areas of mathematics in a single library.

It has 440k lines of code + 100k lines of documentation/comments.

There are 180+ contributors to mathlib. All contributions are reviewed by
at least one of the maintainers.

There is a highly active community on leanprover.zulipchat.com with
discussions, people helping each other, people teaching newcomers.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 6 / 26

leanprover.zulipchat.com

Demo

Let’s prove a basic exercise in topology:

Lemma

If f �X � Y is a map between two topological spaces that is continuous
at every x >X, then f is a continuous.

Recall:

Definition

f is continuous if f�1�U� is open (in X) for every open U b Y .
A is a neighborhood of x if it is a superset of an open set containing x.
Notation: A > Nx.
f is continuous at x if f�1�A� > Nx for every neighborhood A > Nf�x�.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 7 / 26

Demo

Lemma

If f �X � Y is a map between two topological spaces that is continuous
at every x >X, then f is a continuous.

Proof.

Let U b Y be open.
To show that f�1�U� is open, it is sufficient to show that f�1�U� is a
neighborhood of every point x > f�1�U�.
Therefore take x in f�1�U�. Then U is a neighborhood of f�x�, hence
f�1�U� is a neighborhood of x. Therefore f�1�U� is open.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 8 / 26

Topics in mathlib: algebra

/-- ��Abel-Ruffini Theorem��� not every polynomial root
is expressible using radicals. -/

theorem exists_not_solvable_by_rad �

§ x � C, is_algebraic Q x , is_solvable_by_rad Q x

The proof specifically shows that the roots of x5 � 4x � 2 are not
expressible by radicals.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 9 / 26

Topics in mathlib: calculus

/-- Fundamental theorem of calculus, part 2 -/
theorem integral_deriv_eq_sub
(hderiv � ¦ x > interval a b, differentiable_at R f x)
(hint � interval_integrable (deriv f) volume a b) �

R y in a..b, deriv f y = f b - f a

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 10 / 26

Topics in mathlib: combinatorics

There does not exist a partition of a hypercube in dimension n C 3 into
finitely many smaller cubes of different sizes.

/-- ��Dissection of Cubes��� A cube cannot be cubed. -/
theorem cannot_cube_a_cube �

¦{n � N}, n C 3 �
¦{ι � Type} [fintype ι] {cs � ι � cube n},
2 B #ι �
pairwise (disjoint on (cube.to_set X cs)) �
(�(i � ι), (cs i).to_set) = unit_cube.to_set �
injective (cube.width X cs) �
false

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 11 / 26

Goals of mathlib

The goal of mathlib is to be a general-purpose library for all areas of
mathematics.

It is decentralized: every contributor comes with their own plans and goals.

One unified goal is to have a full undergraduate math curriculum by next
year.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 12 / 26

Projects

Definition of perfectoid spaces (Buzzard, Commelin, Massot)

Independence of the Continuum hypothesis (Han, van Doorn)

Witt vectors (Commelin, Lewis)

Huang’s sensitivity theorem (Barton, Commelin, Han, Hughes, Lewis,
Massot)

Finiteness of the class group of a global field (Baanen, Dahmen,
Narayanan, Nuccio)

Liquid Tensor Experiment (Commelin et al)

Sphere Eversion and convex integration (Massot, Nash, van Doorn)

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 13 / 26

Tools

We have various tools to help develop and maintain mathlib.

