News & Events

ACTS 2023 - Workshop on Automata, Concurrency, and Timed Systems

The 6th edition of the Workshop on Automata, Concurrency, and Timed Systems took place from 30 May to 2 June 2023 at ENS Paris-Saclay.

The workshop series emerged from a long-standing Indo-French cooperation in the areas of ACTS: Automata and Logic, Concurrency Theory, and Timed Systems. As a special event, this year's programme featured a session in honour of Paul Gastin on the occasion of his retirement.

Read more...

PhD Defence: Pierre Vandenhove

Strategy Complexity of Zero-Sum Games on Graphs
by Pierre Vandenhove
Wednesday 26 April 2023 at 4pm
UMONS Salle Vésale 30, Mons and online

Pierre Vandenhove

Abstract: We study two-player zero-sum turn-based games on graphs, a framework of choice in theoretical computer science. Such games model the possibly infinite interaction between a computer system (often called reactive) and its environment. Read more...

Gilles Dowek nommé au Conseil supérieur des programmes

Gilles Dowek a été nommé membre, en tant que personnalité qualifiée, au Conseil supérieur des programmes.

Le Conseil supérieur des programmes est une instance indépendante placée auprès du ministre de l’Éducation nationale et la Jeunesse. Il doit offrir les garanties scientifiques nécessaires pour émettre des avis et formuler des propositions dans ses champs de compétences.

Read more...

Journée Méthodes de Test pour la Vérification et la Validation

Jeudi, 16 Mars 2023
Accueil : espace SIMONON, Salle 1E19, bâtiment Sud-Ouest ENS Paris-Saclay
Exposés : Salle 1Z28, bâtiment Nord ENS Paris-Saclay (éventuellement 1B18)
Lien visio : Zoom (Meeting ID: 994 7419 3300, Passcode: 89821603)

MTV2

Larencontre annuelle du groupe de travail MTV2 Méthodes de Test pour la Vérification et la Validation sera organisée au LMF par Burkhart Wolff, Frédéric Voisin et Fatiha Zaidi le 16 mars 2023,

Read more...

PhD Defence: Agustín Borgna

Towards a formal compilation stack-frame in quantum computing
by Agustín Borgna
Friday 13 January 2023 at 3pm
Loria, Nancy and online

Agustin Borgna

Abstract: The advent of quantum computers capable of solving problems that are intractable on classical computers has motivated the development of new programming languages and tools for quantum computing. However, the current state of the art in quantum programming is still in its infancy.

In this thesis, we present a series of novel approaches to different aspects of the quantum compilation process based on the ZX calculus. Read more...

PhD Defence: Glen Mével

Cosmo: a concurrent separation logic for the weak memory of Multicore OCaml
by Glen Mével
Wednesday 14 December 2022 at 2pm
Inria Paris,. 2 rue Simone Iff, Paris, Salle Lions 1, and online

Abstract: Multicore OCaml extends OCaml with support for shared-memory concurrency. It is equipped with a weak memory model, for which an operational semantics has been published. This begs the question: what reasoning rules can one rely upon while writing or verifying Multicore OCaml code?

To answer it, we instantiate Iris, a modern descendant of Concurrent Separation Logic, for Multicore OCaml. This yields a low-level program logic whose reasoning rules expose the details of the memory model. On top of it, we build a higher-level logic, Cosmo, which trades off some expressive power in return for a simple set of reasoning rules that allow accessing non-atomic locations in a data-race-free manner, exploiting the sequentially-consistent behavior of atomic locations, and exploiting the release/acquire behavior of atomic locations. Cosmo allows both low-level reasoning, where the details of the Multicore OCaml memory model are apparent, and high-level reasoning, which is independent of this memory model.

Read more...

Best Process-Mining Dissertation Award for Mathilde Boltenhagen

Mathilde Boltenhagen

Mathilde Boltenhagen received the Best Process Mining PhD Dissertation Award 2022 during the Fourth International Conference on Process Mining (ICPM 2022) for her thesis entitled "Process Instance Clustering based on Conformance Checking Artefacts".

Read more...

PhD Defence: Kostia Chardonnet

Towards a Curry-Howard Correspondence for Quantum Computation
by Kostia Chardonnet
Monday 9 January 2023 at 2pm
Salle des thèses, PCRI and online

Abstract: In this thesis, we are interested in the development of a Curry-Howard correspondence for quantum computing, allowing to represent quantum types and quantum control-flow. In the standard model of Quantum Computation, a classical computer is linked to a quantum coprocessor. The classical computer can then send instructions to allocate, update, or read quantum registers. The programs executed by the coprocessor are represented by a quantum circuit: a sequence of instructions that applies unitary operations to the input quantum bits. Read more...

PhD Defence: Amrita Suresh

Formal Verification of Communicating Automata
by Amrita Suresh
Monday 12 December 2022 at 2pm
Room 1Z18, ENS Paris-Saclay and online

Amrita Suresh

Abstract: Distributed systems involve processes that run independently and communicate asynchronously. While they capture a wide range of use cases and are hence, ubiquitous in our world, it is also particularly difficult to ensure their correctness.

In this thesis, we model such systems using mathematical and logical formulation, and try to verify them algorithmically. In particular, we focus on FIFO (First-In First-Out) machines, with one or more finite-state machines communicating via unbounded reliable FIFO buffers. Read more...

PhD Defence: Mathieu Hilaire

Parity games and reachability in infinite-state systems with parameters
by Mathieu Hilaire
Thursday 13 December 2022 at 9am
Room 1Z71, ENS Paris-Saclay and online

Abstract: The most standard model checking approaches are limited to verifying concrete specifications, such as “can we reach a configuration with more than 10 time units elapsing ?”. Nevertheless, for certain computer programs, like embedded systems, the constraints depend on the environment. Thus arises the need for parametric specifications, such as “can we reach a configuration with more than p time units elapsing ?” where p is a parameter which takes values in the non-negative integers.

In this thesis, we study parametric pushdown, counter and timed automata and extensions thereof. In addition to expressing concrete constraints (on the stack, on the counter or on clocks), these can employ parametric constraints. The reachability problem for a parametric automaton asks for the existence of an assignment of the parameters such that there exists an accepting run in the underlying concrete automaton. In addition to the reachability problem, we consider parametric parity games, two player games where players alternate choosing assignments for each parameters, then alternate moving a token along the configurations of the concrete automaton resulting from their choice of parameter assignment. We consider the problem of deciding which player has a winning strategy.

Read more...