Automatically generated documentation pages;

Tactics for general-purpose or domain-specific automation
L suggest searches the library for an applicable lemma.
L simp: general-purpose simplifier.
L abel, ring, linarith, omega, continuity: domain-specific

automation.
L tidy, finish, solve_by_elim: general purpose automation.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 14 / 26

Tools: simps

Consider:

def yoneda C � (Cop � Type v1) �=
{ obj �= λ X,

{ obj �= λ Y, unop Y Ð� X,

map �= λ Y Y� f g, f.unop Q g },

map �= λ X X� f, { app �= λ Y g, g Q f } }

@[simp] lemma obj_obj (X � C) (Y � Cop) �

(yoneda.obj X).obj Y = (unop Y Ð� X) �= rfl

@[simp] lemma obj_map (X � C) {Y Y� � Cop} (f � Y Ð� Y�) �

(yoneda.obj X).map f = λ g, f.unop Q g �= rfl

@[simp] lemma map_app {X X� � C} (f � X Ð� X�) (Y � Cop) �

(yoneda.map f).app Y = λ g, g Q f �= rfl

These three lemmas can be automatically generated by the @[simps]

attribute.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 15 / 26

Tools: Semantic Linters

We have a suite of semantic linters: they look through mathlib for
common mistakes.

They run on every new commit to mathlib.

Some mistakes that it catches:

A lemma has a hypothesis that is never used;

A definition is incorrectly marked as a lemma;

A definition has no documentation string;

You created a loop in the simplification lemmas;

You created a loop in the type-class search.

�

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 16 / 26

Design Decisions

In mathlib we have made some design decisions to make it convenient to
formalize mathematics.

Most of the library uses classical logic.

Definitional equality is used sparingly.

Dependent types and quotients are used to define general types.
Example: L1�X,Y ;µ�.

We have a single repository where all components can work together.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 17 / 26

Refactoring mathematics

One important feature of mathlib is to reduce duplication of proofs.

Definitions and proofs should be in the greatest generality possible
(within reason).

This regularly requires refactoring of mathematics.

There are also regular large-scale refactors on the library to make
basic definitions more convenient or more general.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 18 / 26

Refactoring mathematics: limits

lim
x�x0

f�x� � y0 lim
x�x�0

f�x� � �ª

lim
x�x0
xxx0

f�x� � y0 lim
x��ª

f�x� � y�0

There are many different versions of limits.

These can all be unified by defining limits in terms of filters.

Nx � neighborhoods of x

N
�

x � �A S A 9 �x,ª� is a neighborhood of x in �x,ª��

N�ª � �A S §y, �y,ª� b A�

f �X � Y converges to a filter G on Y along filter F on X if

¦A > G, f�1�A� > F.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 19 / 26

Refactoring mathematics: limits

lim
x�x0

f�x� � y0 lim
x�x�0

f�x� � �ª

lim
x�x0
xxx0

f�x� � y0 lim
x��ª

f�x� � y�0

There are many different versions of limits.

These can all be unified by defining limits in terms of filters.

Nx � neighborhoods of x

N
�

x � �A S A 9 �x,ª� is a neighborhood of x in �x,ª��

N�ª � �A S §y, �y,ª� b A�

f �X � Y converges to a filter G on Y along filter F on X if

¦A > G, f�1�A� > F.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 19 / 26

Type Classes

A major component of reusability of definitions is the use of type-classes.

This allows us to define concepts and prove theorems about general types
with some structure.

Applications:

Common operations: like a � b, YxY, * i, A i.

General theory: group, normed_space, complete_lattice

Decidable propositions for implementing decision procedures.

They play a similar role as canonical structures in Coq.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 20 / 26

Type Classes

class has_mul (A � Type) �= (mul � A � A � A)

class semigroup (A � Type) extends has_mul A �=
(mul_assoc � ¦ a b c, (a � b) � c = a � (b � c))

class monoid (A � Type) extends semigroup A, has_one A �=
(one_mul � ¦ a, 1 � a = a) (mul_one � ¦ a, a � 1 = a)

variables {A � Type} [monoid A]
def pow (a � A) � N � A
| 0 �= 1
| (n+1) �= a � pow n

theorem pow_add (a � A) (m � N) � ¦ n, a ^ (m + n) = a ^ m � a ^ n
| 0 �= by rw [add_zero, pow_zero, mul_one]
| (n+1) �= by rw [add_succ, pow_succ, pow_add, mul.assoc]

instance � linear_ordered_comm_ring Z �= . . .

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 21 / 26

Graph
normed_field

normed_ring discrete_field

normed_group

topological_ring

fielddecidable_eq euclidean_domain local_ring

has_norm metric_space

uniform_add_group

topological_semiring

division_ring
integral_domain

has_modprincipal_ideal_domain

topological_add_group

emetric_space
has_dist

topological_monoid

has_inv has_div domain nonzero_comm_ring is_noetherian_ring

topological_add_monoid

has_edist

first_countable_topology
separated no_zero_divisors nonzero_comm_semiring comm_ring

sequential_space

uniform_spaceregular_space zero_ne_one_class ring comm_semiring

t2_space add_comm_group semiring has_dvd comm_monoid

add_group add_comm_monoid mul_zero_class distrib comm_semigroupmonoidt1_space

add_comm_semigroupadd_monoid

add_left_cancel_semigroup &

add_right_cancel_semigroup semigrouphas_neg

has_sub has_one

t0_space

add_semigrouphas_zero has_multopological_space

has_addmeasurable_space

A part of the type-class hierarchy in October 2019.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 22 / 26

Type Classes

In total there are 760 classes with more than 11000 instances between the
classes.

They are used essentially everywhere.

Classes typically have a type as argument, like topological_space X.

There are also many “mixin” type-classes that depend on another type
class, like second_countable_topology X, compact_space X,
t2_space X, connected_space X, . . .

In fact, there are 25 classes that depend on topological_space (and no
other classes).

There are also many classes that depend on multiple other classes:
[ring R] [topological_space R] [topological_ring R]

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 23 / 26

Example: intermediate fields

In algebra, you often work with field extensions. L~K (L is an extension of
K) means that K is a subfield of L. Example: C~R.

One often has to work with multiple extensions: F is an intermediate field
if L~F and F ~K.

One option: F and K are subsets of the type L.
Problem: inconvenient in practice: the type R is not the same as the
subset R b C.

variables {K F L � Type�}
variables [field K] [field F] [field L]
variables [algebra K F] [algebra F L] [algebra K L]
variables [is_scalar_tower K F L]

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 24 / 26

Example: intermediate fields

In algebra, you often work with field extensions. L~K (L is an extension of
K) means that K is a subfield of L. Example: C~R.

One often has to work with multiple extensions: F is an intermediate field
if L~F and F ~K.

One option: F and K are subsets of the type L.
Problem: inconvenient in practice: the type R is not the same as the
subset R b C.

variables {K F L � Type�}
variables [field K] [field F] [field L]
variables [algebra K F] [algebra F L] [algebra K L]
variables [is_scalar_tower K F L]

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 24 / 26

Example: intermediate fields

In algebra, you often work with field extensions. L~K (L is an extension of
K) means that K is a subfield of L. Example: C~R.

One often has to work with multiple extensions: F is an intermediate field
if L~F and F ~K.

One option: F and K are subsets of the type L.
Problem: inconvenient in practice: the type R is not the same as the
subset R b C.

variables {K F L � Type�}
variables [field K] [field F] [field L]
variables [algebra K F] [algebra F L] [algebra K L]
variables [is_scalar_tower K F L]

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 24 / 26

Lean 4

A new version of Lean was released this year.

It is a full-fledged dependently-typed programming language, with a
compiler to C.

It is highly extensible, with a flexible macro system.

It is not backwards compatible, but mathlib will be ported to Lean 4 next
year:

We can already port compiled Lean 3 files to compiled Lean 4 files
(binport).

There is an experimental method to port source Lean 3 to source
Lean 4 files (synport).

We need to manually implement the Lean 3 tactics in Lean 4: the
meta-language has changed significantly.

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 25 / 26

Thank You

Floris van Doorn Formalizing mathematics in Lean November 9, 2021 26 / 26

